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Background: Distinct clinical features and molecular characteristics of left-sided colon cancer(LCC)
and right-sided colon cancer(RCC) suggest significant variations in their tumor microenvironments
(TME). These differences can impact the efficacy of immunotherapy, making it essential to
investigate and understand these disparities.

Methods: We conducted a multi-omics analysis, including bulk RNA sequencing (bulk RNA-seq),
single-cell RNA sequencing (scRNA-seq), and whole-exome sequencing (WES), to investigate the
constituents and characteristic differences of the tumor microenvironment (TME) in left-sided colon
cancer (LCC) and right-sided colon cancer (RCC).

Result: Deconvolution algorithms revealed significant differences in infiltrated immune cells
between left-sided colon cancer (LCC) and right-sided colon cancer (RCC), including dendritic cells,
neutrophils, natural killer (NK) cells, CD4 and CDS8 T cells, and M1 macrophages (P < 0.05).
Notably, whole-exome sequencing (WES) data analysis showed a significantly higher mutation
frequency in RCC compared to LCC (82,187/162 versus 18,726/115, P <0.01). Single-cell analysis
identified predominant tumor cell subclusters in RCC characterized by heightened proliferative
potential and increased expression of major histocompatibility complex class I molecules. However,
the main CD8+ T cell subpopulations in RCC exhibited a highly differentiated state, marked by T
cell exhaustion and recent activation, defined as tumor-specific cytotoxic T lymphocytes (CTLs).
Immunofluorescence and flow cytometry results confirmed this trend. Additionally, intercellular
communication analysis demonstrated a greater quantity and intensity of interactions between tumor-
specific CTLs and tumor cells in RCC.

Conclusion: RCC patients with an abundance of tumor-specific cytotoxic T lymphocytes (CTLs) and
increased immunogenicity of tumor cells in the TME may be better candidates for immune
checkpoint inhibitor therapy.

Keywords: TME; Colorectal cancer; Right-sided colon cancer; Left-sided colon cancer;
Immune therapy; PD-1;

1.Introduction

Colorectal cancer (CRC) is the most common malignant tumor in the digestive system and the
third most prevalent cancer worldwide. Additionally, it is the second leading cause of cancer-related
deaths[1]. The established treatments for colorectal cancer include surgery, radiation therapy,
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chemotherapy, and targeted therapy. Despite significant advancements and favorable outcomes for
early-stage patients, these interventions are less effective for advanced-stage patients.

Colon cancer can be classified based on the tumor's location into right-sided colon cancer (RCC)
and left-sided colon cancer (LCC). RCC includes cancers of the cecum, ascending colon, and hepatic
flexure, while LCC includes cancers of the splenic flexure, descending colon, and sigmoid colon.
These different anatomical locations are associated with distinct clinical manifestations and
molecular characteristics[2, 3]1. Previous studies have shown that patients with left-sided colon
cancer (LCC) are more responsive to chemotherapy and EGFR monoclonal antibody therapy,
whereas patients with right-sided colon cancer (RCC) have limited responses to these treatments[4].
In recent years, immunotherapy with immune checkpoint inhibitors (such as anti-PD-1/PD-L1,
CTLA-4, and LAG3 monoclonal antibodies) has achieved significant breakthroughs in treating
advanced tumors and shown remarkable therapeutic effects in multiple cancer types[5, 6]. However,
despite the promising efficacy of immunotherapy in many tumors, a significant proportion of patients
do not respond to these treatments[7]. According to the latest NCCN guidelines, advanced-stage
CRC patients with AMMR/MSI-H phenotypes are recommended for anti-PD-1/PD-L1 treatment.
However, only a small percentage of CRC patients (around 5-8%) have dIMMR/MSI-H mutations,
limiting the potential benefits of immunotherapy for the broader CRC patient population[8]. It is
essential to identify new molecular subtypes for the remaining patients to better evaluate their
response to immunotherapy.

The tumor microenvironment (TME) significantly affects the response to immunotherapy and
prognosis in cancer patients[9]. The TME is a complex mixture of cells, including tumor cells,
stromal cells, immune cells, vascular cells, and extracellular matrix cells. Previous studies have
shown that an increased presence of plasma cells, dendritic cells, mast cells, and activated memory
CD4+ T cells, along with a decreased presence of M0, M1, and M2 macrophages, is linked to a poor
prognosis in colon cancer[10]. The molecular phenotypic variations in different regions of colon
cancer may contribute to differences in the composition and phenotype of cells within the TME
between left-sided colon cancer (LCC) and right-sided colon cancer (RCC). Additionally, prior
research indicates that myeloid-derived suppressor cells (MDSCs) are more prevalent in the TME of
RCC patients compared to LCC patients. The increased presence of MDSCs in the TME is associated
with an unfavorable prognosis for colon cancer patients[2]. Despite these findings, there is limited
scholarly literature on the comprehensive investigation of the TME in different locations of colon
cancer using a multi-omics approach. To address this gap, the current study aims to employ various
methodologies, including single-cell RNA sequencing, bulk RNA sequencing, whole exome
sequencing, immunohistochemistry, and flow cytometry, to thoroughly explore and elucidate the
complexities of the TME in LCC and RCC.

2. Materials and Methods

2.1. Data sources and processing

Bulk RNA-seq data, clinical information, and SNP mutation site data for colon cancers were
obtained from the TCGA database (https://portal.gdc.cancer.gov/). This dataset includes 59 normal
tissue samples and 453 colorectal adenocarcinoma (COAD) samples. Samples lacking complete
survival information, location details, and other pertinent clinical data were excluded, resulting in a
refined training set of 312 COAD patients for this study. Additionally, the GSE103479 dataset,
containing 122 COAD patients with comprehensive survival and location information, was
downloaded from the GEO database to validate the model's feasibility. Patient information is detailed
in Table S1. Furthermore, the CRC scRNA-seq dataset GSE200997, also from the GEO database,
includes 16 samples of primary tumors and 8 corresponding adjacent normal tissue samples. Samples
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85  were integrated using the anchors method within the R package "Seurat"[11]. Core cells were

86 identified by filtering the scRNA-seq data. Cells ineligible for analysis, including those with genes
87  detectable in three or fewer cells and low-quality cells with fewer than 200 detected genes, were
88  excluded. Dimensionality reduction analysis was performed using the Uniform Manifold

89  Approximation and Projection (UMAP) algorithm for a comprehensive assessment.

90  2.2. Major cell type identification and data visualization

91 Using the Seurat FindAllMarkers function, we assessed the differentially expressed markers for
92 each cell group. Genes with an average expression in a subcluster that was log2-fold higher than in
93  other subclusters were identified. We used marker genes with the highest fold expression within each
94  cluster for this analysis. Additionally, to identify cell types, we utilized the SingleR package[12] and
95  extensive transcriptomic datasets that include well-annotated cell types.

96 2.3. Trajectory analysis

97 We used a reverse graph embedding approach with Monocle2 to reconstruct single-cell

98 trajectories within major cell types [13]. We created a CellDataSet object using UMI count matrices

99  and the negbinomial.size() function with default settings. Cells were grouped and projected onto t-
100  SNE. To measure the average transcriptional transition a cell undergoes from one state to another, we
101  quantified the cumulative duration of the trajectory. Additionally, we conducted trajectory analysis
102 with the Slingshot R package, which uses minimum spanning trees to map multiple branching
103 lineages. The snapshot wrapper function was used to integrate UMAP dimensionality reduction and
104  cluster labels, consistent with Seurat objects. This combined approach improved the robustness and
105  comprehensiveness of single-cell trajectory reconstruction across major cell type.

106  2.4. Analysis of immune cells infiltration score and immunotherapy response score

107 We used several deconvolution algorithms—TIMER, CIBERSORT, QUANTISEQ, XCELL,
108  MCPCOUNTER, and EPIC—to estimate immune cell infiltration in tumor tissues, based on their
109  bulk RNA-Seq gene expression profiles[14]. We assessed significance using the purity-adjusted
110 Spearman rank correlation test, which provided P values and partial correlation values. The results
111 were visually represented with a heatmap and a box plot to clearly illustrate the immune landscape
112 within the tumor microenvironment. Additionally, we used the Immunophenoscore (IPS) to predict
113 patient responses to immune checkpoint inhibitors, such as PD-1 and CTLA-4, in the TCGA

114  database. The IPS integrates indicators like immune checkpoint expression levels, MHC expression
115  levels, and suppressive immune cell levels. This score is available from the TCIA database

116  (https://tcia.at/patients)[15].

117 2.5. Intercellular communication analysis

118 We conducted the intercellular communication analysis using the R package CellChat[16]. For
119  the intercellular communication analysis, T cells and tumor cells were categorized into subgroups.
120 We began by creating a CellChat object with the ‘createCellChat’ function. After annotating this
121  object and identifying overexpressed genes, we calculated communication probabilities using the
122 ‘computeCommunProb’ function. We then detailed the communications of each cell signaling

123 pathway with the ‘compute Commun_ProbPathway’ function. Finally, we visualized these

124 communications using the ‘netVisual chord gene’ function.

125  2.6. Analysis of Somatic Mutations

126 To assess the mutational burden in colorectal cancer (COAD), we used the R package

127  TCGAbiolinks to retrieve mutation data. We then analyzed this data with the maftools package[17]

128  to determine the Tumor Mutational Burden (TMB) and assess differences in TMB within the study
129  context.

130  2.7. Clinical Samples
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The study adhered to the ethical guidelines of the 1975 Declaration of Helsinki and the
regulations set by the National Natural Science Foundation of China. Approval was granted by the
Ethical Committee of Beijing Shijitan Hospital. Clinical samples were collected from June 2022 to
June 2023 at Beijing Shijitan Hospital, Capital Medical University, with informed consent obtained
from patients undergoing surgery. A total of 12 clinical samples were collected, including 6 from
left-sided colon cancer (LCC) and 6 from right-sided colon cancer (RCC). Clinical details of the
patients are provided in Table S2.

2.8. Immunofluorescence

Tissue sections were deparaffinized in xylene and rehydrated through a series of graded ethanol
solutions. Antigen retrieval was performed using a citrate buffer (pH 6) with heat. The fixed tissue
samples were washed with PBS and blocked with 5% BSA for 2 hours. Primary antibodies, diluted in
antibody buffer, were incubated with the tissues overnight. The following day, tissues were washed
with PBS and incubated with fluorochrome-conjugated secondary antibodies. After another round of
washing, tissues were mounted with Antifade Mounting Medium containing DAPI and allowed to
dry. Images were captured using a Nikon confocal microscopy system. The antibodies used are listed
in Table S3.

2.9. Tissue digestion and cell preparation

Tumor tissues were cut into approximately 0.5 mm? pieces and digested in 6 mL RPMI medium
containing 0.5 mg/mL collagenase type IV (Sigma Aldrich) and 0.05 mg/mL DNAse I (Roche) for
10 minutes at 37°C with shaking at 300 rpm. The samples were then homogenized by passing
through a 70 pum filter (BD Biosciences, Falcon, USA) and centrifuged for 10 minutes at 4°C and
1500 rpm. Cells were further purified using 30% Percoll (Cytiva, USA) and centrifuged for 20
minutes at 500 x g at room temperature. The cell pellet was resuspended and washed with ice-cold
PBS.

2.10. Flow Cytometric Analysis

Single cells were isolated from the tumor tissues as described. To block Fc receptors, FcR
Blocking Reagent (Miltenyi Biotech) was added and incubated for 5-10 minutes at 4°C. Cells were
then incubated with surface marker-specific antibodies for 30 minutes at 4°C. After washing twice
with MACS buffer (0.5% bovine serum albumin in PBS), the cells were resuspended in MACS
buffer and analyzed using a FACS Canto II flow cytometer (BD Biosciences). Data were processed
with FlowJo software (Tree Star, OR, USA). Dead and live cells were differentiated using Ghost Dye
(TONBO). The antibodies used are listed in Table S3.

2.11. Statistical Analysis

To obtain mean values and standard deviations, three independent experiments were performed.
Multiple comparisons were assessed using one-way analysis of variance with Bonferroni's post-test,
while pairwise comparisons were conducted with Student's t-tests. Pearson's correlation test was used
for correlation analyses. Statistical significance was defined as a p-value of less than 0.05.

3. Results

3.1. Differences in Prognosis and Tumor Microenvironment Between Left-Sided and Right-
Sided Colon Cancer.

We analyzed tumor microenvironment (TME) scores from TCGA and GEO databases using
deconvolution algorithms (Table S4). This analysis revealed significant differences in TME profiles
between left-sided colon cancer (LCC) and right-sided colon cancer (RCC). Specifically, LCC
showed higher scores for MO macrophages, activated CD4+ memory T cells, dendritic cells (DC),
natural killer (NK) cells, and monocytes. In contrast, RCC had higher scores for M1 macrophages,
neutrophils, and CD8+ T cells (Figure 1A, Figure S1). Univariate Cox regression analysis identified
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that infiltration by neutrophils, conventional dendritic cells (cDC), CD4+ memory T cells, mast cells,
and T follicular helper cells was associated with a better prognosis in colon cancer. Conversely,
infiltration by macrophages, CD4+ naive T cells, and resting natural killer cells was linked to a
poorer prognosis (Figure 1B). Additionally, we compared the prognoses of patients with LCC and
RCC. Patients with LCC had a slightly better prognosis compared to those with RCC across all
stages (Figure 1C). Notably, for advanced stage (III/IV) colon cancer, patients with LCC had a
significantly better prognosis than those with RCC, as shown by the TCGA dataset (LCC vs RCC:
25.2 months vs 16.9 months, P=0.0079) and the GEO dataset (LCC vs RCC: 49.3 months vs 39.0
months, P=0.016).

3.2. Identifying Cell Clusters in Colon Cancer Single-Cell RNA-Sequencing Data Reveals High
Heterogeneity in TME Between LCC and RCC.

To explore differences in the tumor microenvironment (TME) between left-sided colon cancer
(LCC) and right-sided colon cancer (RCC), we analyzed single-cell RNA-sequencing (scRNA-seq)
data from colon cancer cells across different anatomical locations. After rigorous quality control, we
obtained 42,696 cells for further analysis (Table S5). The data preprocessing results are detailed in
Figure S2. Following log normalization and dimensionality reduction, we identified 21 distinct cell
clusters (Figure 2A), which were visualized across all samples (Figure 2B). Cells were classified into
specific types based on canonical marker genes (Table S6), including epithelial cells (EPCAM+),
fibroblasts (COL1A1+), endothelial cells (CLDN5+), T cells (CD3D+), B cells (CD79A+), and
monocytes (LYZ+) (Figure 2C). To assess the heterogeneity in the TME of LCC and RCC, we
analyzed 26,124 cells from tumor tissues of 8§ LCC and 8 RCC patients. The distribution and
proportion of various cell types in different LCC and RCC tissues were examined (Figure 2D, E).
Our results showed notable differences in the proportions of epithelial cells (tumor cells) and T cells,
highlighting significant heterogeneity in the TME across different anatomical sites in colon cancer.

3.3. Tumor Cells in RCC Exhibit Higher Malignancy and Immunogenicity.

The tumor microenvironment (TME) in solid tumors consists of complex components, with
tumor cells being a principal factor influencing prognosis. The heterogeneity of tumor cells plays a
crucial role in shaping cancer patients' outcomes. To explore this heterogeneity in colon cancer, we
analyzed tumor cell subpopulations across different anatomical locations. We isolated epithelial cells
from tumor tissues and identified 4,632 tumor cells for further analysis. Using initial clustering
results, we categorized these cells into five distinct tumor cell subpopulations (Figure 3A). We then
compared the proportions of these subpopulations between LCC and RCC. In LCC, the predominant
subpopulation was C5 (LCC vs RCC: 57.99% vs 33.36%), while in RCC, subpopulations C9 (LCC
vs RCC: 20.40% vs 33.63%) and C11 (LCC vs RCC: 7.35% vs 21.04%) were more prevalent (Figure
3B). Next, we examined the differentiation trajectories of these subpopulations using Monocle. The
analysis showed that subpopulations C5 and C10 exhibited high differentiation levels, indicating
more mature epithelial tumor cells, whereas subpopulation C9 showed low differentiation, suggesting
higher malignancy in RCC (Figure 3C). Additionally, we evaluated the functions of different tumor
cell subpopulations using the GSVA algorithm. Our results indicated that the dominant C5
subpopulation in LCC had low expression of MHC I, which may suggest a deficiency in TCR-MHC
interactions and potentially lead to a poor response to immunotherapy. [18, 19]. Conversely, the
dominant C9 subpopulation in RCC exhibited characteristics of low differentiation, such as
deficiencies in DNA mismatch repair, cell cycle regulation, and epithelial-mesenchymal transition.
Another notable subpopulation in RCC, C11, showed strong cell proliferation and high expression of
MHC I (Figure 3D), which suggests a potential for a favorable response to immune interventions.

3.4. Higher Frequency of Missense Mutations in RCC Suggests Potentially Greater
Immunogenicity.
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Tumor mutation burden (TMB) is crucial for the effectiveness of immunotherapy. To
investigate this, we analyzed somatic mutations in LCC and RCC patients using the maftools
package. Our findings revealed that in colon cancer, the primary gene mutations involved APC, TTN,
TP53, MUC16, SYNE1, RYR2, and KRAS, predominantly characterized by missense mutations and
SNPs, with the most common mutation being the substitution of C with T. Notably, RCC exhibited a
higher frequency of missense mutations and SNPs compared to LCC (missense mutations: LCC vs
RCC: 18726/115 vs 82187/162; SNPs: LCC vs RCC: 32524/115 vs 144253/162) (Figure 4A, B,
Table S7). Functional analysis of these mutations showed that they primarily affected protumor
growth and progression pathways (e.g., RTK-RAS, WNT, NOTCH, PI3K, MYC). Furthermore, the
proportion of tumor development driven by these mutations was higher in RCC patients compared to
those with LCC (Figure 4C). The greater number of missense mutations and SNPs in RCC suggests
that these tumors are likely to produce more neoantigens, potentially leading to increased infiltration
of tumor-specific cytotoxic T lymphocytes (CTLs) and a stronger immune response within the tumor
microenvironment[20].

3.5. RCC Exhibits Higher Infiltration of Tumor-Specific T Cells

To explore differences in T cell subsets between LCC and RCC, we analyzed 15,118 T cells
from the dataset and performed dimensionality reduction. This analysis revealed 15 distinct T cell
subclusters (Figure 5A). Comparing these subclusters between LCC and RCC, we found notable
differences. Specifically, subclusters C0O, C6, and C9 were more prevalent in LCC, while subclusters
C2, C10, and C12 were more common in RCC tumors (Figure 5B). To further characterize these T
cell subclusters, we conducted differential gene expression (DGE) analysis, which identified genes
with varying expression levels across the T cell clusters (Figure 5C; Table S8). We also performed
single-cell gene set enrichment analysis (SCGSEA) to gain insights into the phenotypic profiles of
tumor-infiltrating lymphocytes (TILs). This involved evaluating the expression of cluster-specific
markers and analyzing over 100 gene signatures from recent single-cell RNA sequencing studies
(Table S9)[21-25]. Among the identified T cell subclusters, CD4 T cells were mainly found in
clusters CO, C1, C2, C3, C6, C7, C8, C9, and C12, while CD8 T cells were primarily located in
clusters C4, C5, C10, and C13. CD4 T cells were further classified into several distinct subsets: naive
CDA4 T cells (CO, C7), central memory CD4 T cells (C1, C8, C9), follicular helper CD4 T cells (C2),
regulatory CD4 T cells (C3), Th17 CD4 T cells (C6), and exhausted CD4 T cells (C12). Similarly,
CD8 T cells were categorized into tissue resident memory CD8 T cells (C4, C5), exhausted CD8 T
cells (C10), and proliferating CD8 T cells (C13) (Figure 5D). Notably, the C10 cluster, predominant
in RCC tumors, displayed characteristics of exhausted effector T cells. These cells showed increased
expression of genes such as CXCL13, LAG3, LAYN, TNFRSF9, TIGIT, PDCD1, CTLA4, IFNG,
and GZMB. We identified these as tumor-specific CTLs, consistent with findings from our previous
studies[26, 27]( Figure 5E). The cell subpopulations identified are significant for the effectiveness of
immune checkpoint therapies. Analysis of differentiation trajectories using the Monocle algorithm
revealed that the C3_ FOXP3 Treg CD4+ and C10_CXCL13 Exh CD8+ subsets represent
terminally differentiated T cell subclusters (Figure 5F, G). These findings indicate that RCC tumors
have a higher presence of tumor-specific CTLs compared to LCC tumors. Overall, this research
highlights the distinct characteristics and phenotypes of T cell subclusters in the tumor
microenvironment of LCC and RCC, offering valuable insights into the immune landscape of colon
cancer.

3.6. Elevated PD1 Expression in CD8+ T Cells in RCC Compared to CD4+ T Cells in LCC
The frequency of PD1 expression on infiltrating lymphocytes is a key indicator of response to

immune checkpoint inhibitors. We performed immunofluorescence staining on tumor samples from

both LCC and RCC, using lymphocyte markers CD4 and CD8, along with the exhaustion marker
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PD1. The analysis revealed that RCC tumors had a higher proportion of CD8 T cells compared to
LCC tumors. Specifically, the percentage of CD8+PD1+ lymphocytes was greater in RCC patients
(Figure 6A). Flow cytometry further confirmed these findings, showing that RCC patients had a
higher proportion of CD8+ lymphocytes and a lower proportion of CD4+ T cells compared to LCC
patients. In terms of PD1+ immune cells, CD4+ T cells were more prevalent in LCC patients (18.7%-
51.6%) compared to RCC (5.82%-20.7%), while PD1+CD8+ T cells were more common in RCC
patients (22.1%-22.8%) compared to LCC (8.73%-18.29%) (Figure 6B, Table S10). These results are
consistent with the immunofluorescence findings, indicating that RCC tumors have a higher
abundance of tumor-specific cytotoxic T lymphocytes (CTLs) and elevated PD1 expression. This
suggests that RCC patients might respond better to immune checkpoint inhibitor treatments.

3.7. Higher Frequency of Lymphocyte-Mediated Tumor Cell Killing in RCC

The effectiveness of cancer immunotherapy, especially checkpoint treatments, depends
significantly on the presence and interaction of tumor-specific cytotoxic T lymphocytes (CTLs)
within the tumor microenvironment. To explore how tumor cells interact with immune cells in LCC
and RCC, we employed the CellChat algorithm for analysis. Our findings show that in LCC, there is
close interaction between lymphocytes, particularly between initial cells and CD4+ cells.
CD4+FOXP3+ Treg cells also demonstrated extensive communication with other cells in LCC, but
there was relatively limited interaction between immune cells and tumor cells. In contrast, RCC
tumors exhibited more frequent and intense interactions between immune cells and tumor cells.
Specific cell clusters, such as C2. CXCRS5 Tem CD4 and C10 CXCL13 Exh CDS, showed
extensive communication with other cells, indicating a more sophisticated immune response
mechanism in RCC (Figure 7A, B). Analysis of communication pathways revealed key interactions
including TIGIT - NECTIN2, SEMA4D - PLXNB2, CD8A - CEACAMS, and ADGRES - CD55.
The intensity of these interactions was significantly higher in RCC compared to LCC (Figure 7C).

3.8. RCC Patients Show Higher Responsiveness to Immune Checkpoint Inhibitors.

We compared the Immune Prognostic Score (IPS) between LCC patients (n = 132) and RCC
patients (n = 180) using TCGA datasets. The IPS, derived from bulk RNA-sequencing data, reflects
various factors such as antigen processing, checkpoint immunomodulators, effector cells, and
suppressor cells, to predict the efficacy of immune checkpoint inhibitors (Figure S4)[28]. We
randomly selected 20 patients from each group and presented their predicted responses to immune
checkpoint inhibitors (Figure 8A). Analysis of IPS scores for all patients revealed that RCC patients
showed a significantly better response to these inhibitors (P < 0.05) (Figure 8B). This disparity was
even more pronounced in advanced stage colon cancer, where RCC patients (n = 68) had a
significantly better response compared to LCC patients (n = 67) (P <0.01) (Figure 8C).

4. Discussion

Clinical trials have demonstrated the potential effectiveness of immunotherapy for advanced
cancer; however, the benefits are limited for some patients due to variations in the immune
microenvironment[29-31].

Most previous studies on immunotherapy for colon cancer have focused on the tumor's
microsatellite instability (MSI) status[32]. There is, however, a lack of comprehensive research on how
immunotherapy responses and immune microenvironments differ between colon cancer cases
originating from different anatomical sites. To address this, our study combined single-cell RNA
sequencing, bulk RNA sequencing, whole exome sequencing (WES), immunohistochemistry, and flow
cytometry to explore differences in the tumor microenvironment (TME) between left-sided colon
cancer (LCC) and right-sided colon cancer (RCC).
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We observed significant differences in TME composition and clinical outcomes between the two
groups. Specifically, RCC had a poorer prognosis compared to LCC, particularly in advanced stages
(ITI/TV), consistent with previous findings[4, 33]. Bulk RNA sequencing revealed a higher prevalence
of immune cells in RCC compared to LCC. Additionally, univariate Cox regression analysis showed
that infiltration by specific cell types, such as neutrophils, conventional dendritic cells (cDC), CD4+
memory T cells, resting mast cells, and follicular helper T cells, was linked to better prognosis in colon
cancer. Conversely, higher levels of macrophages, naive CD4+ T cells, and resting natural killer cells
were associated with poorer outcomes. Bulk RNA sequencing, while informative, has limitations in
accurately representing the distribution of various cell subpopulations within the TME[26, 34]. Hence,
we utilized single-cell sequencing data to conduct a more comprehensive examination of the tumor
microenvironment in the LCC and RCC. Single-cell sequencing analysis revealed distinct variations
in major cell clusters composition between LCC and RCC (Figure 2D, 2E). However, it is important
to note that the major cluster analysis only provides a preliminary estimation of cell proportions. To
gain a more comprehensive understanding of the tumor microenvironment characteristics and the
response to immune checkpoint therapy in LCC and RCC, a more detailed subcluster analysis should
be conducted.

Within the tumor microenvironment, our observations indicate that predominant tumor cell
subpopulation in RCC tend to exhibited a state of lower differentiation levels of the epithelial tumor
cells (Figure 3C) and characterized by a high potential for proliferation and a propensity towards
epithelial transition (Figure 3D). These findings are consistent with previous research in this field[35].
Notably, tumor cells in RCC exhibit a high expression of major histocompatibility complex class I
(MHC I) molecules, whereas tumor cells in LCC exhibited minimal expression (Figure 3D). In patients
with colon cancer, those with lower levels of MHC class I expression experienced a significantly worse
prognosis compared to those with higher levels[36]. MHC class I molecules present peptides derived
from self or foreign antigens to CDS8 T cells. Therefore, they are essential for antigen specific CD8 T
cell immune responses. When cancer cells lose the expression of MHC class I molecules, they can no
longer be recognized by conventional CD8 T cells in an antigen specific manner[18]. As a result, these
cancer cells become resistant to current immunotherapies, including immune checkpoint blockade (e.g.,
anti-PD-1 therapy)[19]. In LCC, despite the presence of immune cell infiltration, tumor-specific
cytotoxic T lymphocytes (CTLs) encounter difficulties in exerting their functional role. Additionally,
analysis of WES data in colon cancer has revealed widespread gene mutations, including APC, TP53,
and KRAS, with mismatch repair serving as the predominant form (Figure 4A, 4B). These mutations
play an important role in tumor proliferation and the transition from epithelial to mesenchymal states.
Notably, the frequency of mutations in RCC surpasses that was observed in LCC (Figure 4C, 4D).
Moreover, the elevated frequency of mismatch repair suggested the generation of a greater number of
tumor neoantigens, leading to infiltration of tumor-specific CTLs[20]. This implies the presence of a
greater number of tumor-specific cytotoxic T lymphocytes (CTLs) infiltration in RCC.

Upon analyzing the T cell subsets within the tumor microenvironment, notable distinctions were
observed in the composition of T lymphocyte subsets between LCC and RCC. T cells within RCC
exhibited a highly differentiated and recently activated state, whereas those within LCC predominantly
displayed a low differentiation and naive state (Figure 5B, 5G). Within the CDS8 positive T-cell
populations, cluster C10 expressed exhaustion molecules, coexisting with T cell activation related
molecules and tumor killing associated cytokine including IFN-y, GZMB, TNFRSF9 (Figure 5C,5E;
Table S8), we defined this cluster of cell as tumor-specific CTL, which is in agreement with previous
cancer studies[23, 26, 27, 37]. The same phenomenon was also observed in the results obtained from
flow cytometry and immunohistochemistry (Figure 6A, 6B). Previous research on phenotypes related
to T cell exhaustion has yielded conflicting findings, with certain studies indicating a correlation
between T cell exhaustion in the TME and a negative prognosis[38, 39], while others suggest that the
presence of T cells expressing exhaustion related molecules is indicative of a positive response from
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cytotoxic T lymphocytes [37, 40]. Consequently, a specific analysis is necessary when categorizing
this subset of cells. The increased presence of these cells frequently signifies a positive reaction of the
immune system towards the tumor and may result in a more favorable prognosis when utilized in
conjunction with immune checkpoint therapy.

Within the CD4 positive T cell populations, exhaustion related molecules are predominantly
expressed in the T-reg cell subset, which is associated with immune tolerance [41, 42]. By directly
inhibiting or indirectly inhibiting anti-tumor immune cells, T-reg cells reduce the effectiveness of anti-
tumor immunity. This phenomenon achieved through the secretion of immunosuppressive cytokines
like TGF-B and IL-10, as well as through cell-cell contact with other immune cells[43]. The elevated
expression of this specific subset of cells has been correlated with an unfavorable prognosis[44].

Consequently, when examining the tumor microenvironment, particularly in the context of
forecasting the efficacy of immune checkpoint inhibitors in tumor patients, it is imperative to
consider multiple factors. These factors encompass the tumor mutational burden, the expression of
major histocompatibility complex (MHC) and immune checkpoint molecules, as well as the
infiltration of tumor-specific cytotoxic T lymphocytes and regulatory T cells rather than focusing
solely on the overall T cell population.

5. Conclusions

The tumor microenvironment of right-sided colon cancer (RCC) and left-sided colon cancer
(LCC) exhibits distinct characteristics. Specifically, RCC cells show lower levels of epithelial cell
differentiation, higher mutational burden, and increased expression of MHC I molecules.
Additionally, the tumor microenvironment in RCC is marked by a greater infiltration of tumor-
specific cytotoxic T lymphocytes (CTLs). These unique features suggest that RCC patients may
benefit more from immune checkpoint inhibitor therapies compared to those with LCC..
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Figure Legend

Figure 1. The immune landscape and prognosis differences between LCC and RCC of bulk RNA-
seq datasets. (A) The immune infiltration heatmap of LCC and RCC. (B)Univariate Cox regression
analysis of COAD immune infiltration score and clinical index. (C) Kaplan-Meier method was used
to analyze the overall survival time of LCC and RCC samples from the TCGA and GSE103479
datasets.

Figure2. Identifcation of 6 cell clusters with diverse annotations revealing high cellular heterogeneity
in COAD tumors based on single-cell RNA-seq Data. (A)The umap algorithm was applied to the top
20 PCs for dimensionality reduction, and 21 cell clusters were successfully classified. (B)
Classifcation of cell clusters in each sample. (C) Identifcation of various cell types based on
expression of specifed marker genes. (D) All 6 cell clusters in COAD were annotated with singleR
and CellMarker according to the composition of marker genes. (E) The proportion of cell types in
LCC and RCC.

Figure3. Cell proportions, Gene set enrichment and trajectories of tumor cells. (A) 5 tumor cell
subpopulations in LCC and RCC. (B) The proportion of tumor cell subpopulations in LCC and RCC.
(C) Trajectory analysis of tumor cell colored by subpopulations. (D) Gene set enrichment of 5 tumor
cell subclusters.

Figure4. The mutations landscape analysis of LCC and RCC. (A, B) The tumor mutational burden
(TMB) of of LCC and RCC. (C, D) Overall description of the LCC and RCC patient mutation
landscape. (E, F) Functional analysis of the mutated genes in LCC and RCC.

FigureS. Single-cell seq revealed T cell feature difference between LCC and RCC. (A) After
dimensionality reduction analysis, 15 T cell subpopulations obtained from LCC and RCC. (B) The
proportion of T cell subpopulations in LCC and RCC. (C) Differential gene expression analysis
shows up(red) and down(blue) regulated genes across all 15 subpopulations. (D) Annotation of 15 T
cell subpopulations. (E) Distribution of T cell exhaustion and activation related molecules in T cell
clusters. (F) Trajectory analysis of CD4+ T cell colored by subpopulations. (G) Trajectory analysis of
CD8+ T cell colored by subpopulations.

Figure6. The immunofluorescence and Flow Cytometric examination of the infiltrating immune cell
in tumors of LCC and RCC. (A) Immunofluorescence examinate CD4 (FITC, Green), CDS8 (CyS5,
Yellow), PD-1(Cy3, Red) protein expression in the TME of LCC and RCC. (B) Flow Cytometric
examinate the frequency of PD1+ CD4 and PD1+ CDS8 T-cell in the TME of LCC and RCC.
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Figure7. Interaction between T cell subpopulations and tumor cells of LCC and RCC. (A, B) The
number of interactions between T cell subpopulations and tumor cells of LCC and RCC, the
thickness of the connecting lines represents the quantity of mutual interactions. (C) The signaling
pathways of the interaction between LCC and RCC, with the color depth of the bubbles representing
the strength of the interaction and the size of the bubbles representing the P-value.

Figure8. Immunophenoscores and Response to immune Checkpoint Blockade. (A Presented are
immunophenograms delineating individual patients with LCC or RCC, the top left quadrant
represents Antigen Processing score, the bottom left quadrant represents Checkpoints
Immunomodulators score, the top right quadrant represents Effector Cells score, and the bottom right
quadrant represents Suppressor Cells score. The red color indicates a high score and blue represents
low score. (B) IPS of response to blockade with anti-Checkpoint antibody of all stage LCC and RCC
patients. (C)IPS of response to blockade with anti-Checkpoint antibody of advanced stage LCC and
RCC patients.
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