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The chronic immune-mediated inflammatory condition known as inflammatory 
bowel disease (IBD) significantly affects the gastrointestinal system. While the 
precise etiology of IBD remains elusive, extensive research suggests that a range 
of pathophysiological pathways and immunopathological mechanisms may 
significantly contribute as potential factors. Mesenchymal stem cells (MSCs) have 
shown significant potential in the development of novel therapeutic approaches 
for various medical conditions. However, some MSCs have been found to exhibit 
tumorigenic characteristics, which limit their potential for medical treatments. 
The extracellular vesicles (EVs), paracrine factors play a crucial role in the 
therapeutic benefits conferred by MSCs. The EVs consist of proteins, microRNAs, 
and lipids, and are instrumental in facilitating intercellular communication. Due 
to the ease of maintenance, and decreased immunogenicity, tumorigenicity the 
EVs have become a new and exciting option for whole cell treatment. This review 
comprehensively assesses recent preclinical research on human umbilical cord 
mesenchymal stem cell (hUC-MSC)-derived EVs as a potential IBD therapy. 
It comprehensively addresses key aspects of various conditions, including 
diabetes, cancer, dermal injuries, neurological disorders, cardiovascular issues, 
liver and kidney diseases, and bone-related afflictions.
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1 Introduction

Inflammatory bowel disease (IBD) refers to a group of chronic inflammatory disorders of 
the gastrointestinal tract, with two primary subtypes: Crohn’s disease (CD) and ulcerative 
colitis (UC) (1). These disorders result from an abnormal immune response in genetically 
susceptible individuals, triggered by environmental factors. The characteristic symptoms 
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include abdominal pain, diarrhea, rectal bleeding, weight loss, and 
fatigue (2). The chronic and relapsing nature of IBD often leads to a 
diminished quality of life and a higher risk of complications such as 
bowel strictures, abscesses, and even colorectal cancer. Over the years, 
various treatment modalities have been developed to treat patient with 
IBD including anti-inflammatory medications, immunosuppressant, 
biological therapies, and surgical interventions (3). While these 
treatments have been effective for many patients, they are not without 
limitations. Long-term use of immunosuppressive drugs can lead to 
increased susceptibility to infections, and biologic therapies often 
come with a high financial burden. Moreover, a significant proportion 
of IBD patients do not respond adequately to existing treatments, 
highlighting the urgent need for novel therapeutic strategies (4).

The complexities of IBD, including its multifactorial etiology and 
heterogeneity in disease presentation, pose a challenge for clinicians 
seeking to tailor treatment approaches to individual patients (5). 
Currently, a significant proportion of the etiology and pathology 
underlying this condition remains elusive to the scientific community. 
Nevertheless, it is widely acknowledged that the condition is 
characterized by a polygenic and multifactorial nature (6). 
Incorporating the insights obtained from numerous recent studies, the 
fundamental elements contributing to the onset of IBD involve genetic 
interactions, dysregulated mucosal immune responses prompted by 
environmental factors, and disruptions in the regulation of the gut 
microbiota (6). Currently, several treatment protocols, including 
immunomodulatory, thiopurine agents, and monoclonal antibodies 
targeting tumor necrosis factor (anti-TNF), are employed for the 
management of IBD. However, these treatments have been found to 
lack the attainment of sufficiently favorable therapeutic outcomes (7). 
Consequently, researchers are actively exploring the development of 
advanced clinical techniques and strategies for the treatment of 
IBD. In this context, the search for safer and more effective therapies 
has led researchers to explore the regenerative potential of 
mesenchymal stem cells (MSCs) and their extracellular vesicles (EVs) 
(8, 9). MSCs are multipotent, adult stem cells found in various tissues, 
including bone marrow, adipose tissue, and the umbilical cord (10). 
These cells have garnered immense interest in the field of regenerative 
medicine due to their remarkable self-renewal capabilities and their 
ability to differentiate into multiple cell lineages, including osteocytes, 
adipocytes, and chondrocytes (11, 12). Moreover, the quantity of stem 
cells and their capacity for proliferation and differentiation exhibited 
a marked decline with advancing age (13), thereby imposing 
limitations on the application of these cells in clinical trials (14). The 
morphological characteristics, immunophenotype, proliferation rate, 
multi-directional differentiation capacity, and their potential to induce 
hematopoietic stem cell (HSC) differentiation in umbilical cord-
derived mesenchymal stem cells (UC-MSCs) closely resemble those 
observed in bone marrow-derived mesenchymal stem cells 
(BM-MSCs) (15), but, it is noteworthy that UC-MSCs display a 
heightened proliferative capacity and lower levels of human leukocyte 
antigen (HLA)-ABC and HLA-DR expression in comparison to 
BM-MSCs (16). Furthermore, it is worth noting that UC-MSCs 
exhibit a diverse array of stem cell types, making them readily available 
and easily collectable resource that can be efficiently preserved (17, 
18). Consequently, UC-MSCs assume a distinctive role in diminishing 
both the frequency and severity of graft-versus-host disease (GVHD), 
a complication that affects over 50% of patients undergoing 
hematopoietic stem cell transplantation (HSCT) (18). Moreover, 

owing to their inherent migratory potential towards cancer cells, 
numerous studies have suggested the utilization of UC-MSCs in cell-
based therapies aimed at targeting tumors and facilitating the localized 
delivery of anti-cancer agents (19). Nonetheless, several facets of 
research concerning UC-MSCs are still in their early stages of 
development. UC-MSCs are considered optimal candidate cells for 
cell replacement therapy, primarily due to their minimal 
immunogenicity, robust proliferative potential, and capacity for 
differentiation (20).

The therapeutic effectiveness of MSCs do not exclusively hinge on 
their ability to differentiate into various cell types. Instead, their 
paracrine effects, which involve the release of trophic factors and EVs, 
assume a central role in promoting tissue repair and modulating the 
immune response (21). MSCs can orchestrate a coordinated response 
by influencing local cell populations, reducing inflammation, and 
promoting tissue regeneration (22). The secretion of EVs, in 
particular, has gained significant attention for their role in intercellular 
communication and their potential as therapeutic agents (23). EVs are 
small membranous vesicles released by virtually all cell types, 
including MSCs. They are involved in cell-to-cell communication and 
serve as vehicles for the transfer of bioactive molecules, including 
proteins, lipids, and nucleic acids, between cells (24, 25). EVs are 
classified into several subtypes, including exosomes, macrovesicles, 
and apoptotic bodies, based on their biogenesis and size. Among 
these, exosomes, typically ranging from 30 to 150 nanometers in 
diameter, have garnered significant interest for the therapeutic 
potential (26). Exosomes are released into the extracellular space 
through the fusion of multivesicular bodies with the plasma 
membrane (27). Extensive investigations have revealed the secretion 
of exosomes by a wide range of cell types, including mast cells, 
dendritic cells (27), B cells (28), T cells (29), tumor cells (30), and 
epithelial cells. Exosomes have also been found in numerous kinds of 
body fluids, such as saliva, urine, breast milk, and plasma (31, 32) 
urine (33, 34). Exosomes, like their parent cells, carry a cargo of 
bioactive molecules that can modulate various cellular processes (35, 
36). These molecules include growth factors, cytokines, microRNAs, 
and lipids, all of which can influence recipient cells’ behavior (37, 38). 
This cargo is carefully packaged within the exosome’s lipid bilayer, 
protecting it from degradation and ensuring its efficient delivery to 
target cells (39). This unique characteristic makes exosomes ideal 
candidates for therapeutic interventions, as they can harness the 
regenerative power of their parent cells in a more controlled and 
targeted manner (40, 41). Exosomes originating from diverse sources 
exert an influence on the etiology of IBD (42). The significance of 
intercellular communication in maintaining homeostasis in 
multicellular organisms has been well-documented previously. 
Consequently, exosomes, which are secreted by a majority of cells, 
play a critical role in forming a network and actively participating in 
intracellular signaling (43). They facilitate the transfer of bioactive 
components including, lipids, nucleic acids, and proteins from one 
cell to another, thereby initiating biological responses in the recipient 
cells (44). Exosomes have demonstrated a greater efficacy than their 
parent cells and can be  stored without compromising their 
functionality, making them an appealing focus of research. Recently, 
there has been an increasing interest in utilizing exosome 
administration as a novel therapeutic strategy to expedite preclinical 
research endeavors (45, 46). Furthermore, exosome-delivered 
miRNAs contribute to lymphangiogenesis and play a role in 
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IBD. Exosomes derived from adipose tissue-derived MSCs modulate 
the miRNA-132/TGF-β pathway, thereby promoting VEGF-C-
dependent lymphangiogenesis (47). MSC-derived exosomes have 
been substantiated to augment angiogenesis in endothelial cells by 
transporting miR-125a (48). Conversely, BM-MSCs promote 
lymphangiogenesis through the secretion of VEGF-A, which 
stimulates lymphatic endothelial cells (LECs) to activate the VEGFR-2 
pathway (49).

The therapeutic potential of EVs, including those derived from 
MSCs, extends beyond their immunomodulatory effects (50, 51). 
Studies have demonstrated that MSC-derived EVs can promote tissue 
repair and regeneration in various disease models, including 
myocardial infarction, stroke, and cartilage injury (52). The cargo 
carried by these vesicles plays a pivotal role in modulating the recipient 
cell’s behavior, promoting angiogenesis, reducing fibrosis, and 
enhancing tissue remodeling (52). The isolation and characterization 
of human umbilical cord mesenchymal stem cell (hUC-MSC)-derived 
EVs represent a critical step in harnessing their therapeutic potential 
(53). Researchers have developed various methods to isolate and 
purify these vesicles, including ultracentrifugation, size exclusion 
chromatography, and immunoaffinity-based techniques (54).

These methods ensure the enrichment of exosomes and other EV 
subtypes from hUC-MSC culture supernatants, allowing for their 
subsequent analysis and utilization (55). One of the most striking 
features of hUC-MSC-derived EVs is their ability to modulate the 
immune response (56). These vesicles can suppress the activation of 
pro-inflammatory immune cells while promoting the expansion of 
regulatory T cells and M2 macrophages, thus shifting the immune 
milieu towards an anti-inflammatory and tissue-healing phenotype 
(57). This immunomodulatory capacity has profound implications for 
the treatment of immune-mediated disorders like IBD (58). Recent 
preclinical studies and early-phase clinical trials have provided 
compelling evidence of the therapeutic potential of hUC-MSC-
derived EVs in the management of IBD (59). These studies have 
shown that the administration of hUC-MSC-derived EVs can 
ameliorate disease symptoms, reduce inflammation, and promote 
mucosal healing in animal models and human patients with IBD. The 
mechanisms underlying these effects involve the immunomodulatory 
properties of the vesicles, as well as their ability to enhance epithelial 
barrier function and promote tissue repair (60, 61). The therapeutic 
potential of hUC-MSC-derived EVs extends beyond gastrointestinal 
disorders. Researchers are exploring their use in various neurological 
disorders, such as Parkinson’s disease, Alzheimer’s disease, and spinal 
cord injury (SCI) (62, 63). These vesicles have shown promise in 
promoting neuroprotection, reducing inflammation, and enhancing 
neural tissue repair in preclinical models (64). Cardiovascular 
diseases, including myocardial infarction and heart failure, are leading 
causes of morbidity and mortality worldwide. The hUC-MSC-derived 
EVs have emerged as potential candidates for cardiac regeneration and 
repair. Their ability to stimulate angiogenesis, reduce oxidative stress, 
and modulate immune responses has made them attractive for the 
treatment of cardiovascular disorders (65, 66). Musculoskeletal 
disorders, such as osteoarthritis and bone fractures, present significant 
challenges in the field of regenerative medicine. The hUC-MSC-
derived EVs have shown promise in promoting bone and cartilage 
regeneration by enhancing the proliferation and differentiation of 
osteoblasts and chondrocytes. These vesicles may offer a minimally 
invasive and cell-free alternative to traditional treatments (67).

While the therapeutic potential of hUC-MSC-derived EVs is 
promising, several challenges must be  addressed before their 
widespread clinical adoption. Standardization of isolation and 
characterization methods, determination of optimal dosing regimens, 
and long-term safety assessments are crucial steps in the path to 
clinical translation (54). Moreover, regulatory approvals and 
manufacturing scalability need to be  addressed to ensure the 
accessibility of these therapies to a broader patient population. The 
heterogeneity of diseases like IBD underscores the importance of 
personalized medicine. Identifying biomarkers that can predict 
patient responses to hUC-MSC-derived EV therapy is a critical 
research area. Biomarker discovery will enable clinicians to select the 
most appropriate patients for treatment and tailor therapy regimens 
accordingly, maximizing therapeutic outcomes (68). As the field of 
regenerative medicine advances, ethical and regulatory considerations 
become increasingly important (69). Ensuring the ethical sourcing of 
umbilical cord tissue and transparent reporting of research findings is 
essential. Regulatory agencies must also develop clear guidelines to 
govern the production and clinical use of hUC-MSC-derived EVs, 
balancing innovation with patient safety (61). The therapeutic role of 
hUC-MSC-derived EVs represent a promising frontier in the 
treatment of IBD and a wide array of other disorders (70). With their 
ability to modulate the immune response, promote tissue repair, and 
enhance regenerative processes, hUC-MSC-derived EVs hold the 
potential to revolutionize the way we approach the management of 
chronic and debilitating conditions (71).

This study has undertaken an exploration of the complexities 
surrounding IBD, delving into the regenerative capabilities of MSCs, 
revealing the therapeutic potential inherent in EVs, and engaging in a 
discussion concerning the promising prospects of hUC-MSC-EVs 
within the context of IBD. The journey towards fully harnessing the 
therapeutic potential of these minuscule communicators is an ongoing 
endeavor, replete with a myriad of challenges and opportunities that 
await both researchers and clinicians. As we  continue to venture 
deeper into the realm of regenerative medicine, we  stand at the 
precipice of uncovering innovative solutions that have the potential to 
transform the lives of individuals grappling with chronic and presently 
incurable diseases. This review underscores the paramount 
importance of sustained research and clinical progress within this 
promising field, emphasizing the potential of hUC-MSC-EVs as an 
exceptional therapeutic avenue not only for IBD but also for a 
spectrum of inflammatory conditions.

2 Extracellular vesicles

The release of EVs is a fundamental biological process in both 
prokaryotic and eukaryotic cells, occurring under normal 
physiological conditions as well as in aberrant situations. Despite 
being written off in the past as little more than biological waste with 
little significance, recent studies have highlighted their crucial 
function as bioactive transporters. These vesicles mediate a wide range 
of biological processes and act as transporters of many cellular 
components, enabling complex cellular communications (72). 
Proteins such as cell surface receptors, signaling proteins, transcription 
factors, enzymes, and extracellular matrix proteins are among the 
diverse cargo carried by EVs (73). Additionally, they have lipids and 
nucleic acids (DNA, mRNA, and miRNA) that can be transferred 
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from donor to recipient cells to facilitate molecular transfer and 
intercellular communication (74). It has been discovered that EVs are 
linked to pathological conditions like cancer, heart disease, and 
neurological illnesses (75). EVs comprise a range of subtypes that are 
categorized based on their mechanisms of synthesis and release, such 
as exosomes, apoptotic blebs, and other EV subgroups (76). 
Additionally, they can be categorized according to the type of cell from 
which they originated, such as endothelium or platelet-derived cells, 
or according to the physiological state of the cells, such as 
“prostasomes” coming from the prostate and “oncosomes” originating 
from cancer cells. The primary components of EVs include apoptotic 
bodies, exosomes, and microvesicles (77). However, other forms have 
been discovered recently, including membrane particles, large 
oncosomes, migrasomes (78), ectosomes (78), exomeres (79) and 
supermeres (Table 1).

Recently, EVs have emerged as a promising therapeutic option for 
a range of diseases and conditions, including BD (91). In animal 
models of IBD, studies have provided evidence showing that EVs 
derived from various sources, including MSCs, possess the ability to 
mitigate inflammation and facilitate tissue healing (92). Using EVs as 
a therapeutic alternative presents several challenges that need to 
be addressed. In the preparation of EVs, standardization of isolation 
and characterization is a significant challenge in maintaining the 
purity and quality of EVs (93). The immunogenicity potential and 
pro-coagulant effects are two additional safety concerns associated 
with EV-based medicines (94). Despite these obstacles, EV-based 
medicines are still being clinically researched and developed, 

demonstrating significant potential for the treatment of various 
inflammatory illnesses including IBD. Herein, the MSC-derived-
exosomes are the main focus of the study to provide comprehensive 
use, specifically in the treatment of IDB and other pathological 
inflammatory conditions in general.

3 Exosomes

Exosomes, a type of EVs, which originate from endosomes, 
typically exhibit an average diameter of approximately 50–100 nm 
(95). The plasma membrane undergoes a sequential process of 
invagination, leading to the eventual formation of multivesicular 
bodies (MVBs). These MVBs have the ability to interact with other 
intracellular vesicles and organelles, thereby contributing to the 
diversity of components found in exosomes. Depending on the 
specific cell they originate from, exosomes, can encompass a wide 
range of cellular constituents, such as DNA, RNA, lipids, metabolites, 
as well as cytosolic and cell-surface proteins (96).

Exosomes, in particular, have emerged as crucial mediators of 
cellular communication, playing significant roles in both normal 
physiological processes, such as lactation (97), immune response (34) 
and neuronal function (97), and also in the development and 
progression of diseases, such as liver disease (97), neurodegenerative 
diseases (98) and cancer. Exosomes are increasingly recognized as 
promising therapeutic agents for gastrointestinal conditions, IBD, 
using a cell-free therapeutic strategy (98, 99).

TABLE 1 Extracellular vesicles as therapeutic tools and targets for diseases.

Subtype Size Origin of EV Density Biomarkers Mechanism References

Exosomes 50–150 Multivesicle body 1.13–1.19 CD9, CD63, CD81, 

Tsg101, ALIX, HSP70

Endosomes develop into late endosomes, 

which have intraluminal vesicles that fuse 

with the plasma membrane to release MVBs 

(dependent or independent of ESCRT)

(80, 81)

Microvesicles 100–

1,000

Plasma membrane 1.032–1.068 Integrins, Selectins, CD40, 

tissue factor

Direct plasma membrane budding and 

cleavage are caused by calcium influx and 

remodelling of the cortical cytoskeleton

(81, 82)

Migrasomes 500–

3,000

Retraction fibers Unknown Tspan4, CD63, Annexin 

A1

Actin polarisation and cell migration cause 

migratory cells to migrate and create 

migratory granules at the tip or by 

bifurcating the retraction fibres

(83)

Apoptotic 

Bodies

100–

5,000

Plasma membrane 1.16–1.28 Annexin V, C3b, 

thrombospondin, Annexin 

A1, histone coagulation 

factor

Programed cell death involves the 

fragmentation of cytoplasm

(81, 84, 85)

Exomeres Secreting 

from cells

≤50 1.1–1.19 TGFBI, ENO1 and GPC1 Large cytoplasmic extensions are cleaved off 

the cell body

(86)

Oncosomes 1,000–

10,000

The shedding of 

non-apoptotic 

plasma membrane 

blebbing

1.10–1.15 Cav-1 or ADP ribosylation 

factor 6

Released by cancerous cells with amoeboid 

movement

(87, 88)

Supermeres ∼35 

(<50)

Unknown Unknown TGFBI, ACE2, PCSK9, 

miR-1246, MET, GPC1 

and AGO2, exRNA; miR-

1246

Unknown (89, 90)
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Numerous diseases associated with IBD, characterized by 
disruptions in mucosal immune responses, compromised intestinal 
barrier integrity, and alterations in the balance of intestinal microbial 
populations, are orchestrated through pathways involving exosomal 
intercellular communication (100). Exosomes, being complex 
molecules, are discharged into human serum and other bodily fluids, 
and their functional contents exhibit variations between IBD patients 
and healthy individuals (101). Consequently, exosomes may have the 
potential to serve as diagnostic biomarkers that reflect the current 
state of IBD (101, 102).

3.1 Characteristics and properties of 
exosomes

3.1.1 Characteristics of exosomes
Exosomes originate from endosomal vesicles within the cell and 

exhibit distinctive characteristics that set them apart from other cell-
secreted microvesicles (103). They are enclosed by a phospholipid 
bilayer architecture, with a size ranging from 30 to 150 nanometers 
and a density falling within the range of 1.13 to 1.19 grams per 
milliliter (104, 105). When observed through transmission electron 
microscopy (TEM), exosomes present a cup-shaped morphology, 
further confirming their identity. Moreover, the presence of specific 
proteins, including tetraspanins (e.g., CD63, CD9, and CD81) and 
β-actin, serves as additional markers to differentiate exosomes from 
other vesicular structures (101, 104). To emphasize their prevalence, 
it is noteworthy that approximately 1 × 1012 exosomes can be found in 
just 1 milliliter of blood (105). These distinct characteristics and 
abundance make exosomes a subject of significant interest in various 
fields of research and clinical applications (106).

3.1.2 Biogenesis of exosomes
Exosome biogenesis is a highly regulated process that occurs in 

various cell types under both pathological and physiological 
conditions. The secretion of exosomes is governed by the modulation 
of Rab27a and Rab27b expression (107). A diverse array of cell types, 
including lymphocytes, dendritic cells, fibroblasts, erythrocytes, 
platelets, mast cells, tumor cells, stem cells, monocytes, macrophages, 
natural killer (NK) cells, B lymphocytes, and T lymphocytes, are 
known to synthesize exosomes (108).

The process of exosome biogenesis commences with the 
internalization of the cell membrane, leading to the formation of 
small intracellular structures referred to as early endosomes (103–
107). Early endosome development involves a progressive 
maturation process that culminates in the generation of intraluminal 
vesicles (ILVs). On the other hand, late endosomes, known as 
multivesicular bodies (MVBs), are formed through the inward 
folding of segments of the endosomal membrane (106). The fusion 
of MVBs with the plasma membrane results in the exocytotic release 
of ILVs into the extracellular space, where they ultimately undergo 
transformation into exosomes (99–102, 105). This intricate process 
is visually depicted in Figure 1.

Notably, exosomes are present in a variety of physiological fluids, 
including serum, as well as in saliva, amniotic fluid, and breast milk 
(106). Their presence in these fluids underscores the ubiquity of 
exosomes in biological systems and their potential significance in 
various biological and clinical contexts.

3.1.3 Composition of exosomes
Exosomes, which are minuscule in size and invisible to the naked 

eye and standard light microscopes, can only be observed using electron 
microscopy. Their morphology is characterized by flattened spheres, 
which can result from the dehydration process required for electron 
microscopy preparation, leading to their collapse (108, 109). Exosomes 
are complex structures composed of proteins, particularly those derived 
from the plasma or endosomal membrane, lipids, and various cytosolic 
components (Figure  2). It’s important to note that exosomes lack 
proteins originating from the Golgi apparatus, nuclear pore complex, 
mitochondria, and endoplasmic reticulum (Figure 2). Exosomes lack 
proteins of the Golgi apparatus, nuclear pore complex, mitochondria 
and endoplasmic reticulum (110). Data on exosomal content are 
systematically curated and updated in databases such as ExoCarta, 
Vesiclepedia, and EVpedia (111). Although initial investigations suggest 
the presence of proteins from the cytosol, endosomes, and plasma 
membrane in exosomes, it is essential to acknowledge that cellular 
organelles such as mitochondria, the Golgi apparatus, or the nucleus do 
not exclusively consist of proteins. The establishment of exosomal 
protein databases has been a collaborative effort among multiple 
research teams. Exosome repositories like ExoCarta1 and Vesiclepedia2 
have cataloged a total of 9,769 proteins, 1,116 lipids, 3,408 mRNAs, and 
2,838 miRNAs within exosomes originating from various cellular 
sources and organisms up to the present day (110). Exosome protein 
sorting, a newly explored field of study, relies, at least in part, on the 
endosomal sorting complex required for transport (ESCRT) machinery 
and protein ubiquitylation (112). During exosome biogenesis, ESCRT 
orchestrates the formation of intricate structures on the plasma 
membrane, resembling membranous necks. These structures encompass 
conical funnels, tubular arrangements, planar spirals, and filaments, 
which are hypothesized to regulate membrane remodeling processes.

Exosomes encompass a substantial number of transport proteins, 
including tubulin, actin, and actin-binding molecules (110), in 
addition to various proteins intricately involved in specific roles within 
secretory cells (113). Exosomal proteins are categorized into diverse 
groups based on their family, function, and subcellular localization 
(114). The most frequently encountered protein categories in 
exosomes include those related to (i) the formation of multivesicular 
bodies (MVBs), (ii) transmembrane proteins acting as targeting or 
adhesion molecules, such as tetraspanins like CD9, CD63, and CD81, 
which play roles in membrane fusion, (iii) signal transduction proteins 
such as annexin and 14-3-3 proteins, (iv) cytoskeletal proteins 
including actin, syntenin, and myosin, (v) chaperones like HSPA8 and 
HSP90, and (vi) metabolic enzymes, such as GAPDH, LDHA, PGK1, 
aldolase, and PKM (111, 113). Each individual exosome also contains 
MHC class I molecules, among distinct components (114), and heat 
shock proteins (112). These proteins participate in antigen presentation 
and antigenic peptide attachment to MHC class I molecules (113). 
Tetraspanin family members CD9, CD63, CD81, and CD82 interact 
with other transmembrane proteins to facilitate antigen presentation 
and adhesion. The interaction of CD9 and CD82 with integrins can 
inhibit the migration and invasion of tumor cells (111). Exosomes 
exhibit distinctive lipid compositions in addition to their protein 

1 www.exocarta.org

2 www.microvesicles.org
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content (113). Intriguingly, they are deficient in lysobisphosphatidic 
acid and intraluminal vesicle (ILV) lipids (115) but contain high levels 
of sphingomyelin, phosphatidylserine, ceramide, and cholesterol.

Exosomes are recognized for their substantial content of DNA and 
RNA, alongside lipids and proteins. The term “EV-DNA” refers to DNA 
enclosed within EVs, spanning a size range of 100 base pairs to 2.5 
kilobases (115). Analysis of complete RNA sequencing data from EVs 
isolated from serum suggests that RNA repeats constitute approximately 
50% of the total EV-RNA content. Additionally, miRNAs and tRNAs 
are estimated to account for up to 15% of the EV-RNA content (115, 
116). Certain RNAs are found in higher concentrations in exosomes 
than in the originating cells, particularly in exosomes from MSCs 
(116). Numerous studies have provided evidence that RNA can indeed 
be transferred between cells via exosomes (117). However, the extent 
to which transferred RNA retains its functionality in recipient cells, as 
well as the proportion that undergoes fragmentation and subsequent 
transport, remains an area of ongoing investigation.

4 Human umbilical cord mesenchymal 
stem cells origin and biological 
characteristics

MSCs have gained significant prominence in experimental 
cell-based therapeutic approaches for a variety of human ailments. 

They are widely employed due to their proven efficacy in 
numerous disease-related animal models and their excellent safety 
record in clinical settings. MSCs offer great potential for treating 
human illnesses because of their ability to differentiate, self-renew, 
and modulate the immune response (118). While MSCs have 
garnered attention as a potential cellular treatment for various 
medical conditions, emerging evidence suggests that their 
therapeutic benefits are primarily mediated through EVs 
produced via paracrine processes (119). These EVs play a crucial 
role in conveying the therapeutic advantages of MSCs. The 
hUC-MSCs have been the subject of numerous research projects 
that have explored their potential use for the treatments of various 
medical problems, including diabetes (120), cancer (121), liver 
(122), bone (123), cartilage (124), brain (125), cardiovascular 
issues (126), and IBD (127), and Figure 3 illustrates the therapeutic 
effects of hUC-MSC, both in in vivo and in vitro environments. 
The administration of hUC-MSCs demonstrates marked 
amelioration in pivotal parameters, encompassing the disease 
activity index, fluctuations in body weight, alterations in colonic 
length, and histopathological assessments of colitis, predominantly 
through the mitigation of inflammation. A discernible correlation 
exists between the dosage of hUC-MSCs and the extent of 
therapeutic response as these parameters serve as standard 
indicators in IBD evaluations, reflecting both disease severity and 
the effectiveness of therapeutic interventions (126–128).

FIGURE 1

Schematic representation of exosome biogenesis. The process of exosome biogenesis is illustrated schematically in this figure. During exosome 
biogenesis, multivesicular endosomes (MVEs) initially undergo invagination, resulting in the formation of small intracellular vesicles. These vesicles 
encapsulate a diverse array of cytoplasmic cargo molecules, including proteins, messenger RNAs (mRNAs), and microRNAs (miRNAs). Notably, MVEs 
demonstrate two distinct fusion pathways: one involves fusion with the cellular membrane, facilitating the exocytosis of the enclosed exosomes 
(referred to as intravesicular vesicles). The other pathway entails fusion with lysosomes, leading to the degradation of the contents within MVEs. 
Consequently, exosomes gain entry into recipient cells through two distinct mechanisms: initially, they traverse the endocytic route, followed by 
internalization by the recipient cell. Secondly, they can merge directly with the recipient cell’s plasma membrane, subsequently releasing their cargo 
into the cytoplasm. It’s important to note that cells possess the capacity to generate membrane-derived vesicles that bud directly from the plasma 
membrane. These vesicles serve as vehicles for transporting functional proteins, RNAs, and other bioactive molecules.
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4.1 Biological characteristics

4.1.1 The UC-MSC’s (hUC-MSC) immunological 
characteristics

The subcortical endothelium of the umbilical cord, Wharton’s 
jelly (WJ), and the perivascular area are the primary locations 
where UC-MSCs are commonly found. Wharton’s Jelly has a 
structure primarily resembling a sponge, with collagen fibers, 
proteoglycans, and stromal cells intertwined within it (20). When 
analyzing UC-MSCs from Wharton’s Jelly using flow cytometry, 
it was discovered that CD24 and CD108 were abundantly 
expressed, while the dermal fibroblast marker CD40 and 
fibroblast-specific markers (FAP and FSP) were not discernible, 
which highlights the abundance of MSCs in the Wharton’s Jelly 
region (128, 129). UC-MSCs can exhibit distinctive markers 
corresponding to various cell lineages, exemplifying their 
pluripotent nature (130). In contrast to hematopoietic stem cells, 
UC-MSCs exhibit the expression of MSC-specific markers such as 
CD105, CD90, and CD73, along with adhesion molecule markers 
including CD54, CD13, CD29, and CD44. Conversely, UC-MSCs 
shows reduced or absent expression of surface antigens CD31, 
CD14, CD34, and CD45 (131). Additionally, these cells are 
deficient in immune response-related antigens necessary for T 
lymphocyte activation, including CD80, CD86, CD40, and 
CD40L, as well as the MHC class II antigen HLA-DR. (132) 
UC-MSCs exhibit reduced immunogenicity compared to 
BM-derived cells due to their considerably lower expression levels 
of CD106 and HLA-ABC (133).

4.1.2 UC-MSCs’ capability to proliferate and 
differentiate

WJ-MSCs, which exhibited the highest proliferation rate, 
outperformed adipose tissue and BM-MSCs by a factor of three to 
four in terms of proliferation (134). Based on the inquiry 
conducted by the Mennan research team, no significant disparity 
in the rate of proliferation was observed. The population of 
UC-MSCs exhibited an average twofold increase between passages 
P0 and P3 within a span of 2–3 days. This rate of expansion 
significantly exceeds the duration observed for BM-MSCs (135). 
UC-MSCs have the capacity for multidirectional differentiation, 
enabling them to differentiate into various tissues such as bone, 
fat, cartilage, and others (136). Therefore, in the field of 
regenerative medicine, these cells are considered ideal seed cells 
due to their potential to facilitate the healing of various tissues 
and organs (137). According to studies, chemokines are produced 
by biological tissues that undergo damage due to ischemia-anoxia 
or persistent inflammation (138). These chemokines aid in 
recruiting MSCs to the injury site and subsequently regulate their 
migration to facilitate their differentiation into various cell 
lineages (139). Under specific conditions in an in vitro setting, 
UC-MSCs have been observed to exhibit the ability to undergo 
“trans-differentiation,” resulting in their differentiation into 
osteoblast-like mesodermal cell types (140), endothelial cells 
(141), cardiomyocytes (142), as well as ectoderm-derived 
hepatocytes with potential for neuronal transformation (143), and 
pancreatic cells (144), bridging the germinal layers within 
the endoderm.

FIGURE 2

A description of exosomes’ molecular make-up.
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4.1.3 hUC-MSC-EVs (exosomes) isolation and 
characterization

To maximize the therapeutic effects of EVs, it is essential for 
researchers to isolate and characterize them. The isolation and 
characterization of hUC-MSC-EVs hold great importance for their 
potential therapeutic use in IBD and other associated illnesses 
(145). However, the extraction of EVs from biological fluids, such 
as serum or conditioned media, can be  challenging due to the 
heterogeneity of EV populations and the presence of impurities 
(93). In response to this challenge, various methodologies have 
been developed to achieve optimal purity and cost-effectiveness of 
EVs. These techniques include ultracentrifugation, density gradient 
centrifugation, and size-exclusion chromatography, all aiming to 
achieve high levels of purity (146). Ultracentrifugation, are 
commonly used technique for EV extraction, involves differential 
centrifugation at high speeds, reaching up to 100,000 x g, to pellet 
EVs (147). This method can be  further optimized by utilizing 
sucrose or iodixanol gradients to separate EVs from other 
subcellular components (148). Another technique, density gradient 
centrifugation, employs a continuous gradient to separate EVs 
based on their buoyant density. This method is often used for 
isolating specific EV subpopulations, such as exosomes (149). Size-
exclusion chromatography (SEC) is another method used for EV 
isolation, where EVs are separated based on their size characteristics. 
This technology is useful for removing unwanted contaminants, 
such as proteins and lipoproteins, which may be present during the 

isolation process (150). Once the isolation process is complete, 
hUC-MSC-EVs can be characterized by analyzing their physical 
and biochemical properties. Physical characterization includes 
assessing various attributes of EVs, such as their dimensions, 
structure, and abundance. Techniques such as dynamic light 
scattering (DLS), transmission electron microscopy (TEM), and 
nanoparticle tracking analysis (NTA) are commonly employed for 
this purpose (151). Biochemical characterization involves the 
detection and analysis of specific EV markers, including CD9, 
CD63, and CD81, using techniques like western blotting, flow 
cytometry, or immunogold labeling (152). Furthermore, the cargo 
of hUC-MSC-EVs can be characterized through proteomics, RNA 
sequencing, and lipidomics, providing insights into their functional 
properties and potential therapeutic targets (153).

It is important to acknowledge the inherent challenges associated 
with the extraction and characterization of EVs, which stem from the 
diverse nature of EV populations and the potential risk of 
contamination (154). Therefore, it is crucial to employ a range of 
isolation and characterization methodologies to ensure the integrity 
and homogeneity of hUC-MSC-EVs for their potential clinical 
application. By improving separation and characterization techniques 
and tailoring the cargo of EVs to therapeutic targets, researchers can 
develop novel IBD medications that are more effective and exhibit 
fewer side effects than current treatments. For a comprehensive 
overview of different techniques for exosome isolation and 
characterization, please refer to Table 2.

FIGURE 3

Illustration of the hUC-MSC in various abnormalities.
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5 Role of UC-MSC/hUC-MSC-derived 
EVs in IBD

MSC-derived EVs have been shown in numerous studies to be an 
effective treatment for experimentally induced colitis in mice. One 
study documented and examined the weight loss, stool viscosity, and 
hematochezia in mice with DSS-induced colitis treated with MSCs, 
MSC-Exs, and placebo in distinct groups. The findings demonstrated 
that MSCs and MSC-Exs both had an equal anti-inflammatory impact 
and could treat colitis in mice (160). Additionally, studies on MSCs’ 
immediate and long-term protective effects on experimental colitis 
have shown that MSCs produced from human adipose tissue not only 
temporarily relieve colitis but also have positive long-term regulatory 
effects on IBD (161) (Table 3).

5.1 Mechanism of MSC-derived EVs in the 
treatment of IBD

It has been documented that the MSC-Exos have the ability to 
home in on areas of intestinal inflammation, interact with immune 
cells like macrophages, T lymphocytes, and DCs, and modulate the 
characteristics and activities of immune cells by releasing bioactive 
substances, such as cytokines, to regulate irregular immune responses 
and suppress inflammatory reactions (153), as outlined in Figure 4.

Furthermore, MSC-Exos possess the capability to influence 
intestinal epithelial cells (IECs), facilitate the restoration of the 
intestinal epithelial barrier (IEB), mitigate oxidative stress, and 
alleviate colon fibrosis. Therefore, exhibit potential in the treatment of 
IBD (171). The therapeutic utilization of MSC-derived EVs in the 
treatment of IBD are given in Table 4.

5.2 Macrophages

It has been determined that macrophages are the primary cells 
responsible for causing colon inflammation (184, 185), as depicted in 
Figure 5. Upon activation by pro-inflammatory stimuli, macrophages 

are mobilized to inflamed areas and undergo differentiation into 
macrophages with distinct polarities under the influence of 
chemokines and inflammatory factors. M1 macrophages release 
proinflammatory cytokines (IL-1β, IL-6, TNF-α, and IL-12) as well as 
Th1 chemokines (CXCL9, CXCL10, and CXCL11), which are involved 
in antigen presentation, T cell activation, and the initiation of an 
adaptive immune response. M2 macrophages release suppressive 
cytokines like IL-10 and TGF-β, which serve to dampen immune 
reactions and counteract inflammatory responses (186, 187). 
Anomalous polarization of macrophages contributes to immune 
irregularities within the intestinal mucosa and mediates the onset of 
intestinal inflammation, a key triggering factor in the development of 
IBD (188). Research indicates that the regulation of macrophage 
polarization and the balance between M1 and M2 macrophages is 
crucial in the immunotherapeutic approach to IBD (187–190). Both 
laboratory studies and animal trials have demonstrated that when 
lipopolysaccharide (LPS)-activated macrophages are co-cultured with 
BM-derived MSC-Exos, fluorescently labeled MSC-Exos are observed 
within the macrophages after 24 h. This interaction leads to the 
modulation of macrophage polarization towards the M2 phenotype, 
resulting in a decreased M1/M2 ratio and reduced expression of IL-6, 
IL-7, TNF-α, and IL-12, along with diminished macrophage infiltration 
in colon tissue (165, 173). Additionally, further research has indicated 
that adipose-derived MSC-Exos harbor an anti-inflammatory agent, 
TNF-α stimulated gene-6 (TSG-6), plays a pivotal role in orchestrating 
the polarization of M2 macrophages (191). The potential pathways 
through which MSC-Exos regulate macrophages include:

5.2.1 Transfer of miRNA
At the site of intestinal inflammation, MSC-Exos bind to 

macrophages and release encapsulated miRNA, which in turn 
selectively modulates the mRNA within macrophages and influences 
the polarization of M2 macrophages. Research has demonstrated that 
the ExomiRNAs of MSCs, including miR-146a, can downregulate the 
expression of TNF receptor-related factor 6 (TRAF-6) and IL-1 
receptor-related kinase 1 (IRAK-1), thereby suppressing the release of 
proinflammatory cytokines and promoting the expression of the anti-
inflammatory factor IL-10 (192).

TABLE 2 A comparative analysis of various techniques for isolating exosomes.

Technique used Principle Dimension Advantages Drawbacks References

Ultrafiltration Immune 

affinity

Large Convenient, efficient and 

logical

Impure, exosomes with reduced purity may 

exhibit a tendency to partially adhere to the 

cellular membrane

(155)

Immune-affinity 

capture

Shape and 

molecular size

Small Pureness/increased purity Expensive and yielding is very low (156)

Ultracentrifugation Antigen and 

antibody 

specific binding

Large Inexpensive reagent cost, the 

likelihood of pollution is 

minimal

Costly apparatus and significant amount of time 

along with the biological activity and integrity of 

exosomes are compromised due to their poor 

quality

(157)

Size exclusion 

chromatography

Density, 

molecular size, 

and shape

Medium Assurance of exosome yield, 

purity, integrity, and biological 

activity can be achieved

Utilization of specialized equipment (158)

Microfluidic Molecular size Small Affordability, convenience, 

and automation

Verification of selectivity and specificity is 

required

(159)
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5.2.2 Anti-inflammatory proteins delivery
MSC-Exo contains a multitude of proteins, notably 

metallothionein-2 (MT-2), renowned for its capacity to suppress colitis 
activity. This protein plays a pivotal role in mitigating the intestinal 
inflammatory response by upholding the integrity of the intestinal 
barrier and fostering the polarization of M2b macrophages (179).

5.2.3 Induction of Toll-like receptors
MSC-Exos penetrate macrophages, potentially triggering the 

myeloid differentiation primary response gene 88 (MyD88)-
dependent signaling pathway in macrophages upon recognition of 
TLR3 by the enclosed dsRNA. This activation leads to the induction 
of M2 polarization in macrophages, the release of anti-
inflammatory factors, and the inhibition of the inflammatory 
response (193).

5.2.4 Competitive inhibition of CC chemokine 
receptor 2

In the presence of inflammatory stimuli, the interaction between 
CC chemokine receptor 2 (CCR2) expressed on the surface of 

monocytes and CC chemokine ligand 2 expressed on the surface of 
macrophages triggers the migration of monocytes to inflammatory 
sites, where they transform into macrophages, thereby intensifying 
the inflammatory response and exacerbating tissue damage. Notably, 
MSC-Exos exhibit high expression of CCR2, which competitively 
binds to the chemokine ligand 2 on the surface of macrophages. This 
competitive binding inhibits the recruitment and activation of 
monocytes, prevents the polarization of M1 macrophages, and 
reduces the expression of proinflammatory cytokines, such as IL-1β, 
IL-6, and TNF-α, thereby effectively restraining inflammatory 
responses (194).

5.2.5 Regulation of inflammatory cytokines 
releases

Firstly, MSC-Exos derived from MSCs, induced by specific 
inflammatory factors, encapsulate numerous anti-inflammatory 
cytokines and chemokines. Upon uptake by macrophages, these 
components are released into the surrounding environment. Secondly, 
the aforementioned pathways, once activated, govern or initiate the 
polarization of M2 macrophages, leading to the upregulation of 

TABLE 3 Unveiling the role of MSCs and MSC-Exo in IBD treatment.

Disease Administration route Therapy Model/Sample Results References

IBD Intraperitoneal injection HucMSC-Exs In vivo (mice) MSC-Exs reduced IBD in mice by means of TSG-6-

mediated mucosal barrier repair and intestinal 

immunological homeostasis restoration

(162)

IBD Intraperitoneal injection cAT-MSCs In vivo (mice) TSG-6 secreted by cAT-MSCs induced a shift in the 

macrophage phenotype from M1 to M2 in mice, 

alleviating IBD symptoms and regulating the 

expression of pro-and anti-inflammatory cytokines in 

the colon

(163)

IBD Intraperitoneal injections BM-MSCs In vivo (mice) In the peritoneum, BM-MSCs accumulated and 

produced the immunomodulatory factor TSG-6, 

which reduced intestinal inflammation

(164)

UC Peritoneal injection BMSC-Exs In vivo (mice)/in vitro 

(LPS-treated 

macrophages)

BMSC-Exs reduced the inflammatory response by 

down-regulating pro-inflammatory proteins, up-

regulating anti-inflammatory proteins, and promoting 

the conversion of macrophages into the M2 

phenotype

(165)

IBD Intraperitoneal injection ADMSC-Exs In vivo (mice) AdMSC-Exs may alleviate the clinical signs of IBD by 

modulating Treg populations and cytokines

(166)

IBD Intraperitoneal injections MSCs In vivo (mice) In patients with colitis, hUCMSCs enhanced the 

proportion of Tr1 cells in the spleen and mesenteric 

lymph nodes, decreased the percentage of helper T 

cells (Th1 and Th17 cells), promoted the expansion of 

Tr1 cells, and inhibited apoptosis, effectively 

alleviating IBD

(167)

IBD Intravenous infusion MSC-Exs 

(miR-378a-3p)

In vivo (mice)/in vitro 

(IEC-6)

MSCs-Exs suppress IBD by reducing GATA2 

expression and downregulating AQP4, thereby 

inhibiting the PPAR signaling pathway

(168)

IBD T Intravenous infusion -MSCs In vivo (mice) Intravenous infusion of T-MSCs increased circulating 

IGF-1 levels and ameliorated colitis in mice

(169)

IBD Enemas MSCs In vivo (mice) Activating the Nrf2/Keap1/ARE pathway could be an 

effective strategy for MSCs to promote intestinal 

mucosal healing in experimental colitis

(170)
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anti-inflammatory cytokines and the downregulation of 
proinflammatory cytokines. This orchestration serves to sustain the 
equilibrium of anti-inflammatory factors at inflammatory sites and 
effectively suppress excessive inflammatory responses (195).

5.3 T lymphocytes

The continual exposure of antigens to CD4+ T cells by immune 
cells in the intestinal mucosa prompts the differentiation of primitive 
CD4+ T cells (Th0) into various helper T cell subtypes (predominantly 
Th1, Th2, and Th17) and regulatory T (Treg) cells, under the influence 
of antigen presentation and cytokine regulation. The trajectory of their 
differentiation plays a crucial role in preserving intestinal immune 
equilibrium and modulating inflammatory responses within the 
intestine (196). Research indicates that the co-cultivation of T 
lymphocytes with MSC-Exos results in the downregulation of 
cyclinD-2 and the upregulation of P27KIP-1, thereby impeding T 
lymphocytes from entering the S phase and inhibiting their growth 
and proliferation. This suggests that MSC-Exos have the capacity to 
modulate the proliferation and differentiation of T lymphocytes. 
Notably, MSC-Exos primarily regulate the equilibrium between Th1 
and Th2, as well as Treg and Th17 cells (196).

5.3.1 The regulation of the transformation 
balance between Th1 and Th2

Th1 and Th2 cells represent the two primary subtypes of Th0 
differentiation. Th1 cells primarily express IFN-γ and IL-12, while Th2 
cells predominantly express IL-4 (196, 197). The dysregulation of Th1/
Th2 subsets is intricately linked to the chronic inflammation observed 
in IBD (197, 198). The direction of differentiation is largely influenced 
by the concentration of IL-12 in the environment and the activation 
status of antigen-presenting cells. Through the regulation of DCs and 
macrophages, MSC-Exos induce the polarization of M2 macrophages, 
impede the antigen presentation of DCs, and diminish the release of 
proinflammatory cytokines, such as IL-12. This environment is 
conducive to the transition of T cells into Th2 cells. Studies have 
demonstrated that MSC-Exos can markedly diminish the expression 
of IL-12, hinder the differentiation and proliferation of Th1 cells, and 
facilitate the transition of T cells into Th2 cells following co-cultivation 
with T cells activated by phytohemagglutinin (199, 200). Furthermore, 
research has revealed that the TSG-6 protein detected in 
hUC-MSC-exo regulates the immune response of Th2 and Th17 cells 
in mesenteric lymph nodes (MLN), downregulates proinflammatory 
cytokines in colon tissue, and upregulates anti-inflammatory 
cytokines, thereby safeguarding the integrity of the intestinal 
barrier (162).

FIGURE 4

The impact of MSC-EVs on immune effector cells in IBD.
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5.3.2 The regulation of the transformation 
balance between Treg and Th17

Treg cells play a pivotal role in inhibiting the transformation of 
effector T cells and adaptive mucosal immunity in the intestine, 
thereby reducing immune-related tissue damage in IBD. A study has 
revealed that MSC-Exos induce T lymphocyte apoptosis and modulate 
the differentiation and proliferation of Treg cells through programmed 
death ligand and galactosin-1 (201). Treg cells express anti-
inflammatory cytokines, such as IL-10 and TGF-β, to achieve 
immunosuppressive effects (193, 202, 203). In contrast, Th17 cells 
express proinflammatory cytokines that contribute to the 
inflammatory activity in IBD. Notably, the ratio of Th17/Treg in the 
peripheral blood of IBD patients has been found to be significantly 
increased, as demonstrated (204). Furthermore, Chen et  al. (133) 
discovered a significant increase in the ratio of Th17/Treg cells in the 
mesenteric lymphoid tissue of colitis rats. Conversely, the ratio of 
Th17/Treg cells was markedly decreased, leading to a notable 
amelioration of colitis after the injection of MSC-Exos via the caudal 

vein (180, 205). Additionally, it was found that adipose-MSC-Exos 
(AD-MSC-Exos) can restore the proportion of Treg cells in the spleen 
of the IBD mouse model to the baseline level, akin to that of normal 
mice, and also improve the inflammation of dextran sulfate sodium 
(DSS)-induced colitis (166).

5.4 DCs

In the intestinal mucosa, DC are the main antigen-presenting 
cells. They produce and secrete proinflammatory cytokines including 
IL-6 and IL-12, which exacerbate the inflammatory response in IBD 
(refer to Figure 4) (206). Additionally, their production of reactive 
oxygen species (ROS) contributes to the destruction of the intestinal 
mucosal barrier and participates in the tissue damage observed in IBD 
(1). The potential mechanisms through which MSC-Exos regulate 
DCs encompass the following: (1) MSC-Exo-treated DCs result in the 
downregulation of IL-4 and IL-12, coupled with the upregulation of 

TABLE 4 Therapeutic application of MSC-derived EVs for treating IBD.

Sources Effector molecules Mechanism Effect References

hUC-MSCs miRNA-326 NF-κB signaling pathway and 

enzymes associated to neddylation

Preventing neddylation and 

reducing colitis

(172)

hUC-MSCs miRNA-378a-5p IL-1β, IL-18, the NLRP3 axis, and 

caspase-1

Reducing colitis by controlling 

the pyroptosis of macrophages

(173)

hUC-MSCs miRNA-378a-5p NLRP3 axis Suppressing colitis brought on by 

DSS and controlling macrophage 

pyroptosis

(174)

AD-MSCs miRNA-132 TGF-β/Smad signaling and Smad-7 Facilitating lymphangiogenesis 

reliant on VEGF-C

(175)

hUC-MSCs miRNA-146a SUMO1 axis Preventing colitis (172)

hUC-MSCs lnc78583-miRNA-3202 HOXB13 axis Alleviate bowel inflammation (176)

BM-MSCs MiRNA-200b HMGB3 axis Reduce the inflammatory damage 

that IECs have caused

(177)

BM-MSCs miR-125a miR-125b Stat3 axis; prevent the development 

of Th17 cells

Reduce the severity of colitis 

brought on by DSS

(178)

hUC-MSCs TSG-6 TJ repair by upregulating TJ 

protein expression. Th2 and Th17 

cell immune responses have been 

altered

Reestablishing intestinal 

immunological homeostasis and 

mucosal barrier restoration

(162)

hBM-MSCs MT-2 M2b macrophages polarized Lessen irritation of the mucosa (179)

AD-MSCs N/A Immunomodulatory properties; 

control the number of Tregs

Reduce inflammation in acute 

colitis caused by DSS

(166)

Olfactory Ecto-MSCs N/A Controls Th1/Th17 subpopulations 

and differentiation

Reduce the intensity of IBD 

disease

(180)

hUC-MSCs N/A Suppress the production of IL-7 

and iNOS

Reduce IBD and relieve 

inflammatory reactions

(173)

hUC-MSCs N/A Control the ubiquitination 

modification

hUC-MSCs lessen the colitis’s 

intensity

(181)

BM-MSCs N/A Reduce apoptosis, oxidative stress, 

and intestinal inflammation

Reduce IBD’s intensity (182)

AD-MSCs N/A Process including inflammation, 

apoptosis, and immunity

Reduce the harm to the intestinal 

epithelium

(183)
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TGF-β, thus inhibiting the maturation and differentiation of DCs 
(200, 207, 208). This process also induces the differentiation of T cells, 
affects the balance of Th1/Th2 transformation (209), and inhibits the 
intestinal inflammatory response (210). Furthermore, (2) MSC-Exos 
suppress the differentiation and maturation of DCs by modulating the 
TLR-NF-κB signaling pathway. In summary, MSC-Exos exert a potent 
immunomodulatory effect (211). In the context of IBD treatment, 
MSC-Exos carrying immunosuppressive factors influence M2 
macrophage polarization, inhibit the proliferation of Th1 and Th17 
cells, promote the differentiation of Treg cells, and induce antigen-
presenting cells (212).

5.5 IECs

5.5.1 Repair of the IEB
The intestinal barrier encompasses the IEB, mucosal innate 

immune system, intestinal mucus, and intestinal microbiota. The IEB, 
constituted by the tight junctions of IECs, forms a crucial mechanical 
barrier and represents the most pivotal component of the intestinal 

barrier. Dysregulation and disturbances in various aspects, including 
mucosal immunity, surface mucus, intestinal microbiota, and 
oxidative stress, can compromise the integrity of the IEB, leading to 
the necrosis and apoptosis of IECs and an escalation in wall 
permeability. These changes underlie the pathological alterations 
observed in IBD (213–216). MSC-Exos exhibit the capacity to repair 
IEC injury, inhibit IEC apoptosis, preserve the equilibrium of 
oxidative stress, and diminish intestinal wall permeability, thereby 
facilitating the restoration of the IEB, refer to Figure 6.

5.5.1.1 Repair the injury of IECs
Mao et al. (173) observed a significant reduction in immune-

mediated damage to IECs in colitis mice at 12 h post-intravenous 
injection of hUC-MSC-exo, indicating the therapeutic potential of 
exosomes in immune regulation. Additionally, Wang et  al. (47) 
demonstrated that ADSCs-Exos treated with vascular endothelial 
growth factor C (VEGF-C) upregulate miR-132 and modulate the 
Smad-7 gene and TGF-β/Smad signaling pathways, thereby promoting 
the proliferation, migration, and lymphangiogenesis of lymphatic 
endothelial cells (LECs). Furthermore, in a DSS-induced colitis model, 

FIGURE 5

The MSC-EVs mitigate ulcerative colitis is through modulating the phenotype and function of colonic macrophages. MSC-EVs reduce the cleavage of 
caspase-3, -8, and -9 and lessen the release of damage-associated molecular patterns (DAMPs) from damaged gut epithelial cells, leading to 
decreased activation of the NF-κB signaling pathway in colon macrophages. MSC-EVs deliver miR-146a, which inhibits the expression of TNF receptor-
associated factor 6 (TRAF6) and IL-1 receptor-associated kinase 1 (IRAK1), reduces phosphorylation of NF-κB p65, and suppresses the generation of 
inflammatory M1 macrophages. This is evidenced by decreased inducible nitric oxide synthase (iNOS) expression, significantly lower production of 
nitric oxide (NO), inflammatory cytokines (TNF-α, IL-1β, IL-6), and chemokines (CCL-17, CCL-24), resulting in reduced recruitment of neutrophils, 
monocytes, and lymphocytes to the inflamed gut. Additionally, MSC-EVs promote the polarization of colon macrophages to an anti-inflammatory M2 
phenotype, marked by increased secretion of immunosuppressive cytokines TGF-β and IL-10, thus alleviating colitis.
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hUC-MSC-exo were found to regulate the balance between 
ubiquitination and deubiquitination of functional proteins through 
miR-326, facilitating the repair of IEC damage and maintenance of 
IEB integrity by inhibiting neddylation (181). Although the specific 
regulatory process and molecular mechanism require 
further elucidation.

5.5.1.2 Regarding the inhibition of IEC apoptosis
It has been identified in numerous apoptotic bodies in the colon 

mucosa of UC patients (214). Subsequent studies revealed that the lack 
of NF-κB in IECs is a critical factor leading to their entry into the 
apoptosis program (215). Yang et al. (182) observed a high expression 
of caspase 3, caspase 8, and caspase 9 in the cysteinyl aspartate-specific 
protein (caspase) family in the colon tissue of rats with colitis. Following 
the injection of MSC-derived EVs into the tail vein, the expressions of 
these caspases were altered, indicating the potential of MSC-EVs to 
inhibit IEC apoptosis and repair the IEB. Similarly, Yang et al. (182) 
obtained similar results, further affirming the ability of MSC-EVs to 
mitigate the apoptosis of IECs and contribute to IEB repair.

5.5.1.3 Inhibition of oxidative stress
Oxidative stress plays a crucial role in the onset and progression 

of IBD. Typically, colonic tissue cells maintain a dynamic equilibrium 
between oxidation and antioxidation. However, chronic colonic 
inflammation disrupts this balance, leading to excessive production of 
reactive ROS by IEC and macrophages, which results in colonic tissue 

damage (217, 218). Elevated levels of ROS have been detected in the 
colonic mucosa of IBD patients and animal models, with a positive 
correlation to disease severity and increased peroxidation products, 
such as peroxidized lipid molecules and proteins (218–221). 
Overproduction of ROS directly damages nucleic acids, lipids, and 
proteins in colon epithelial cells, inducing necrosis or apoptosis of 
IECs and compromising the integrity of the IEB (222). While oxidative 
stress aids the immune system in pathogen clearance, excessive 
oxidative stress stimulates macrophages to produce proinflammatory 
cytokines, exacerbating intestinal inflammation. Research indicates 
that mesenchymal stem cell-derived exosomes (MSC-Exos) can repair 
various injuries caused by oxidative stress (223–225).

However, most studies have focused on tissues such as the heart, 
lungs, liver, and kidneys, with limited research on MSC-Exos in 
treating colitis (48). Nevertheless, MSC-Exos might repair oxidative 
stress-damaged IECs and help maintain the intestinal mucosal barrier. 
Additionally, MSC-Exos could mitigate oxidative stress injuries 
through immune regulation. Further research is needed to determine 
whether MSC-Exos can reduce intestinal ROS production and restore 
the balance between oxidation and antioxidation in the intestine.

5.5.1.4 Reduction of intestinal wall permeability
It was discovered that the incidence of necrotizing enterocolitis 

(NEC) and intestinal wall permeability significantly decreased in NEC 
model rats treated with intraperitoneal injections of BM MSCs or BM 
MSC-Exos (226). Furthermore, McCulloh et al. (227) verified that 

FIGURE 6

Diagrammatic illustration of the treatment of IBD by MSC-derived EVs.
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MSC-Exos can reduce intestinal wall permeability, though the precise 
molecular mechanisms underlying this effect remain unclear.

5.5.2 Anticolonic fibrosis
Colonic fibrosis is a chronic complication of IBD, with more than 

30% of CDpatients developing fibrosis, which rapidly leads to 
intestinal stenosis and adversely impacts patient prognosis (228, 229). 
Pathological stimuli such as chronic intestinal inflammation, oxidative 
stress, damage to and repair of the IEB, promote epithelial-
mesenchymal transition (EMT). This transition involves the loss of 
epithelial cell polarity and intercellular connections, morphological 
and functional transformation, and significant extracellular matrix 
(ECM) accumulation, culminating in intestinal fibrosis (230). During 
tissue repair or response, fibroblast activation is crucial for fibrosis 
development (230). The TGF-β signaling pathway has been identified 
as a key activator of fibroblasts, inducing their differentiation into 
myofibroblasts, which is central to the pathogenesis of intestinal 
fibrosis (231). Yang et al. (232) demonstrated that BM-MSC-Exos can 
significantly reverse EMT in TGF-β1-treated (IEC-6) through 
miR-200b, thereby mitigating intestinal fibrosis. Various studies have 
shown that MSCs from different sources regulate EMT by activating 
TGF-β and Wnt signaling pathways, reducing ECM aggregation, and 
exerting antifibrotic effects (233). While MSCs have been shown to 
reduce fibrosis in the heart, lungs, liver, and kidneys, research on their 
effects on intestinal fibrosis remains limited (234). Choi et al. (234) 
hUCMSC-Exos suppress TGF-β1-induced fibroblast activation by 
inhibiting the Rho/MRTF/SRF pathway, thereby reducing intestinal 
fibrosis. Additionally, Duan and Cao (235) discovered that human 
placental MSC-Exos can decrease collagen deposition in the intestinal 
wall by reducing collagen production and promoting its degradation 
through inhibition of TGF-β1 protein expression.

5.6 hUC-MSC-derived EVs role in other 
inflammatory diseases

Instead of being solely associated with IBD, hUC-MSC derived 
EVs have demonstrated promising potential in the treatment and 
management of diverse pathological conditions.

5.6.1 hUC-MSC derived EVs promote functional 
recovery in spinal cord injury

The induction of M1 to M2 phenotypic transition in bone 
marrow-derived macrophages (BM-DM) can be effectively achieved 
through the utilization of hUC-MSC-derived exosomes, which are 
characterized by an average particle size of 70 nm. In vivo studies have 
provided compelling evidence that hUC-MSC-derived exosomes 
facilitate the process of functional recuperation subsequent to SCI 
through the downregulation of inflammatory cytokines, including 
TNF-α, MIP-1, IL-6, and IFN-γ (61). The role of hUC-MSC-exo in the 
transformation of macrophages from the M1 to the M2 phenotype has 
been established (236). Intravenous administration of these exosomes 
shows promise as a therapeutic approach for mitigating inflammation 
and facilitating the restoration of locomotor function following 
SCI. These findings highlight the potential of exosomes to significantly 
contribute to the future of SCI therapy (237).

In the treatment of SCI mice, hUC-MSC transplantation has been 
shown to greatly enhance the survival and regeneration of myelin and 

nerve cells in the injured area of the spinal cord (238). This 
transplantation approach also leads to a significant improvement in 
the motor function of the animals. These positive therapeutic 
outcomes may be attributed, at least in part, to the effects of hUC-MSC 
transplantation, which include reducing the production of IL-7 at the 
site of injury, enhancing the activation of M2 macrophages, and 
preventing inflammatory infiltration (239). A study conducted in 2022 
suggests that the ability of hUC-MSCs to modulate the inflammatory 
response following nerve injury plays a critical role in their 
effectiveness in treating acute SCI. This information may guide future 
applications of hUC-MSCs and enhance the effectiveness of their 
clinical translation (240). Moreover, hUC-MSC-EVs, acting through 
the miR-29b-3p/PTEN/Akt/mTOR axis, have demonstrated the ability 
to reduce pathological alterations, enhance motor function, and 
promote nerve function repair in SCI rats (241).

5.6.2 hUC-MSC derived EVs suppresses 
programmed cell death in traumatic brain injury

Globally, traumatic brain injury (TBI) is a leading cause of 
fatalities and long-term impairment (242). TBI treatments have 
recently gained significant attention. However, the therapeutic 
application of hUC-MSC transplantation in TBI has been limited by 
challenges such as immunological rejection, ethical considerations, 
and the potential for tumorigenicity. Notably, hUC-MSC-exo have 
demonstrated the ability to enhance neurological performance, reduce 
cerebral edema, and decrease lesion volume following TBI (243). 
According to a study, hUC-MSC-exo may provide neuroprotection 
against TBI by exerting inhibitory effects on cell death processes, 
including apoptosis, pyroptosis, and ferroptosis, through the PINK1/
Parkin-mediated mitophagy pathway (238). Recent studies have shed 
light on the emerging significance of pyroptosis in the context of brain 
damage. It has been demonstrated that pyroptosis plays a significant 
role in the development of neonatal cerebral ischemia-reperfusion 
(I/R) injury, exerting a substantial influence on the pathological 
processes involved (244). hUC-MSC-exo possesses the potential to 
mitigate apoptosis following TBI, reduce neuroinflammation, and 
promote neurogenesis (245). In order to evaluate the efficacy of 
exosome therapy in facilitating neurological recovery, a rat model of 
TBI was established. Subsequent analysis revealed a significant 
improvement in sensorimotor function and spatial learning in rats 
upon administration of hUC-MSC-exo (246). Moreover, through the 
inhibition of the NF-kB signaling pathway, hUC-MSC-exo exhibited 
a substantial reduction in the synthesis of proinflammatory cytokines. 
Furthermore, noteworthy observations were made regarding the 
neuroprotective effects of hUC-MSC-exos, including the prevention 
of neuronal apoptosis, attenuation of inflammation, and facilitation of 
neuronal regeneration within the injured cortex of rats subjected to 
TBI (247).

5.6.3 hUC-MSC derived EVs In myocardial 
infarction

A myocardial infarction (MI) is a significant inflammatory 
disorder triggered by an imbalance in substrate and oxygen supply 
versus demand, leading to ischemia or cellular demise (248, 249). 
Despite the frequent utilization of early revascularization and the 
widespread implementation of quality measures, notable variations 
exist at the local and regional levels regarding the management and 
outcomes of MI (250, 251). The therapeutic effectiveness of stem 
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cell-based therapy in MI for the purposes of heart repair and 
regeneration has been substantiated through preclinical investigations 
as well as clinical trials (252). A potential therapeutic approach for MI 
involves the utilization of MSC-EVs. To investigate the effects of 
hUC-MSC-EVs loaded with miR-223  in the context of MI, 
experiments were conducted employing both an in vitro cellular 
model of oxidative stress and cardiac fibrosis, as well as in vivo rat 
models of MI. The transfer of miR-223 via EVs demonstrated 
improved cardiac function in MI rat models, along with reduced 
fibrosis and inflammation (253). The pathogenesis of MI is primarily 
attributed to the presence of inflammation, wherein the detrimental 
effects of MI are intricately associated with the orchestrated activation 
of multiple inflammatory cascades and the recruitment of 
inflammatory cells (254). Before the widespread implementation of 
cardiomyocyte regeneration in clinical trials, substantial further 
research and development are required. In the realm of cell therapy, 
extensive investigations have been conducted to explore the 
differentiating capabilities of (hUC-MSCs). It is widely recognized 
that the utilization of 5-Azacytidine (5-Aza) effectively triggers the 
differentiation of hUC-MSCs into cardiomyocytes, resulting in 
morphological changes and the expression of cardiac-specific proteins, 
irrespective of the presence of basic fibroblast growth factor (bFGF) 
(255). An additional investigation has revealed that 5-Azacytidine 
(5-Aza) may facilitate the in vitro differentiation of hUC-MSCs into 
cardiomyocytes through the sustained phosphorylation of 
extracellular signal-regulated kinase (ERK) (256). Recent scientific 
investigations have demonstrated that the administration of injected 
hUC-MSCs exerts beneficial effects on cardiac function in rats with 
dilated cardiomyopathy (DCM) through the attenuation of myocardial 
fibrosis and dysfunction. These effects are achieved by the 
downregulation of Transforming Growth Factor-β1 (TGF-β1) and 
TNF-α production (257). Furthermore, emerging scientific evidence 
suggests that exosomes possess potential protective properties in the 
context of acute myocardial infarction. These exosomes have been 
shown to potentially facilitate cell repair mechanisms by modulating 
the expression of Smad7 in cardiomyocytes (257).

5.6.4 hUC-MSC derived EVs role in kidney injury 
repair

Depending on the concentration of serum creatinine (Scr) or 
glomerular filtration rate (GFR), nephrologists have classified kidney 
failure into two distinct syndromes: acute renal failure and chronic 
renal failure (258). Currently, clinical treatments for kidney injury 
primarily involve medication, surgery, and renal transplantation (259). 
As stem cell research has advanced, the preventive effects of 
hUC-MSCs and hUC-MSC-exo on renal tissue injury have been 
demonstrated (260). Acute kidney injury (AKI) refers to the clinical 
condition that arises from a rapid loss of renal function caused by 
various factors (260). Pre-renal acute kidney injury commonly arises 
from diminished blood volume caused by fluid loss and bleeding from 
various etiologies, as well as a decrease in effective arterial blood 
volume and alterations in intrarenal hemodynamics. Recent research 
has focused on the role of sepsis in causing AKI. To investigate this, a 
sepsis model was induced using cecal ligation and puncture (CLP), 
followed by treatment with hUC-MSCs (261). The data presented in 
the study provided evidence that the administration of hUC-MSCs 
resulted in substantial improvement in renal function, reduction in 
tissue damage, and significant enhancement of overall health in mice 

with sepsis (262, 263). According to the data reported, pre-treatment 
of hUC-MSCs with IL-1 exhibited a statistically significant 
augmentation in their capacity to modulate the immune system (264). 
In response to IL-1 stimulation, exosomes selectively encapsulated a 
widely recognized anti-inflammatory microRNA, MiR-146a. 
Subsequent delivery of exosomal MiR-146a to macrophages induced 
M2 polarization, leading to a reduction in kidney damage in septic 
mice (265). According to a study, the administration of hUC-MSCs 
have been demonstrated to effectively ameliorate renal ischemia-
reperfusion injury (IRI) in mice. This beneficial effect is achieved 
through a dual mechanism involving a reduction in the infiltration of 
macrophages into the injured kidneys and a concomitant increase in 
the population of M2-like macrophages during the healing process 
(265). Through the modulation of inflammatory cytokine production 
and promotion of renal tubular cell proliferation, hUC-MSCs have 
been observed to expedite the recovery of renal function. Additionally, 
it was discovered that hUC-MSC transplantation resulted in a 
reduction in the levels of malondialdehyde (MDA) in renal tissues, 
indicating a potential protective effect of hUC-MSCs against oxidative 
damage and mitochondrial dysfunction in renal cells (266). 
Subsequent investigations revealed that the underlying mechanism 
responsible for cisplatin-induced nephrotoxicity was primarily 
attributed to the induction of oxidative stress. However, this 
detrimental effect can be  mitigated by the administration of 
hUC-MSC-exo, which exert their protective effects by suppressing the 
activation of the p38 mitogen-activated protein kinase (MAPK) 
pathway (267). Renal fibrosis is a common pathway in the progression 
of chronic kidney disease (CKD) that often culminates in end-stage 
renal failure. Huang et  al. provided insights into the potential 
therapeutic role of MSCs in mitigating obstructive chronic progressive 
renal interstitial fibrosis (RIF) in the context of kidney failure. Their 
study demonstrated that infused MSCs could effectively reach the 
damaged kidney tissues, offering a promising approach for addressing 
the underlying mechanisms involved in renal fibrosis (268).

5.6.5 hUC-MSC derived EVs role in cutaneous 
wounds healing

Inflammatory, proliferative, and remodeling stages are just a few 
of the many phases that make up the complex process of cutaneous 
wound healing (268). Recent years have witnessed extensive 
exploration into benefits of direct stem cell infusion for tissue 
regeneration (269, 270). A degradable, dual-sensitive hydrogel 
incorporating exosomes extracted from hUC-MSC was synthesized. 
Afterwards, the in vivo wound healing potential, exosome 
identification and material properties of the hydrogel were assessed. 
The exosome-loaded hydrogel demonstrated substantial 
improvements in wound closure rates, re-epithelialization rates and 
collagen deposition at the wound sites, as evidenced by the in vivo 
results (269). The administration of exosomes-loaded hydrogel to the 
wounded sites resulted in a higher density of skin appendages, 
indicating a potential for achieving full skin regeneration (271).

Clinicians persistently encounter challenges in managing diabetic 
wounds due to the prevalence of multiple bacterial infections and 
oxidative damage (272). Exosomes have been widely employed as a 
promising nanodrug delivery strategy for the treatment of diabetic 
(273). To ascertain their participation in the modulation of diabetic 
wound healing, a co-culture of human umbilical vein endothelial cells 
(HU-VECs) and hUC-MSCs was established, and hUC-MSC-exo 
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were subsequently utilized in both in vitro and in vivo experiments 
(274). The findings demonstrated that hUC-MSCs possess the ability 
to mitigate oxidative stress-induced damage to endothelial cells via 
exosomal mechanisms, thereby accelerating the healing process of 
diabetic cutaneous wounds in an in vitro setting (273). In vivo setting, 
it was observed that wounds treated with hUC-MSC-exo exhibited 
significantly accelerated re-epithelialization and elevated expression 
levels of CK19, PCNA, and collagen I  (in contrast to collagen 
III) (274).

5.6.6 hUC-MSC cells derived EVs role in lung 
injury repair

Acute lung injury (ALI) leads to the early onset of lung 
inflammation, capillary rupture, destruction of endothelial and 
epithelial cells, and breakdown of tight epithelial junctions. These 
factors increase alveolar epithelial permeability, causing significant 
pulmonary edema and, in severe cases, even death (275). In animal 
models, transplantation of MSCs effectively enhances the recovery 
from ALI (276). In the LPS-induced ALI rat model, hUC-MSCs can 
enhance the activity of antioxidant enzymes in lung tissue (277). 
Based on this, photobiomodulation (PBM) was utilized to modulate 
the release of pro-inflammatory chemicals, reduce their levels to a 
certain extent, and enhance the balance of oxidative stress at the site 
of injury (278). Bronchopulmonary dysplasia (BPD) is a dangerous 
chronic lung condition characterized by a high rate of morbidity and 
mortality in premature neonates (279). Transplantation of MSCs is a 
promising strategy for treating BPD. In a rat model of BPD, the 
transplantation of hUC-MSC-EVs resulted in the improvement of 
pulmonary hypertension, restoration of lung function, and alveolar 
structure (280). In a BPD model treated with hUC-MSC-EVs, the 
proportion of Ki-67-positive lung cells increased, indicating an 
upregulation of cell proliferation, whereas the proportion of TUNEL-
positive lung cells decreased, suggesting a downregulation of cell 
apoptosis (263). Furthermore, in a hyperoxia-induced BPD model 
treated with hUC-MSC-EVs, there was an increase in SP-C staining, 
a marker of type II alveolar epithelial cells (TIIAECs), as well as CD31 
staining, a marker of pulmonary vascular endothelial cells (PVECs) 
(281). Another study has demonstrated that intervention with PBM 
in hUC-MSCs naturally reduces the thickness of the alveolar septum, 
suppresses excessive secretion of inflammatory factors, and alleviates 
in vivo conditions of bleeding, edema, and fibrosis (278). PBM is a 
physical intervention that enhances the therapeutic effect of 
hUC-MSCs and shows promise as a therapy for the treatment of 
ALI. Furthermore, the use of hUC-MSCs may potentially reduce 
bleomycin-induced mouse mortality and attenuate lung collagen 
buildup (282). The transplantation of hUC-MSCs induced the 
proliferation of alveolar type 2 (AT2) cells, while concurrently 
suppressing the proliferation of lung fibroblasts (283). After the 
transplantation of hUC-MSCs, there is an induction of AT2 cell 
proliferation, concomitant with the suppression of lung fibroblast 
proliferation. Additionally, this transplantation leads to increased 
release of CXCL9 and CXCL10 by interferon-stimulated cells 
(IFNSMs), thereby attracting additional Treg cells to the injured lung 
(284). In a study, hUC-MSCs were administered, and lung 
morphometry was successfully enhanced (285). Further research has 
revealed the crucial role of exosome-resident miR-377-3p in 
controlling autophagy, thereby preventing LPS-induced ALI (286).

5.6.7 hUC-MSC cells derived EVs role in hepatic 
injury repair

The liver, which is widely considered to be the most critical 
organ in the body, plays a pivotal role in the detoxification, 
secretion, and metabolism of medications and toxins (287). Acute 
liver failure (ALF), a pathological condition resulting from rapid 
deterioration in hepatic function, and is clinically characterized by 
jaundice, coagulopathy, and encephalopathy (288). In recent years, 
increasing scientific research has indicated that the transplantation 
of MSCs holds promise as a potential therapeutic strategy for the 
treatment of ALF (289, 290). Findings of ta study revealed that the 
administration of hUC-MSC-exo via a single tail vein injection 
resulted in a significant improvement in the survival rate, 
prevention of hepatocyte death, and enhancement of liver function 
in an experimental mouse model of ALF induced by APAP (291). 
Furthermore, the administration of hUC-MSCs effectively 
mitigated APAP-induced hepatocyte apoptosis by modulating 
oxidative stress markers (292). This was evident through the 
downregulation of glutathione (GSH) and superoxide dismutase 
(SOD) levels, as well as the attenuation of MDA production. 
Additionally, the excessive expression of cytochrome P450 E1 
(CYP2E1) and 4-hydroxynonenal (4-HNE), which are known 
contributors to oxidative stress, was significantly suppressed. These 
findings highlight the ability of hUC-MSC-exo to regulate 
oxidative stress pathways, thereby conferring protection against 
APAP-induced hepatocyte death in the context of acute liver failure 
(293). In a study, mouse models of acute and chronic liver damage, 
as well as liver tumors, were generated by intraperitoneal injection 
of carbon tetrachloride (CCl4) followed by the intravenous 
infusion of hUC-MSC-exo. The results of the study demonstrated 
the hepatoprotective effect of hUC-MSC-exo, as evidenced by a 
significant reduction in liver damage (294). hUC-MSC-exo 
treatment has been shown to mitigate the expression of the NLRP3 
inflammasome and associated inflammatory factors (295), offering 
a potential therapeutic approach for the management of acute liver 
failure. Furthermore, in lipopolysaccharide (LPS)-stimulated RAW 
264.7 macrophages, hUC-MSC-exo demonstrated inhibitory 
effects on the expression of NLRP3, caspase-1, IL-1β, and IL-6. 
These findings highlight the immunomodulatory properties of 
hUC-MSC-exo, which could contribute to the attenuation of 
inflammatory responses in various pathological conditions (296). 
The proteolytic activation of pro-IL-1β is facilitated by activated 
caspase-1. Caspase-1, IL-1β, and NLRP3 play pivotal roles in the 
development of acute pancreatic and hepatic injury, inflammation, 
and subsequent organ damage. These factors are crucial in the 
pathophysiological processes associated with inflammatory 
responses and tissue injury in the pancreas and liver (297). The 
primary outcome of a recent study revealed that T-Exo treatment 
effectively reduces circulating levels of alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), and proinflammatory 
cytokines. Additionally, T-Exo therapy attenuates the activation of 
proteins involved in the NLRP3 inflammation-associated pathway, 
thereby mitigating the pathological liver damage associated with 
acute ALF (298). Notably, TNF stimulation of MSCs leads to the 
selective packaging of anti-inflammatory microRNA-299-3p into 
exosomes, which can be  utilized for exosomal therapy 
purposes (299).
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5.6.8 hUC-MSC cells derived EVs role in 
controlling blood sugar/diabetes

Diabetes mellitus (DM), a collective term referring to a group of 
metabolic disorders, is distinguished by the presence of elevated blood 
glucose levels, commonly known as hyperglycemia (300). Over the 
preceding half-century, the dynamics of lifestyles and the process of 
globalization have imparted profound ramifications on political, 
environmental, societal, and human behavioral domains. DM 
represents a complex disorder influenced by a combination of genetic 
predisposition and environmental factors, leading to compromised 
insulin secretion or insulin resistance (IR). These physiological 
aberrations contribute to the characteristic pathophysiology of DM 
and its associated metabolic dysregulation (300, 301). In recent years, 
obesity and physical inactivity have become more common, and rapid 
population expansion, aging, and urbanization have all contributed to 
the worldwide health issue that is DM (302). To maintain physiological 
equilibrium within the body’s ecosystem, it is imperative to regulate 
the homeostasis of blood glucose, which is contingent upon the 
management of vital life processes (303). In the year 2018, a team of 
researchers conducted an investigation into the correlation between 
hUC-MSC-exo and hyperglycemia induced by type 2 diabetes mellitus 
(T2DM) (304). The findings unequivocally indicate that 
hUC-MSC-exo consistently mitigated blood glucose levels in T2DM-
afflicted rats subjected to a high-fat diet (HFD) and streptozotocin 
(STZ). Notably, hUC-MSC-exo enhanced the uptake of the fluorescent 
glucose analogue 2-NBDG in myotubes and hepatocytes, thereby 
substantiating their role in facilitating glucose absorption. 
Additionally, hUC-MSC-exo promoted glucose uptake in the muscles, 
upregulated the expression of the glucose-responsive transporter 
(GLUT4) in T2DM rats, and reinstated hepatic glucose homeostasis 
through the activation of insulin signaling. The activation of the 
insulin/AKT signaling pathway further corroborated the potential of 
hUC-MSC-exo to enhance insulin sensitivity in both in vivo and in 
vitro settings. Moreover, an evidence demonstrated that 
hUC-MSC-exo facilitated insulin secretion and islet regeneration by 
preventing STZ-induced caspase-3 alterations that lead to cellular 
apoptosis (305).

6 Safety and efficacy in clinical trials

Clinical trials are currently underway to evaluate the safety and 
efficacy of MSC-EVs in the management of IBD and its related 
conditions (306). Significantly, a series of phase I and II trials have 
been conducted, resulting in promising results. Significantly, the 
administration of hUC-MSC-exosomes demonstrated protective 
effects against weight loss, without eliciting adverse effects on liver or 
renal functions (307, 308). Furthermore, the versatility of hUC-MSC-
exosomes was highlighted through diverse evaluations, encompassing 
assessments for hemolysis, activation of vascular and muscular 
systems, systemic anaphylaxis, pyrogenicity, and hematological 
markers (309). In another phase I  clinical trial, four individuals 
exhibited a response to therapy 6 months after the initiation of 
treatment. Three out of the patients who underwent exosome 
injections achieved full recovery, while one patient reported no 
improvement and had active discharge from the fistula site. 
Furthermore, all five patients (100%) reported no occurrence of local 
or systemic side effects (310). In a similar vein, a team of scientists has 
developed a comprehensive systemic quality control system and 

robust testing methods to ensure the safety and efficacy of hUC-MSCs, 
based on a minimal set of requirements for MSC-based products. The 
validity of this system for quality control and assessment of 
hUC-MSCs as a cell-based product has been verified, as none of the 
qualified hUC-MSCs demonstrated any serious adverse reactions 
during the 1-year follow-up period, even after testing for multiple 
indications (311). However, to ascertain the safety and effectiveness of 
hUC-MSC-EVs in treating IBD and related illnesses, larger, 
multicenter clinical trials are necessary. Furthermore, long-term 
follow-up research is required to assess the durability of treatment 
response and the presence of any potential side effects.

6.1 Regulatory and manufacturing 
considerations

Given the variation of MSC-based therapies across countries and 
regions, adherence to regulations is crucial. The development of 
hUC-MSC-EVs as a therapeutic option for IBD and related disorders 
necessitates meticulous consideration of regulatory and manufacturing 
aspects. Considering the scalability and cost-effectiveness of 
production procedures is imperative to enable the widespread clinical 
utilization of hUC-MSCs. To successfully integrate EV-based therapies 
into clinical practice, it is crucial to address multiple challenges 
associated with scalability, standardization, and characterization of EV 
products. Establishing standardized manufacturing processes is 
essential to guarantee the reproducibility, safety, and quality of the 
ultimate therapeutic product (312, 313). Current efforts focus on 
developing strategies, such as the utilization of bioreactors and 
microfluidic systems, for the large-scale production of EVs (314, 315). 
To effectively integrate the use of hUC-MSC-EVs into clinical 
applications, adherence to regulatory and manufacturing factors 
is imperative.

The European Medicines Agency (EMA) has issued guidelines 
regarding the utilization of MSCs in clinical studies (316). To comply 
with regulatory standards, it is necessary to ensure adherence to Good 
Manufacturing Practices (GMP) during the production of MSC-based 
products. In accordance with regulatory requirements, it is mandatory 
to submit a Clinical Trial Application (CTA) prior to the initiation of 
any clinical trials.

Similarly, In the United States, the Food and Drug Administration 
(FDA) has established recommendations for the utilization of MSCs 
in clinical trials. Based on the stipulations outlined in these rules, 
MSCs are categorized as biological entities and, as a result, are subject 
to regulatory oversight by the Food and Drug Administration (FDA). 
In accordance with the established protocols, it is necessary to 
complete and submit an Investigational New Drug (IND) application 
prior to initiating clinical trials (317). Additionally, for the production 
of MSC-based products, strict adherence to Good Manufacturing 
Practices (GMP) is mandatory.

7 Conclusion

Various characteristics of hUC-MSCs, including their anti-
inflammatory, immunomodulatory, and regenerative properties, have 
been extensively investigated both in-vivo and in-vitro. These findings 
suggest that hUC-MSCs hold promise for mitigating inflammation 
and promoting the healing of damaged tissues in individuals affected 

https://doi.org/10.3389/fmed.2024.1406547
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Din et al. 10.3389/fmed.2024.1406547

Frontiers in Medicine 19 frontiersin.org

by IBD and related conditions. Consequently, hUC-MSCs may serve 
as a potential therapeutic intervention in the treatment of IBD and its 
associated ailments. The development of standardized protocols for 
the isolation and purification of EVs will be essential to ensure their 
quality, safety, and efficacy in clinical applications. Further research is 
needed to optimize the isolation, characterization, and administration 
of hUC-MSC-EVs. Furthermore, further studies are required to 
elucidate the molecular mechanisms and signaling pathways that 
underlie the therapeutic effects of hUC-MSC-EVs. This will enhance 
our comprehension of their mode of action and guide the development 
of more precise therapies. To fully realize the potential of this 
innovative therapy, it will be crucial to address the regulatory and 
manufacturing challenges as clinical trials progress. Ensuring the 
safety and effectiveness of hUC-MSC-EVs in human patients will 
be crucial, and carefully planned clinical trials will be essential in 
determining the therapeutic usefulness of these vesicles. Furthermore, 
the development of scalable manufacturing processes that can produce 
large quantities of high-quality hUC-MSC-EVs will be essential for 
meeting the demands of clinical use. There are also several challenges 
associated with the administration of hUC-MSC-EVs, such as 
determining the optimal dosage, route of administration, and 
frequency of treatment. Future studies should explore these 
parameters in order to maximize the therapeutic potential of 
hUC-MSC-EVs and minimize potential side effects. In addition, the 
development of biomarkers for patient stratification and monitoring 
treatment response could help to personalize and optimize hUC-MSC-
EV-based therapies for individual patients.

In conclusion, hUC-MSC-EVs represent a promising and novel 
therapeutic approach for IBD and other related disorders. The growing 
body of preclinical evidence supporting their therapeutic potential, 
coupled with advancements in our understanding of their biogenesis, 
molecular mechanisms, and clinical translation, offers hope for more 
effective and targeted treatments for patients suffering from these 
debilitating conditions. By addressing the current challenges and 
building upon the existing knowledge, researchers and clinicians can 
work together to harness the full potential of hUC-MSC-EVs and 
bring this innovative therapy to the forefront of IBD treatment.
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