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Introduction: Whiplash injury (WHI) is characterised by a forced neck flexion/
extension, which frequently occurs after motor vehicle collisions. Previous 
studies characterising differences in brain metabolite concentrations and 
correlations with neuropathic pain (NP) components with chronic whiplash-
associated disorders (WAD) have been demonstrated in affective pain-processing 
areas such as the anterior cingulate cortex (ACC). However, the detection of a 
difference in metabolite concentrations within these cortical areas with chronic 
WAD pain has been elusive. In this study, single-voxel magnetic resonance 
spectroscopy (MRS), following the latest MRSinMRS consensus group guidelines, 
was performed in the anterior cingulate cortex (ACC), left dorsolateral prefrontal 
cortex (DLPFC), and occipital cortex (OCC) to quantify differences in metabolite 
concentrations in individuals with chronic WAD with or without neuropathic 
pain (NP) components.

Materials and methods: Healthy individuals (n  =  29) and participants with 
chronic WAD (n  =  29) were screened with the Douleur Neuropathique 4 
Questionnaire (DN4) and divided into groups without (WAD-noNP, n  =  15) or 
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with NP components (WAD-NP, n  =  14). Metabolites were quantified with 
LCModel following a single session in a 3  T MRI scanner within the ACC, DLPFC, 
and OCC.

Results: Participants with WAD-NP presented moderate pain intensity and 
interference compared with the WAD-noNP group. Single-voxel MRS analysis 
demonstrated a higher glutamate concentration in the ACC and lower total 
choline (tCho) in the DLPFC in the WAD-NP versus WAD-noNP group, with no 
intergroup metabolite difference detected in the OCC. Best fit and stepwise 
multiple regression revealed that the normalised ACC glutamate/total creatine 
(tCr) (p  =  0.01), DLPFC n-acetyl-aspartate (NAA)/tCr (p  =  0.001), and DLPFC 
tCho/tCr levels (p  =  0.02) predicted NP components in the WAD-NP group 
(ACC r2  =  0.26, α  =  0.81; DLPFC r2  =  0.62, α  =  0.98). The normalised Glu/tCr 
concentration was higher in the healthy than the WAD-noNP group within the 
ACC (p  <  0.05), but not in the DLPFC or OCC. Neither sex nor age affected key 
normalised metabolite concentrations related to WAD-NP components when 
compared to the WAD-noNP group.

Discussion: This study demonstrates that elevated glutamate concentrations 
within the ACC are related to chronic WAD-NP components, while higher NAA 
and lower tCho metabolite levels suggest a role for increased neuronal–glial 
signalling and cell membrane dysfunction in individuals with chronic WAD-NP 
components.

KEYWORDS

glutamate, n-acetyl-aspartate, choline, neuropathic pain, whiplash injury, anterior 
cingulate cortex, dorsolateral prefrontal cortex, occipital cortex

1 Introduction

Whiplash injury (WHI) is characterised by a forced flexion 
extension of the neck, which frequently occurs after motor vehicle 
collisions, and may involve damage to intervertebral joints, discs, 
ligaments, muscles, and nerve roots (1). Symptoms of whiplash-
associated disorders (WAD) include persistent neck pain, headache, 
dizziness, concentration disturbance, sleeping difficulties, and fatigue 
(2, 3). WAD symptoms usually resolve within 3 months, but 
approximately 30 and 50% of participants experience chronic pain for 
longer than 6 months (2–6). Although WAD is characterised by 
regional musculoskeletal symptoms, the development of central 
pathophysiological mechanisms that lead to neuropathic pain (NP) 
descriptors and sensory changes have also been described (3, 7–9). 
There is a need therefore to understand the central and peripheral 
pathophysiological mechanisms to improve the early diagnosis and 
prevention of chronic WAD symptoms, including high-impact 
chronic NP components (6).

Proton magnetic resonance spectroscopy (1H MRS) is a 
non-invasive technique that enables quantification of metabolite 
concentration and can provide an essential insight into 
pathophysiological mechanisms and therapeutic targets (10–14). 
Quantification of metabolite concentrations within brain pain-
processing areas permits a mechanistic approach to detect site-specific 
biochemical changes in neuronal and glial cell dysfunction and their 
relationship with nociceptive and neuropathic pain types (10, 13, 14). 
Indeed, differences in key metabolite concentrations, such as 
glutamate (15–17), N-acetyl-aspartate (10, 18, 19), and GABA (20, 

21), have been detected with pain subtypes. Furthermore, brain MRS 
has been used to demonstrate the therapeutic effects of analgesic 
treatments (22–24) and non-invasive neuromodulation of the cortex 
(25, 26). Metabolite concentrations within the anterior cingulate 
cortex (ACC) and periaqueductal grey matter (PAG) are known to 
correlate with WAD-NP components and endogenous pain 
modulation during chronic WAD, possibly related to changes in 
glutamatergic and neuroinflammatory mechanisms (27). However, no 
general difference in metabolite concentrations has been identified 
within the primary motor cortex, somatosensory cortex, ACC, or PAG 
when compared between individuals with WAD with or without 
chronic pain (27, 28). Furthermore, the involvement of metabolite 
modulation within other key areas, such as the dorsolateral prefrontal 
cortex (DLPFC), during chronic WAD pain has not been previously 
reported (29).

The technical challenges associated with 1H MRS acquisition 
methodology and metabolite analysis (30, 31) may explain the failure 
to detect subtle differences in metabolite concentrations related to 
chronic WAD pain. This limitation can be addressed with the use of 
the semi-adiabatic localisation by adiabatic selective refocusing 
sequence (semi-LASER) (30), single-voxel spectroscopy acquisition 
for specific anatomical regions (30, 31), and the development and 
implementation of a simulated basis set into the analysis (30). Analysis 
programmes available on scanner software are usually less sensitive, 
and therefore, expert consensus groups, such as the MRSinMRS 
group, recommend software that allows pre-processing, such as phase 
and frequency correction and final metabolite quantification (30). 
Furthermore, the inclusion of anatomical areas as reference areas to 
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assess differences in metabolite concentrations in brain areas unrelated 
to specific pain types is not commonly adopted (27).

This study aimed to quantify a difference in metabolite 
concentration levels in the brain, in participants with chronic WHI 
pain screened for neuropathic components, within the ACC and the 
left dorsolateral prefrontal cortex (DLPFC), areas known to specifically 
modulate pain-related affective and mood components (32–34). The 
secondary aim of the study was to identify key metabolites related to 
chronic neuropathic pain components during chronic WHI.

2 Materials and methods

2.1 Ethics statement

This study protocol was approved by the local Clinical Research 
Ethics Committee (Approval number #2559/674; 2021) and was 
conducted at the National Hospital for Paraplegics in Toledo according 
to the Helsinki Declaration (35).

2.2 Study participant recruitment

Participants with WAD were recruited by orthopaedic surgeons at 
a hospital in Toledo (Spain). The period of recruitment was between 
September 2021 and July 2023. All individuals screened for eligibility 
provided written informed consent before their inclusion in the study. 
No a priori sample size calculation was made as similar studies 
performed in the chronic WHI phase did not detect differences in 
brain metabolite concentrations in individuals with WAD general pain 
(27, 28).

2.3 Inclusion criteria

For participants to be  eligible, they were required to meet the 
following conditions: (1) clinical diagnosis of acute WAD assessed 
within 72 h of a traffic accident; (2) present WAD with WAD grades of 
between II-III according to the Quebec Task Force grading system 
(36–38), (3) daily pain intensity of >3 rated on the 11-point numeric 
rating scale (NRS) reported within 1 week of injury; (4) one or more 
specific descriptors assessed with the DN4 questionnaire (see below); 
(5) more than 3 months after WHI; and (6) 18 years of age or older (39). 
The exclusion criteria were as follows: (1) a history of chronic pain and/
or rheumatic, neurological, or psychiatric diseases; (2) diseases causing 
potential neural damage (e.g., diabetes, diseases of the immune system, 
and oncological diseases); (3) bone injuries associated with trauma and 
detected in the X-ray of the cervical spine; (4) previous clinical history 
of cervical injuries (e.g., disc herniation, osteoarthritis, and WAD), 
frequent headaches, and/or orofacial pain; (5) a history of cervical 
surgery or surgery to the upper extremity; and (6) treatment for 
chronic pain previously received for long periods of time (39).

2.4 Assessment of pain interference

The Brief Pain Inventory (BPI) questionnaire was used to assess 
the patient’s perception of pain severity and its interference with 

several dimensions of daily life (27, 40). The pain interference scale 
includes pain interference related to general activity, mood, enjoyment 
of life, walking ability, ability to work and perform daily tasks, and 
relationships with other people (40, 41). BPI pain interference was 
calculated as a total score of the seven items (including the sleep item) 
and was also calculated as subscores (41) for psychological affective 
interference [relationships with others, enjoyment of life and mood 
(REM)] and physical activity interference [walking ability, general 
activity, and ability to work (WAW)] (41).

2.5 Assessment of NP components

2.5.1 Physician assessment
The presence of NP components was assessed using conventional 

physician assessment, which was considered the gold standard (39, 
42). The physician assessment was performed following routine 
clinical practise (39), international recommendations (43–45), and the 
NeuPSIG neuropathic pain criteria for probable NP (45).

This evaluation included detailed history, physical examination 
(e.g., movement testing, clinical bedside somatosensory function 
testing, and general neurological and clinical testing), and appropriate 
diagnostic workup including pain distribution and sensory 
examination (43).

2.5.2 Douleur neuropathique 4 screening 
questionnaire

The DN4 questionnaire is a reliable tool with high discriminatory 
value for the identification of NP symptoms and signs (46, 47) and has 
proven valid for mixed pain syndromes (sensitivity: 83%; specificity: 
90%) (47). The Spanish version of the DN4 with substantial inter-rater 
reliability (Cohen’s kappa coefficients: 0.79) and internal consistency 
(Cronbach’s α: 0.7) has been used (39, 46). This questionnaire consists 
of a total of 10 items (NP descriptors): 7 items are related to the quality 
of pain (burning, painful cold, and electric shocks) and its association 
with abnormal sensations (tingling, pins and needles, numbness, and 
itching), and 3 items are related to clinical examination in the painful 
area (touch hypoesthesia, pinprick hypoesthesia, and tactile allodynia). 
A score of 1 is given to each positive (yes) item. The total score is 
calculated as the sum of the 10 items, and the cutoff value to determine 
the presence of NP components is a total score of DN4 of ≥4 (46).

The presence of NP components using the DN4 questionnaire was 
determined according to the following characteristics of pain: (1) the 
presence of pain descriptions such as burning or hot, electric shocks 
or shooting, painful cold, pricking or pins and needles, pain evoked 
by light touching or loss of sensitivity to mechanical stimuli, or 
non-painful sensations such as numbness and tingling (46, 47) and (2) 
the presence of abnormal findings in the clinical examination such as 
the sensory change to mechanical stimuli (46, 47).

2.6 Brain imaging data acquisition and 
processing

A total of 29 healthy participants with no chronic pain and 29 
participants with WHI [WAD-noNP (n = 15) and WAD-NP (n = 14)] 
consented to brain imaging performed with a 3 T whole body system 
MRI scanner (Siemens Magnetom TrioTim Syngo MR B19) with 
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32-channel Rx CP head coil (Siemens). MRS acquisition and analysis 
parameters are included as an MRSinMRS checklist (Supplementary  
Table S1). First, T1-weighted structural images were acquired using a 
three-dimensional magnetisation-prepared rapid gradient-echo (3D 
MPRAGE) (48) with the following parameters: 256 slices, slice 
thickness = 0.90 mm, TR/TE = 2300/3.01 ms, flip angle = 9°, and 
isotropic voxel size = 0.9 mm. The anatomical information was used 
for MRS voxel placement, and the images were segmented using 
SPM12 to determine the fractions of grey and white matter and 
cerebrospinal fluid volume in each region of interest (ROI) (49). The 
percentage grey matter for the non-injured and chronic WHI groups 
for each ROI was as follows: ACC:—47.9 ± 3.8% vs. 47.4 ± 4.1%, OCC: 
63.4 ± 6.9% vs. 64.7 ± 3.7%, and DLPFC: 33.0 ± 6.4% vs. 32.2 ± 9.5%. 
These grey matter percentages facilitate discussion of neuronal or 
white matter differences in key metabolites detected with MRS.

Single-voxel MRS was acquired using the pulse sequence MEGA-
semi-LASER SVS (CMRR Spectroscopy Package Release 2017–07, 
University of Minnesota: mslaser, TE = 85 ms, TR = 3,000 ms, 
bandwidth = 2 KHz, average of 128 scans (64 scans for edit-off and 64 
for edit-on), 2,048 data points, and total scan time = 10.8 min per ROI) 
with a field strength of 3 T. A longer TE time was adopted to optimise 
GABA + quantification with the MEGA-semi-LASER sequence (50, 
51). The centre frequency was −1.7 ppm, and the shimming method 
was achieved using the Siemens shim “Brain” application (System 
3D-GRE). An unsuppressed water reference was acquired, thus the 
water suppression method used was VAPOR with an optional 
embedded outer volume suppression (OVS) to suppress water and 
improve the localisation of the volume of interest (VOI).

Voxels were positioned manually in the ROIs in the axial plane 
by well-trained technicians with many years of experience with a 3 T 
scanner for MRS under the supervision of a radiologist experienced 

in the identification of anatomical landmarks (52). MRS acquisition 
of spectra within each ROI was always in the same order. The first 
voxel (35 × 35 × 10 mm3) was placed in the anterior cingulate cortex 
(ACC) (Figure 1A), the second voxel (20 × 20 × 20 mm3) was placed 
in the occipital lobe (OCC) (Figure  1B), and the third voxel 
(20 × 20 × 40 mm3) was placed in the left dorsolateral prefrontal 
cortex (DLPFC) (Figure  1C). Voxel size was based on previous 
studies (26, 27). MRS voxels were first registered to the T1-anatomical 
space and segmented (grey matter, white matter, and CSF) using 
SPM12 (53, 54). In this study, spectra were acquired from the DLPFC 
in a smaller cohort (WAD-noNP, n = 13, WAD-NP n = 17) compared 
to the number of individuals with spectra obtained from the ACC 
and OCC (WAD-noNP n = 29, WAD-NP n = 29). During the MRS 
data acquisition, participants were not given specific instructions.

All MRS spectra (see Figure 1D as an example) were obtained in 
DICOM (.IMA) format and processed using MRspa version 1.5f (55), 
which runs with MATLAB R2022b (56). For GABA + quantification, 
MRS data were obtained as the difference between two separate 
measurements (64 spectra for each edit-on and edit-off). The MRspa 
freeware spectral processing and analysis package was used in 
conjunction with programs SPM12 and LCModel version 6.3-1R (for 
fitting and quantification of metabolites). SPM12 and LCModel interface 
with MRspa (53, 54, 56, 57). Frequency and phase corrections were 
performed followed by eddy current correction. The resulting summed 
semi-LASER spectra were fitted using LCModel and were scaled to 
water. Final GABA+ concentration was calculated from the edited 
spectra by calculating the difference between edit-on and edit-off spectra, 
while the rest of the metabolites were fitted from the edit-off spectra.

The basis set file was created specifically for our sequence MEGA-
semi-LASER SVS by Dr. Deelchand from the Center for Magnetic 
Resonance Research at the University of Minnesota. No macromolecules 

FIGURE 1

An example of a representative MR spectra, illustrating voxel mask placement for the anterior cingulate cortex (A), occipital cortex (B), and left 
dorsolateral prefrontal cortex (C). Typical MRS spectra from the anterior cingulate cortex of a healthy participant (D).
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were included in the basis files. The basis set contained 18 basis spectra 
for edit-off, out of which 7 were reported: total creatine (Cr), total 
n-acetyl-aspartate (NAA), inositol (Ins), total choline (Cho), glutamate 
and glutamine (Glx), glutamate (Glu), and gamma-aminobutyric acid 
(GABA+) and normalised to total creatine (tCr). Importantly, no 
difference in creatine levels was identified between groups, and therefore, 
metabolite ratio values were calculated using tCr. In this study, glutamate 
was not highly correlated with glutamine (Spearman’s correlation: 0.43) 
in line with other sequences using 3 T scanners (58). Quality control 
measures as recommended by the MRSinMRS consensus group are 
shown in Supplementary Table S2 and are presented as signal-to-noise 
ratio (SNR), line width (LW), full-width-half maximum (FWHW), and 
Cramér–Rao Lower Bound (CRLB) for each metabolite.

2.7 Statistical analyses

Statistical analysis was performed with a commercial software 
package (SigmaPlot 11.0 for Windows, Systat Software, Inc., 
Germany). Metabolite data were expressed either as mean ± standard 
deviation or as median values with 25th–75th interquartile percentiles, 
according to the Shapiro–Wilk normality test. Intergroup differences 
in metabolite concentrations were detected either with the Student’s 
t-test or Mann–Whitney test for comparisons between the healthy and 
WHI groups or with the one-way analysis of variance (ANOVA) or 
Kruskal–Wallis test for comparisons between the three groups: 
healthy, WAD without NP (WAD-noNP), and WAD with NP (WAD-
NP). Bonferroni tests were performed with the Holm–Sidak or Dunn’s 
method. Intergroup clinical data were compared using the Student’s 
t-test or Mann–Whitney test. Differences and the impact of age and 
sex on significant differences in metabolite concentrations were 
assessed with an analysis of covariance (ANCOVA) using a different 
commercial package (JASP, version 0.18.1.0). The possible impact of 

age-related differences on metabolite concentrations in the healthy 
younger non-injured group was also controlled by performing analysis 
with the general WAD group and also specifically by comparing 
differences between the WAD-noNP and WAD-NP groups.

To reduce the number of multiple comparisons between brain 
MRS metabolites within the ACC, DLPFC, and OCC with the DN4 
screening score, a best-fit analysis was first performed for each 
metabolite (SigmaPlot 11.0). A forward stepwise multiple linear 
regression analysis was performed to identify the best predictive 
model for both the metabolite concentrations for total Cr, total NAA, 
Ins, total Cho, Glx, Glu, and GABA and also for metabolite 
concentrations normalised to total Cr (27). In addition, the statistical 
power was reported for each predictive model.

Spearman’s correlation coefficient was calculated to assess the 
relationship of the metabolite concentrations that best predicted NP 
components as measured with the DN4 screening questionnaire.

3 Results

3.1 Demographic and clinical 
characteristics

Demographic and clinical data of recruited participants are 
presented in Table 1. No significant differences based on age or sex 
were seen in non-injured participants compared with those with 
WHI, or with the WAD-noNP-NP and WAD-NP. Furthermore, no 
differences were revealed between groups with reference to the time 
of clinical or MRS evaluation.

Significant differences were revealed in the clinical characteristics 
for the number of participants diagnosed with WHI with WAD IIa, 
IIb, and III (p < 0.001). Specifically, participants reported NP 
components with either a WAD IIb (29%) or III (72%) grade. Finally, 

TABLE 1 Demographic and clinical characteristics of healthy non-injured individuals, participants with whiplash-associated disorders without 
neuropathic pain (WAD-noNP), and participants with whiplash-associated disorders with neuropathic pain components (WAD-NP).

Non-injured (n  =  29) WAD (n  =  29) WAD-noNP (n  =  15) WAD-NP (n  =  14)

Age 25.0 (21.8–40.8) 39.0 (30.0–45.8)** 40.0 (33.5–48.8) 38.5 (29.0–43.0)

Sex, n (%) female 16.0 (55.2%) 20 (69.0%) 8 (53.3%) 12 (85.7%)

% WAD IIa 0 3 (10.3%) 3 (20%) 0##

% WAD IIb 0 14 (48.3%) 10 (66.7%) 4 (28.6%)##

% WAD III 0 12 (41.4%) 2 (13.3%) 10 (71.4%)##

Evaluation time since WHI (days) 0 100 (89–108) 102 (95–108) 98 (87–117)

MRS time since WHI (days) 0 100.6 ± 32.7 94.1 ± 27.1 108.1 ± 37.9

7-day pain intensity (NRS:0–10) 0 4 (1–6) 1 (0–4) 6 (4–6) †

DN4 (0–10) 0 3.0 (0.8–6.0) 1.0 (0.0–3.0) 6.0 (4.0–7.0) ††

Pain interference (BPI REM) 0 1.5 (0.0–4.8) 0.0 (0.0–0.3) 4.7 (2.9–7.3) ††

Pain interference (BPI WAW) 0 2.7 (0.0–5.7) 0.0 (0.0–1.3) 5.7 (3.5–7.3) ††

Pain interference (total BPI) 0 2.8 (0.2–5.6) 0.3 (0.0–1.2) 5.2 (4.1–7.3) ††

Data are shown as mean (± SD) or median scores (25th–75th percentiles).
**(Non-injured vs. WHI, t-test, p < 0.01).
##(WAD-noNP vs. WAD-NP, chi-square, p < 0.01).
†(WAD-noNP vs. WAD-NP, Mann–Whitney, p < 0.01).
††(WAD-noNP vs. WAD-NP, Mann–Whitney, p < 0.001).
DN4, Douleur Neuropathique 4; NRS, Numeric Rating Scale; BPI, Brief Pain Inventory: REM (Relation with others, Enjoyment of Life, Mood), WAW (Walking, General Activity, Working); 
WAD-noNP, whiplash-associated disorders without neuropathic pain; WAD-NP, whiplash-associated disorders with neuropathic pain.
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higher scores for 7-day pain intensity and interference were measured 
with the total BPI or subscores when compared between the 
WAD-noNP and WAD-NP groups (p < 0.001) (Table 1).

3.2 Metabolite concentrations within the 
OCC, ACC, and DLPFC

No difference in concentration (mM) or normalised metabolite levels 
were revealed in the OCC compared to the groups (Table 2). In contrast, 
concentration (mM) and normalised glutamate levels within the ACC 
were higher in the WAD-NP group compared to the WAD-noNP group. 
The normalised Glu/tCr concentration was higher in the healthy 
compared to the general WAD group (p < 0.01) and WAD-noNP group 
within the ACC (Table 3) (p < 0.05), but not in the DLPFC (Table 4) or 
OCC (Table 2). Furthermore, the tCho/tCr metabolite ratio within the 
DLPFC was higher in the WAD-noNP than in the healthy group (Table 4) 
(p < 0.025). Neither sex nor age or normalised metabolite concentrations 
affected concentration (mM) related to WAD-NP components when 
compared to the WAD-noNP group..

Regarding the left DLPFC, lower concentration (mM) and 
normalised tCho were found in the WAD-NP group than in the 
WAD-noNP group. Finally, a reduction in concentration (mM) Ins 
metabolite levels in DLPFC is shown in the WAD-NP group compared 
to the WAD-noNP group.

3.3 Best fit and forward stepwise regression 
analysis of MRS metabolites

The best fit and multiple linear regression between metabolite 
concentrations within the OCC, ACC, and DLPFC with the DN4 

screening scores is shown in Table 5. Forward stepwise regression 
revealed that chronic normalised glutamate concentrations predicted 
chronic WAD-NP components (r2 = 0.26, p < 0.01, alpha = 0.81) as 
shown in Figure 2A (rho = 0.54, p = 0.003). In the left DLPFC, both 
concentration (mM) and normalised tCho and NAA metabolite 
concentrations predicted chronic WAD-NP components (r2 = 0.62, 
with significance ranging between p < 0.05 and p < 0.001, alpha = 0.98) 
as shown in Figure 2B (rho = −0.66, p = 0.004), Figure 2C (rho = −0.62, 
p = 0.01), and Figure 2D (rho = 0.25, p = 0.336).

4 Discussion

This is the first study to show significant differences in metabolite 
concentrations within pain-processing cortical areas, such as the ACC 
and DLPFC, in participants with chronic whiplash injury and WAD 
neuropathic pain components when compared to individuals without 
WAD-NP components. Importantly, the adoption of the latest 
MRSinMRS recommendations for metabolite analysis, including 
calibration with a simulated basis set into the analysis routine, and 
rigorous signal preprocessing including quality control, may have 
contributed to improved metabolite detection and quantification of 
metabolite differences during chronic WAD-NP. Indeed, elevated 
glutamate concentrations within the ACC predicted chronic WAD-NP 
components, while higher NAA and lower tCho metabolite levels 
within the DLPFC suggest a role for increased neuronal–glial 
signalling and neuronal membrane dysfunction with central chronic 
pain mechanisms. Radiological evidence for biochemical differences 
in affective pain-processing areas provides further evidence of the 
involvement of definite NP components in chronic WAD.

Although this study was performed on a small cohort of 
individuals reporting chronic WAD pain with neuropathic 

TABLE 2 Occipital cortex (OCC) metabolite concentration (mM) and metabolite ratios normalised to total creatine (tCr) in healthy non-injured 
individuals, participants with whiplash-associated disorders without neuropathic pain (WAD-noNP), and participants with whiplash-associated 
disorders with neuropathic pain components (WAD-NP).

Non-injured (n  =  29) WAD (n  =  29) WAD-noNP (n  =  15) WAD-NP (n  =  14)

tCr 5.60 ± 0.48 5.70 ± 0.53 5.64 ± 0.55 5.77 ± 0.53

tCho 1.02 ± 0.11 1.08 ± 0.16 1.06 ± 0.16 1.11 ± 0.16

NAA 10.82 ± 1.08 10.91 ± 1.3 10.77 ± 1.41 11.05 ± 1.20

Glx 7.04 (6.07–8.06) 6.88 (6.05–7.72) 6.10 ± 1.96 7.24 ± 1.41

Ins 6.45 (5.98–7.02) 7.06 (6,33–7,31) 6.94 (86.30–7.23) 7.00 (6.08–7.35)

GABA 1.34 (0.98–1.48) 1.31 (1.14–1.66) ¶ ¶ 1.30 (1.09–1.51) ¶ 1.60 (1.17–1.78)

Glu 2.97 (2.59–3.67) 2.74 (1.77–3.70) ¶ 2.70 ± 1.39 ¶ 2.68 ± 1.19

tCho/tCr 0.18 ± 0.02 0.19 ± 0.02 0.19 ± 0.02 0.19 ± 0.017

NAA/Cr 1.93 ± 0.11 1.91 ± 0.14 1.91 ± 0.15 1.92 ± 0.15

Glx/tCr 1.21 (1.12–1.39) 1.23 (1.06–1.28) 1.16 (0.97–1.28) 1.24 (1.15–1.37)

Ins/tCr 1.18 ± 0.14 1.22 ± 0.19 1.25 ± 0.22 1.19 ± 0.15

GABA/tCr 0.23 (0.19–0.26) 0.23 (0.2–0.28) ¶ ¶ 0.23 (0.19–0.27) ¶ 0.26 (0.20–0.32) ¶

Glu/tCr 0.54 ± 0.15 0.48 ± 0.18 ¶ ¶ 0.51 ± 0.18 ¶ ¶ 0.46 ± 0.19

Cr, Total creatine; NAA, total n-acetyl-aspartate; Ins, Inositol; tCho, total choline; Glx, glutamate and glutamine; Glu, glutamate; GABA+, gamma-aminobutyric acid. tCho is calculated as the 
sum of phosphocholine (pCho) and glycerophosphocholine (GPC).
*(non-injured vs. WAD, t-test, p < 0.05).
¶(1 subject with unanalysable metabolite data).
¶¶(2 subjects with unanalysable metabolite data).
Data are shown as mean (± SD) or median scores (25th–75th percentiles).
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TABLE 4 Left dorsolateral prefrontal cortex (DLPFC) metabolite concentration (mM) and metabolite ratios normalised to total creatine (tCr) in healthy 
non-injured individuals, participants with whiplash-associated disorders without neuropathic pain (WAD-noNP), and participants with whiplash-
associated disorders with neuropathic pain components (WAD-NP).

Non-injured (n  =  13) WAD (n  =  17) WAD-noNP (n  =  8) WAD-NP (n  =  9)

tCr 7.65 ± 0.57 7.52 ± 0.89 7.87 ± 0.71 7.21 ± 0.96

tCho 2.48 ± 0.40 2.70 ± 0.60 3.07 ± 0.48#1 2.37 ± 0.51#2

NAA 13.43 ± 1.97 12.67 ± 1.69 12.91 ± 1.38 12.44 ± 1.99

Glx 9.75 ± 1.31 10.11 ± 1.41 10.22 ± 1.75 10.01 ± 1.14

Ins 11.18 ± 1.08 11.35 ± 2.21 12.54 (12.09–13.82) 10.98 (9.29–11.18)◘◘#3

GABA 1.39 ± 0.41 1.23 ± 0.38 1.22 ± 0.34 1.24 ± 0.44

Glu 5.72 ± 0.72 5.07 ± 1.48¶ 5.05 ± 1.80 5.08 ± 1.19 ¶

tCho/tCr 0.32 ± 0.05 0.36 ± 0.055 0.39 ± 0.04#4 0.33 ± 0.05◊◊#5

NAA/Cr 1.75 ± 0.19 1.69 ± 0.16 1.65 ± 0.14 1.73 ± 0.17

Glx/tCr 1.28 ± 0.14 1.35 ± 0.16 1.30 ± 0.19 1.40 ± 0.12

Ins/tCr 1.46 ± 0.13 1.50 ± 0.19 1.58 ± 0.25 1.43 ± 0.07

GABA/tCr 0.18 ± 0.05 0.17 ± 0.06 0.16 ± 0.05 0.17 ± 0.07

Glu/tCr 0.75 ± 0.09 0.68 ± 0.18¶ 0.63 (0.50–0.69) 0.77 (0.70–0.82) ◘ ¶

Cr, Total creatine; NAA, total n-acetyl-aspartate; Ins, Inositol; tCho, total choline; Glx, glutamate and glutamine; Glu, glutamate; GABA+, gamma-aminobutyric acid. tCho is calculated as the 
sum of phosphocholine (pCho) and glycerophosphocholine (GPC).
Data are shown as mean (± SD) or median scores (25th–75th percentiles).
¶(1 subject with unanalysable metabolite data).
◊◊(one-way ANOVA, p < 0.01).
#1(non-injured vs. WAD-noNP, Holm–Sidak p < 0.05).
#2(WAD-noNP vs. WAD-NP, Holm–Sidak p < 0.025).
◘(Kruskal–Wallis, p = 0.06).
◘◘(Kruskal–Wallis, p < 0.01).
#3(WAD-NP vs. WAD-noNP, Dunn’s method p < 0.05).
#4(non-injured vs. WAD-noNP, Holm–Sidak p < 0.025).
#5(WAD-noNP vs. WAD-NP, Holm–Sidak p < 0.05).

TABLE 3 Anterior cingulate cortex (ACC) metabolite concentration (mM) and metabolite ratios normalised to total creatine (tCr) in healthy non-injured 
individuals, participants with whiplash-associated disorders without neuropathic pain (WAD-noNP), and participants with whiplash-associated 
disorders with neuropathic pain components (WAD-NP).

Non-injured (n  =  29) WAD (n  =  29) WAD-noNP (n  =  15) WAD-NP (n  =  14)

tCr 6.58 (5.77–6.83) 6.54 (5.96–7.14) 6.54 (5.92–7.19) 6.57 (5.98–6.95)

tCho 2.16 (1.93–2.33) 2.19 (1.84–2.52) 2.32 (1.87–2.54) 2.17 (1.85–2.38)

NAA 10.26 (8.35–11.09) 10.44 (8.51–11.01) 10.44 (8.48–11.13) 10.31 (8.73–10.68)

Glx 7.64 ± 1.20 7.53 ± 1.31 7.44 ± 1.28 7.63 ± 1.38

Ins 7.15 ± 1.31 7.56 ± 1.44 7.59 ± 1.58 7.53 ± 1.34

GABA 1.12 (1.05–1.35) 1.26 (1–1.50) 1.19 ± 0.32 1.29 ± 0.32

Glu 5.15 ± 0.97 4.62 ± 1.19 4.21 ± 1.33#1 5.05 ± 0.85◊#2

tCho/tCr 0.34 (0.32–0.36) 0.35 (0.32–0.39) 0.34 (0.31–0.39) 0.34 (0.32–0.37)

NAA/Cr 1.58 ± 0.11 1.52 ± 0.12 1.51 ± 0.13 1.54 ± 0.10

Glx/tCr 1.20 ± 0.09 1.17 ± 0.12 1.14 ± 0.11 1.21 ± 0.13

Ins/tCr 1.12 (1.04–1.22) 1.14 (1.04–1.32) 1.14 (1.01–1.39) 1.15 (1.05–1.30)

GABA/tCr 0.19 ± 0.04 0.19 ± 0.04 0.18 ± 0.05 0.21 ± 0.04

Glu/tCr 0.82 (0.75–0.88) 0.76 (0.67–0.79)†† 0.67 (0.58–0.76)#3 0.78 (0.76–0.85) ◘◘◘#4

Cr, Total creatine; NAA, total n-acetyl-aspartate; Ins, Inositol; tCho, total choline; Glx, glutamate and glutamine; Glu, glutamate; GABA+, gamma-aminobutyric acid. tCho is calculated as the 
sum of phosphocholine (pCho) and glycerophosphocholine (GPC).
Data are shown as mean (± SD) or median scores (25th –75th percentiles).
††(non-injured vs. WHI, Mann–Whitney, p < 0.01).
◊(one-way ANOVA, p < 0.05).
#1(non-injured vs. WAD-noNP, Holm–Sidak p < 0.05).
#2(WAD-noNP vs. WAD-NP, Holm–Sidak p < 0.05).
◘◘◘(Kruskal–Wallis, p < 0.001).
#3(non-injured vs. WAD-noNP, Dunn’s method p < 0.05).
#4(WAD-NP vs. WAD-noNP, Dunn’s method p < 0.05).
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components, statistically powered predictive correlations were 
attained between the glutamate/tCr ratio in the ACC (α = 0.81) and 
the tCho/tCr and NAA/tCR ratios in DLPFC with WAD-NP 
components (DN4, α = 0.98). Furthermore, metabolites within the 
DLPFC region revealed a higher regression value with NP components 
in chronic WAD (r2 = 0.62 [compared to an r2 of 0.26 within the 
ACC]). Importantly stepwise regression was not able to detect 
predictive relationships between metabolite levels and WAD-NP 
components within the occipital cortex, which was included in this 
study as a putative control ROI.

4.1 Neuropathic pain components 
associated with chronic WAD

Approximately 34% (25–75%) of patients present NP 
characteristics following WHI, characterised by sensory dysfunction 
and nerve mechanosensitivity (59). Pain associated with WAD has 
often been diagnosed as musculoskeletal pain in the absence of clear 
evidence of nerve or brain lesions tested using neurophysiological or 
radiological techniques; pain and sensory disturbances in a 

neuroanatomically defined area consistent with a specific nerve lesion 
have not been forthcoming for WAD (45). However, an early study of 
NP symptoms and signs in patients with acute WHI (8) and, more 
recently, small fibre structural and functional deficits in chronic WAD 
have been demonstrated (9).

In this study, 48% of the chronic WHI cohort presented NP 
symptoms and signs as measured with the DN4 questionnaire. 
Compared with the WAD-noNP group, individuals with chronic 
WAD-NP were characterised by a higher 7-day pain intensity (NRS) 
and pain interference scores (BPI). For those subjects diagnosed with 
WAD grade II and III scores, NP symptoms and signs were detected, 
suggesting that NP components were associated with or without 
presumed central or peripheral nerve injury. The difficulty in 
diagnosing and differentiating musculoskeletal and NP components 
may lead to poor treatment, which could be  improved with the 
extensive use of NP screening tools and the detection of pain types 
(39, 60). Accurate small nerve fibre examination (9) and radiological 
evidence of either structural or biochemical differences within pain-
processing areas of the brain, especially those related to affective pain, 
may help to support the clinical diagnosis of chronic NP with sensory 
descriptors and changes during chronic WHI.

TABLE 5 Best-fit factor and forward multiple regression analysis for occipital cortex (OCC), anterior cingulate cortex (ACC), dorsolateral prefrontal 
cortex (DLPFC) MRS metabolite concentration (mM) and ratio normalised to tCr with DN4 scores for participants with chronic WAD with NP 
components.

Concentration (mM) metabolite OCCIP ACC DLPFC

tCr E. −1.45 ± 0.69* E.

Glx 1.23 ± 0.48* E. 0.9 ± 0.31*

NAA −0.65 ± 0.56 E. 0.76 ± 0.04*

tCho E. E. −4.08 ± 0.89***

Ins −0.35 ± 0.44 0.18 ± 0.35 −0.55 ± 0.03*

GABA E. 2.48 ± 1.52 −1.02 ± 0.99

Glu −0.68 ± 0.48 1.29 ± 0.44** E.

Best subset regression r2 0.31 0.34 0.83

Forward stepwise r2 E.
Glu (0.91 ± 0.38)

r 2 = 0.18

NAA (0.56 ± 0.34)

tCho (−1.04 ± 0.95)

r2 = 0.62

Power α E. 0.63 0.98

Metabolite Normalised Ratio (tCr) OCCIP ACC DLPFC

Glx/tCr 7.34 ± 2.96* −0.63 ± 4.23 6.44 ± 2.34*

NAA/Cr −3.99 ± 3.90 0.63 ± 3.78 3.09 ± 2.60

tCho/tCr E. E. −30.19 ± 6.59***

Ins/tCr E. E. −5.26 ± 2.14*

GABA/tCr E. 16.74 ± 10.98 E.

Glu/tCr −4.56 ± 2.84 8.55 ± 3.29* E.

Best subset regression r2 E. 0.33 0.81

Forward stepwise r2 E.
Glu/tCr (8.62 ± 2.83)

r2 = 0.26

tCho/tCr (−34.82 ± 8.30)

NAA/Cr (7.36 ± 2.88)

r2 = 0.62

Power α E. 0.81 0.98

Cr, Total creatine; NAA, total n-acetyl-aspartate; Ins, Inositol; tCho, total choline; Glx, glutamate and glutamine; Glu, glutamate; GABA+, gamma-aminobutyric acid. tCho is calculated as the 
sum of phosphocholine (pCho) and glycerophosphocholine (GPC). Data are shown as mean (± SE). E. Excluded.
*(p < 0.05), ** (p < 0.001), *** (p < 0.001). Significant results presented in bold.
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4.2 Current application of MRI techniques 
for chronic pain and consensus-driven 
MRS analysis

Proton magnetic resonance spectroscopy (1H MRS) imaging of 
pain-processing areas permits a mechanistic approach to detect 
site specific biochemical changes in neuronal and glial cell 
dysfunction and can be used to demonstrate the therapeutic effects 
of analgesic treatments (22–24) and non-invasive neuromodulation 
of the cortex (25, 26). However, 1H MRS imaging is only one of 
several non-invasive techniques that enable quantification of 
structural, functional, or biochemical alterations in brain function 
for chronic pain research (61) that collectively can provide an 
essential insight into pathophysiological mechanisms and 
therapeutic targets. These techniques have proven highly effective 
in revealing alterations in brain regions implicated in pain 
modulation (62, 63) and emotional processing (64, 65). However, 
challenges persist regarding the application of MRI techniques in 
pain research, such as issues related to protocol standardisation 
and variability in imaging results across studies. Future directions 
for researchers may involve refining imaging protocols to enhance 
reproducibility (66), adoption of multimodal imaging techniques, 

and developing machine learning algorithms for more precise 
analysis of MRI data (67–69).

The technical challenges associated with the 1H MRS imaging and 
metabolite analysis (30, 31, 70) may explain the failure to detect subtle 
differences in metabolite concentrations related to chronic WHI pain 
(27). Analysis methods available on scanner software are usually 
inferior to demonstrating differences in metabolite concentrations 
with MRS techniques, and therefore, expert consensus groups 
recommend the use of software that allows pre-processing, such as 
phase and frequency correction, quality control, tissue segmentation, 
and final metabolite quantification using modelling algorithms (30). 
In this study, the use of the semi-adiabatic localisation by adiabatic 
selective refocusing (semi-LASER) sequence (30), single-voxel 
spectroscopy imaging of specific anatomical regions (30, 31), and the 
development and implementation of a simulated basis set into the 
analysis routine (30) were implemented into the analysis routine. 
Furthermore, a binary mask of voxel locations was co-registered with 
the T1-weighted images, and this mask was applied using SPM12 
scripts to determine total tissue (grey and white matter) and 
cerebrospinal fluid fractions in each voxel (26). A checklist for full 
reporting of MRS parameters in line with the recommendation of the 
MRSinMRS consensus group (66) was followed, and metabolite 

FIGURE 2

Relationship between metabolite concentrations quantified using brain MRS within the anterior cingulate (A,B; n  =  29) and left prefrontal dorsolateral 
cortex (C,D; n  =  17) and neuropathic pain components as screened with the “douleur neuropathique 4” (DN4) screening tool in participants with 
chronic whiplash injury. The regression coefficient, Spearman correlation, and statistical significance of the correlation are included in each graph. To 
reduce type II error Spearman correlations were calculated only from the best predictive models of metabolite measures for chronic WAD-NP 
components.
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concentrations were presented as concentration (mM) values and 
ratios normalised to total creatine levels (71). Finally, the possible 
contribution of demographic cofactors, such as sex and age, should 
also addressed with ANCOVA (72, 73). In the present study, these 
techniques have ensured high-quality analysis of metabolite 
concentration levels and detection of group differences in the ACC 
and DLPFC, but not the OCC, for metabolites that predict 
WAD-NP components.

4.3 Higher glutamate concentration in ACC 
predicts chronic WAD-NP components

The anterior cingulate cortex (ACC) plays a leading role in chronic 
pain, specifically in the modulation of affective and mood components 
(32, 33). This is supported by synaptic, molecular structural changes 
in the ACC, which contribute to chronic pain states (74–76). The ACC 
is also implicated in the cognitive impairment in chronic pain patients, 
potentially mediating the impact of pain-related distress on cognitive 
functions (32, 77). Thus, the ACC is a potential target for 
neuromodulation and clinical pain management (24, 25, 78).

In this study, MRS revealed elevated concentration (mM) and 
normalised glutamate concentrations in the group with WAD-NP 
components and a significant predictive relationship between 
normalised glutamate ratios with the DN4 NP scores. Glutamate as 
the main excitatory neurotransmitter has a leading role in nociception 
and central sensitisation, which is associated with chronic pain (79). 
Glx (glutamate plus glutamine) levels pooled across pain-related brain 
regions have been positively associated with pain sensitivity (15), 
while tonic noxious stimulation leads to increased concentrations of 
glutamate and Glx at the onset of pain (80). Higher glutamate levels 
within the ACC have been shown in individuals with chronic low back 
pain (81, 82), while Glx levels have also been linked to psychological 
state and depression (82). Furthermore, treatment with transcranial 
direct current stimulation or morphine decreases Glx levels in the 
ACC (23–25), suggesting a potential mechanism for its analgesic 
effect. Future studies should assess the relationship between 
normalised ACC glutamate metabolite concentrations with pain 
intensity and affective measures in people with chronic 
WAD-NP components.

4.4 Lower total choline levels and higher 
n-acetyl-aspartate DLPFC metabolite 
concentrations predict the presence of 
chronic WAD-NP components

The dorsolateral prefrontal cortex (DLPFC) undergoes a 
functional and structural reorganisation in chronic pain conditions 
(83) and plays a crucial role in the modulation of pain perception and 
processing. Thus, the DLPFC exerts active control on pain perception 
by modulating pain signals in the brain (34). In fact, Ong et al. (84) 
and Loggia et al. (85) highlight the involvement of the DLPFC in pain 
modulation, emphasising its role in chronic pain and negative 
cognition-induced hyperalgesia. These findings highlight the 
importance of the DLPFC in chronic pain and its potential as a target 
for therapeutic interventions.

In this study, lower total choline (tCho) concentrations predicted 
WAD-NP components during chronic pain. Phosphocholine and 
glycerophosphoryl choline are key components in cell membrane 
synthesis and a marker of cellular turnover (86) and are associated 
with glia cells within the brain (87). Neuropathic pain can lead to 
changes in choline levels following head trauma within pain-
processing centres (13, 19). Moreover, neuropathic pain has been 
associated with neuroinflammation, characterised by elevated choline-
containing compounds, such as phosphocholine, found in higher 
concentrations in glial cells than neurons (10). However, only one 
study has shown reduced chronic choline levels in cases of human 
immunodeficiency virus infection, with initially elevated levels of 
choline levels which then decreased significantly at a later stage (88). 
Although the exact pathophysiological mechanism that implicates 
reduced choline levels with chronic pain is unknown, it is of interest 
that cortical targeting of central cholinomimetics has been suggested 
as an effective therapy for neuropathic pain (89). Indeed, choline 
supplementation can have beneficial effects on brain health, including 
reducing inflammation and cognitive deficits in an experimental 
model of Alzheimer’s disease (90).

Even though N-acetyl-aspartate is a metabolite related to neuronal 
density activity or cell death (91), higher concentrations of NAA have 
been recently identified in myelin and oligodendrocytes compared 
with neurons (92). Although previous studies of lower NAA levels in 
the DLPFC have been related to chronic back pain (12, 93), higher 
NAA levels have been associated in other pain-processing areas with 
chronic NP severity, post-traumatic stress disorder, and post-
concussive symptoms in individuals with traumatic brain injury (19). 
Taken together, lower choline and higher NAA levels may be related 
to pathophysiological mechanisms associated with neuroinflammation 
during chronic WHI pain and may represent robust biomarkers of 
chronic WAD pain with neuropathic components.

4.5 Study limitations

This study was not conducted on age- or gender-matched 
individuals within each group. Importantly, analysis of covariance 
demonstrated that neither sex nor age or normalised metabolite 
concentrations affected concentration (mM) related to WAD-NP 
components when compared to the WAD-noNP group. However, 
in this study, higher glutamate concentrations were found in the 
healthy non-injured group than in the WHI-noNP group. In line 
with the demographic data presented in Table 1, which shows that 
the median age of the WAD-NP was 14 years lower than the general 
WHI group, glutamate levels are known to be higher in younger 
subjects (94). When metabolite concentrations in the WHI-NP 
group were specifically compared to the WHI-noNP control group, 
ROI-specific changes in glutamate were seen in both the ACC and 
DLPFC. Importantly, no differences in glutamate ratio 
concentration were observed between the non-injured and 
WHI-noNP control groups (Table 4). Finally, caution should also 
be made with the interpretation of tCho in spectroscopy studies, as 
higher tCho metabolite concentrations have been observed in older 
healthy subjects (95), which may explain the higher levels of this 
metabolite identified in the DLPFC for the WHI-noNP control 
group (Table 4).
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Reliance on stepwise regression analysis to identify target 
metabolites associated with WAD-NP components may be influenced 
by several statistical problems with this test, including overfitting of 
data, biased estimates, and inflated type I  errors (96). As such, 
significant best-fit metabolites should also be considered as predictors 
for NP components in chronic WAD components, including GABA 
and Ins (10, 20, 27, 97). The best-fit analysis performed in this study 
demonstrated that lower Ins concentrations in DLPFC are a predictor 
of chronic NP components, although previous studies have revealed 
a relationship between higher Ins levels and chronic pain with other 
pathologies (19, 82). The relationship between Ins metabolite levels 
and chronic pain may reflect differences between different pain 
pathologies (10, 13). In future studies, parallel adoption of multiple 
regression and machine learning analysis techniques may provide a 
better interpretation of key metabolite levels in the development of 
chronic pain (67, 68).

Although no metabolite predictors of chronic WAD pain were 
identified in the OCC, the inclusion of control areas should be more 
closely examined in longitudinal studies where the contribution of 
metabolite changes to the development of chronic pain can be assessed 
during acute WAD. Indeed, chronic WAD dysfunction of the visual 
system is associated with functional impairment in occipital cortical 
areas sensitive to coherent motion (98) while EEG changes in OCC 
have been associated with motor-evoked jaw pain (99).

Finally, total creatine concentrations in MRS studies have been used 
to standardise metabolite levels in the brain. In this study, no difference 
in creatine levels was identified between groups, although lower 
concentrations (mM) of creatine levels within the ACC were associated 
with NP components in the best-fit analysis. It is important to understand 
therefore that these basal Cr levels, which are expressed predominantly 
in glia, may also change during neuroinflammation (10, 100) or with age 
(73). These findings suggest that caution should be  made with the 
normalisation of metabolite levels using ratio measures (27).

5 Conclusion

The results of this study show that elevated glutamate 
concentrations within the ACC predict chronic WAD-NP components, 
while higher NAA and lower total choline (tCho) metabolite levels 
within the DLPFC suggest a role for increased neuronal–glial 
signalling and cell membrane dysfunction with central chronic pain 
mechanisms. No chronic differences were seen in the occipital cortex, 
which supports the role of altered metabolite concentrations within 
the affective pain-processing areas such as the ACC and 
DLPFC. Detection of metabolite signals that reflect pathophysiological 
mechanisms of glutamatergic, neuroinflammatory, and cell signalling 
dysfunction could lead to a better understanding of the development 
of pathophysiological mechanisms of chronic pain that lead to high-
impact chronic NP components of chronic WAD and future 
therapeutic targets for the neuromodulation of chronic WHI pain.
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