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Purpose: This study compares phantom-based variability of extracted radiomics 
features from scans on a photon counting CT (PCCT) and an experimental 
animal PET/CT-scanner (Albira II) to investigate the potential of radiomics 
for translation from animal models to human scans. While oncological basic 
research in animal PET/CT has allowed an intrinsic comparison between PET 
and CT, but no 1:1 translation to a human CT scanner due to resolution and 
noise limitations, Radiomics as a statistical and thus scale-independent method 
can potentially close the critical gap.

Methods: Two phantoms were scanned on a PCCT and animal PET/CT-scanner 
with different scan parameters and then the radiomics parameters were extracted. 
A Principal Component Analysis (PCA) was conducted. To overcome the limitation 
of a small dataset, a data augmentation technique was applied. A Ridge Classifier 
was trained and a Feature Importance- and Cluster analysis was performed.

Results: PCA and Cluster Analysis shows a clear differentiation between 
phantom types while emphasizing the comparability of both scanners. The 
Ridge Classifier exhibited a strong training performance with 93% accuracy, but 
faced challenges in generalization with a test accuracy of 62%.

Conclusion: These results show that radiomics has great potential as a 
translational tool between animal models and human routine diagnostics, 
especially using the novel photon counting technique. This is another crucial 
step towards integration of radiomics analysis into clinical practice.
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Highlights

 • Radiomics bridges animal and human scans.
 • Photon counting CT enhances translational potential.
 • Radiomics aids clinical diagnostic integration.
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Introduction

A significant portion of CT imaging is conducted on patients with 
oncological conditions. These patients undergo regular follow-up 
examinations to monitor the status of their cancer and make any 
necessary adjustments to their oncological treatment regimen (1, 2). 
However, CT imaging has limitations in differentiating between tissue 
types, particularly in oncological imaging.

Positron Emission Tomography combined with Computed 
Tomography (PET/CT) has emerged as a powerful and integral tool in 
oncological imaging. This hybrid imaging modality seamlessly integrates 
functional and anatomical information, offering clinicians unparalleled 
insights into the metabolic activity, receptor status, tissue function and 
precise localization of tumors within the body (3, 4). Despite its numerous 
advantages, PET/CT imaging is not without limitations. One notable 
constraint lies in its relatively high cost, limiting widespread accessibility. 
Additionally, the spatial resolution of PET/CT may be suboptimal for 
detecting small lesions, necessitating complementary imaging techniques 
for a more comprehensive evaluation in certain cases (5, 6).

Due to these limitations, regular CT imaging continues to be the 
imaging modality of choice when it comes to monitoring the progress 
of oncological diseases, even if the functional information of nuclear 
medicine imaging, which can provide further information on tumors 
and their activity, is missing. At least about the assessment of the 
textural properties of various tumors, there are approaches in CT 
imaging to generate more information, for example by extracting 
radiomics parameters.

Radiomics has emerged as a promising approach to improve 
lesion classification in oncological imaging (7–9). It involves the high-
throughput extraction of quantitative features from medical images 
that can provide valuable information about the textural properties of 
a region of interest and possible tumoral heterogeneity, which 
potentially has a big impact on personalized oncological treatment 
(10–12). However, concerns about comparability and radiomics 
feature stability hamper the translation of results from preclinical 
scanners to clinical scanners (13–15).

The emergence of photon counting CT (PCCT), a new imaging 
technique that directly measures photons without a traditional 
energy-integrating detector, has created new opportunities for 
radiomics research (16, 17). This technology enables the evaluation of 
radiomics features’ stability in CT imaging, which is crucial for 
developing robust radiomics models for clinical use (18, 19).

While in basic oncological research investigations are carried out on 
animal models in special animal PET-CT scanners and an intrinsic 
comparison between PET and CT is possible, a 1:1 translation to a human 
CT scanner is not possible due to noise and resolution limitations. 
Radiomics leverages statistical methods to extract and analyze quantitative 

features from images, making it a robust tool for medical image analysis. 
The use of normalization and standardisation processes ensures that the 
extracted features are independent of scale and other imaging parameters, 
enabling consistent and comparable results in different environments and 
therefore has, in the context of experimental animal CT scanners and 
novel human CT scanners, great potential to enable better translation.

The purpose of this study was to assess the variability of radiomics 
features of phantom scans on a research-oriented animal CT scanner 
and a clinical photon counting CT. This study aimed to investigate the 
consistency of radiomics features across different CT scanners and the 
potential of radiomics as a tool for a scale-independent translation 
between experimental and clinical scanners such as the PCCT.

Materials and methods

Data acquisition

Two fruits, a mandarin and a plum, were selected and scanned 
using the Albira II PET/SPECT/CT Imaging System (Bruker) and 
Photon Counting Computer Tomograph Naeotom Alpha (Siemens). 
These specific fruits were chosen based on two criteria: (1) their ability 
to fit within the compact gantry of the Albira II scanner and (2) their 
distinct biological structures, which would allow for the generalization 
of findings to more heterogeneous samples. Prior to scanning, both 
fruits were meticulously inspected for defects to ensure integrity. Two 
fruits of nearly identical size were chosen for the study. They were 
placed adjacent to each other on the examination couch and secured 
with adhesive tape to maintain consistent positioning. Both fruits 
were scanned with each scanner/protocol simultaneously to ensure 
maximum comparability between phantoms and modalities. The fruit 
phantoms were first scanned on the Photon Counting CT and then 
immediately afterwards on the Albira II without any time delay in 
order to avoid a possible change in the fruit over time.

The Albrira Imaging System, developed by Bruker, was employed 
for the data acquisition process. The system offers a maximum 
resolution of 2400×2400 pixels and a field of view (FOV) measuring 
70×70 mm (transaxial × axial). Two different dose and voltage settings 
were used during the measurements. The high dose/voltage 
configuration involved a current of 400 μA and a voltage of 45 kV, 
while the low dose/voltage configuration utilized a current of 200 μA 
and a voltage of 35 kV. These settings were selected to capture the 
internal structures of the fruits at different levels of detail. Table 1 
shows a comparison of the technical data of the two scanner types 
used. Several scans were carried out with different protocols: “Good” 
and “Best” mode with 35 kV and 0.2 mA and 45 kV and 0.4 mA 

TABLE 1 Scanner hardware applied for the study.

Albira II PET/CT
Siemens 
NAEOTOM Alpha

Detector Energy integrating detector Photon counting detector

In-plane resolution 50 μm 100 μm

Scanning time 20 min <1 s

Dose Up to 1,000 mSv <1 mSv

Tube voltage modes 35/45 kV 70/ … / 140 kV

Scanning modes Standard, High-Res Standard, High-Res

Abbreviations: CCC, Concordance Correlation Coefficient; CT, Computed 

Tomography; DICOM, Digital Imaging and Communications in Medicine; FBP, 

Filtered Backprojection; FO, Firstorder; FOV, Field of View; GLCM, gray level 

co-occurrence matrix; GLDM, gray level dependence matrix; GLRLM, gray level 

run length matrix; GLSZM, gray level size zone matrix; IBSI, Image biomarker 

standardisation initiative; NGTDM, neighboring gray tone difference matrix; Nifti, 

Neuroimaging Informatics Technology Initiative; PCCT, Photon Counting 

Computed Tomography; PET, Positron Emission Tomography; SH, Shape-based; 

SPECT, Single Photon Emission Computed Tomography.
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respectively, as well as a “High Resolution” mode with 35 kV and 45 kV, 
respectively, (the protocols are predefined as such by the manufacturer 
Bruker; the exact scan parameters can be found in Table 2).

The acquired imaging data were converted into the Digital 
Imaging and Communications in Medicine-format (DICOM) using 
the PMOD software. PMOD [Version 4.4, PMOD Technologies LLC, 
Zurich, Switzerland (20)] is a tool from Bruker with a variety of 
functions for image post processing, image analysis and quantification. 
The functions include multimodal image analysis, quantitative 
assessment, region-of-interest (ROI) analysis, dynamic image 
evaluation, image processing and enhancement, data management 
and export, as well as a user-friendly interface. DICOM conversion 
facilitated standardized storage, transmission, and analysis of the 
imaging data. The reconstructed images were generated using the 
filtered backprojection (FBP) algorithm. FBP is a widely used 
technique for reconstructing images from X-ray projection data. It 
calculates the attenuation of X-rays passing through the object and 
generates a two-dimensional representation of the internal structures. 
The FBP algorithm was applied to the acquired data to reconstruct the 
images of the Plum and Mandarin samples.

On the PCCT, a standard Abdomen protocol was used. The 
in-plane resolution of the scanner is 1 mm with a tube voltage of 
120 kV with an effective tube current of 7mAs. The acquired images 
were exported as DICOM-Files.

Radiomics feature extraction

The following workflow was used for the extraction of radiomics 
features from the CT images. Semi-automatic segmentation of the 
phantoms was performed using MITK Workbench (v2022.10, 
German Cancer Research Centre, Heidelberg, Germany). The 
segmentation process was performed by a radiological resident with 
more than 4 years of experience. The segmented images were exported 
in a compressed Neuroimaging Informatics Technology Initiative 
format (nifti). The images were then loaded into a Docker container 
that was created based on PyRadiomics (Version 3.0.1), an open-
source software library for radiomics feature extraction (21).

A total of 1,022 radiomics features were extracted. The feature 
extraction process was performed using default settings for 
PyRadiomics and complies with the Image biomarker standardisation 
initiative (IBSI) (22). The feature extraction included gray-level 
discretization with a fixed bin width with 32 bins, image resampling to 
a voxel size of 1 mm3, and a mask dilation radius of 1 voxel. The 
extracted radiomic features include those from the following feature 
families: first-order statistics (FO), shape-based (SH), gray level 
co-occurrence matrix (GLCM), gray level run length matrix (GLRLM), 
gray level size zone matrix (GLSZM), neighboring gray tone difference 
matrix (NGTDM), and gray level dependence matrix (GLDM). 

Re-segmentation was not applied in this study. The segmentation 
masks used for feature extraction were directly applied without any 
further modification or re-segmentation to ensure that the features 
were extracted from the original segmented regions of interest.

Principal component analysis

Principal Component Analysis (PCA) is used to reduce the 
dimensions of extracted radiomics features. The 1,022 features are 
reduced to 2 components and gradually increased to 5 components until 
100% variance is explained to understand the data. Sklearn package in 
python is used to apply the PCA method on the data. PCA analysis 
proved to show the difference between the mean of two phantoms. 
Figure 1 shows the pair plot of each phantom for all components. The plot 
clearly shows the difference of mean between the density of each phantom.

Data synthesis

To address the constraint of a limited dataset, a data augmentation 
technique was implemented. The process involved synthesizing 
additional data points by using statistical properties, specifically mean 
and standard deviation, from two distinct classes (plums and 
mandarins). This resulted in the expansion of the dataset to 500 rows 
per class. The aim of this data synthesis was to provide a more 
extensive training set, enabling the model to capture a broader 
spectrum of patterns and variations present in the data.

Ridge classifier

For the binary classification task, a Ridge Classifier was chosen for 
its suitability in handling such tasks (23). The model underwent 
training using the augmented dataset. This involved optimizing 
parameters and coefficients to establish a decision boundary between 
the two classes. Notably, the model demonstrated adaptability to the 
augmented dataset during the training process.

Clustering analysis

Simultaneously, agglomerative clustering was applied to the original 
dataset. This unsupervised learning technique grouped data points 
based on their intrinsic similarities, forming hierarchical clusters. 
Notably, the clustering analysis aimed to reveal underlying patterns 
within the data. The results were particularly insightful in identifying 
distinct clusters associated with the specific CT scanner used during data 
collection, indicating the impact of scanner variability on the dataset.

Results

Phantom scans

The plums and mandarins were scanned several times in the animal 
PET/CT scanner with different scan settings as described above. These 
different scan protocols were chosen to obtain images with varying 

TABLE 2 Scan parameter of the Albira II scan protocols “Good,” “Best,” 
and “HR.”

Settings Projections Total exposure 
time

Voxel 
size

Good 400 5 250 μm

Best 600 8 125 μm

High resolution 1,000 10 35 μm
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levels of clarity and detail. PCCT Scans were performed with the scan 
parameters listed above. Scan duration was approximately 10 s. Dose 
used for the phantom scan was 17,3mGycm (DLP). Figure 2A shows a 
comparison of the scanned phantoms in the coronal slice plane 
depending on the different scan parameters. Figure 2B shows them 
zoomed in for a better comparison of the textural resolution. In 
particular, the images of the small animal PET/CT scanner with the 
settings 45 kV 0.4 mA in “Best” mode and 45 kV in “HR” mode show an 
extremely high resolution with regard to the fine textural properties of 
the phantoms in the area of the central core. The scans of the PCCT 
show a comparable resolution to the 35 kV scans of the animal scanner 
and better resolution than the 35 kV “HR” mode, but with a significantly 
shorter scan time and considerably lower radiation dose.

Phantom detection

In-depth comprehension of the dataset is attained through 
Principal Component Analysis (PCA). Five components capture 99% 

of the explainable variance. The density plot of the two classes in 
Figure  1 distinctly illustrates a disparity in means across all 
components. To support this observation, a T-test yields a test statistic 
of 0.027, providing statistical evidence of the significant mean 
difference between the two classes.

The Ridge Classifier, after hyperparameter tuning with the solver set 
to “lsqr” and a tolerance (tol) of 0.3, exhibited strong performance 
during training, achieving an accuracy of 93%. However, the model’s test 
accuracy was lower at 62%, indicating some challenges in generalizing 
to unseen data. Notably, the model demonstrated the ability to 
differentiate between the two classes with an F1 score of 0.6 on the test 
data, highlighting its effectiveness in capturing both precision and recall.

In addition to the classification results, a plot illustrating the 
feature importance of the Ridge Classifier provides valuable insights 
into the variables contributing significantly to the model’s decision-
making process. This feature importance plot aids in the interpretation 
of the model’s decision boundaries and identifies key factors 
influencing its predictions.

FIGURE 1

Pairplot between principal components. The plot shows the difference in densities of the phantoms.
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Figure 3 shows the top 20 important radiomics features, listing 
wavelet- original_firstorder_RootMeanSquared as the most important 
one regarding the differentiation of plum and mandarin.

CT scanner effectiveness

Simultaneously, the original data underwent agglomerative 
clustering, and a dendrogram plot was generated (Figure  4). The 

choice of a cutoff at 55 resulted in the formation of 4 distinct clusters. 
This clustering analysis revealed inherent patterns within the dataset, 
providing a comprehensive understanding of the underlying structure 
and relationships among data points. Figure 4 shows the dendrogram 
of the agglomerative clustering where the algorithm was able to cluster 
the data of PCCT scanner into one group, standard scanner with 
45 keV into one group and 35 keV into another group. This clearly 
shows the difference in the quality of radiomics features extracted 
from these scanners.

FIGURE 2

Coronal view of the scanned phantoms (mandarin and plum) with different CT scanners and scan protocols (A) and zoomed in images (B).
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The integration of both classification and clustering approaches 
enhances the interpretability of the results. The clusters identified 
through agglomerative clustering align with certain characteristics, 
potentially uncovering latent subgroups within the dataset indicating 
the type of scanner used. This multi-faceted analysis contributes to a 
more nuanced interpretation of the dataset, offering both classification 
accuracy metrics and clustering insights for a comprehensive 
understanding of the data’s complexity.

Discussion

The presented study compared phantom scans (plums and 
mandarins) obtained from an experimental small animal PET/CT 
scanner and a Photon Counting CT scanner. The analysis involved 
varying scan settings to achieve different quality levels, and the 
resulting radiomics features were assessed using a Ridge Classifier. 
Additionally, agglomerative clustering was employed to explore 
inherent patterns within the dataset.

The results indicate that the experimental animal PET/CT 
scanner, particularly in “Best” and “High Resolution” modes, 
exhibited exceptional textural resolution. Taking into account the 
much faster scanning time and the significantly better dosing 
efficiency, excellent image resolution was also achieved with the 
scans on the Photon Counting CT. The Ridge Classifier, despite 
achieving a high training accuracy, faced challenges in generalization. 
The integration of classification and clustering approaches revealed 
distinct clusters corresponding to different CT scanners, highlighting 
the variability in radiomics features among these modalities.

Scale-independent and scale-dependent methods serve crucial 
roles in oncological imaging research and clinical practice, each 

offering distinct advantages and disadvantages that shape their impact 
on the broader landscape of this field. Scale-independent methods, 
exemplified by radiomics, excel in enhancing the transferability of 

FIGURE 3

Histogram of important radiomics features for differentiation between phantom type calculated using Ridge regression.

FIGURE 4

Dendrogram of dissimilarities between each cluster. The red line indicates 
the threshold of the dissimilarity to achieve the best number of clusters.
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research findings across different imaging modalities. By extracting 
quantitative features from medical images that are agnostic to the 
specific imaging device used, these methods facilitate the integration 
of data from diverse sources, promoting consistency and comparability 
in data interpretation. Moreover, scale-independent approaches 
expedite the translation of research insights into clinical practice by 
providing standardized frameworks for data analysis. However, they 
may overlook modality-specific nuances, potentially compromising 
the accuracy and reliability of clinical assessments. In contrast, scale-
dependent methods are tailored to specific imaging modalities, 
optimizing performance within modality-specific contexts. They 
capitalize on the unique characteristics of individual imaging devices, 
maximizing sensitivity to scanner-specific features that may hold 
diagnostic or prognostic significance. Yet, their reliance on specific 
modalities limits their transferability across different types of imaging 
devices and makes them vulnerable to variability introduced by 
differences in imaging protocols and hardware configurations (24, 25).

In the broader context of radiomics, our findings underscore the 
potential of radiomics as a scale-independent translation tool between 
experimental and clinical CT scanners. The ability to differentiate 
scanners based on radiomics features aligns with previous studies 
emphasizing the modality-specific characteristics captured by 
radiomics (26). The challenges in generalization observed in our Ridge 
Classifier echo concerns raised in literature regarding the robustness 
of radiomic features across diverse datasets. This is a well-known 
problem, which is one of the main reasons why radiomics analyses 
have not yet found widespread use in clinical routine. In a previous 
study by Hertel et al., the test–retest stability of radiomics features was 
already examined in a phantom study using scans of the PCCT – the 
concordance correlation coefficient (CCC) of 0.9 demonstrated here 
indicates excellent test–retest stability (18).

There are several studies in the literature that have addressed the 
problem of the variability of radiomics parameters (27–29). Mackin 
et al. investigated the significance of inter-scanner variability of CT 
image-based radiomics studies (27). The features of tumors from 
NSCLC patients were compared with special phantoms consisting of 
different materials. In some cases, a large variability of the extracted 
parameters was found in the phantoms (depending on the respective 
materials), comparable to the variability that exists between the 
individual tumors of the different parameters.

Soliman et  al. developed a model for the harmonization of 
radiomics parameters obtained from scans performed on different CT 
scanners (28). This allowed a reduction of scanner-associated 
variability of the data while preserving the cancer-specific functional 
dependence of the extracted features. Campello et al. investigated the 
radiomics variability of cardiovascular MRI datasets in a multi-centre 
study using a feature-based normalization technique (29). Feature 
distributions were initially compared across centers to derive a 
distribution similarity index. Two classification tasks were then 
conducted, showing that normalization of the radiomics parameters 
can effectively reduce variability with only a slight degradation in 
classification performance. Aside, piecewise linear histogram 
matching normalization produced features with improved 
generalization ability for classification.

However, an investigation of radiomics variability between the 
novel photon counting CT technique and experimental animal PET/
CT scanners, which can achieve excellent spatial resolution with high 
radiation dose, has not yet been performed. This study is highly 

relevant with regard to clinical aspects and routine examinations of 
patients due to the translational aspects of animal models.

Despite the insightful findings, this study has certain limitations. 
The use of phantom scans may not fully replicate the complexity of in 
vivo conditions, and the generalization challenges encountered by the 
Ridge Classifier highlight the need for robust model training on 
diverse datasets. Additionally, the study focused on a specific set of 
radiomics features, and future work should explore a broader 
spectrum of features to enhance the robustness of the findings. In 
addition, the data set used was borderline small in terms of sufficient 
training of the classifier used. Furthermore, the radiomics stability is 
an issue because of the high multicollinearity between the 
corresponding features extracted (30). A linear model would easily 
run into the problem where the coefficients of the model become less 
significant and the model poorly performs with the test data. Reducing 
the dimensions by eliminating less important features could be one 
way to deal with the problem. LASSO exactly does this by shrinking 
the near zero coefficients to zero. However, LASSO does not consider 
features that are weakly correlated (31). Ridge regression on the other 
hand addresses this problem by not forcing the near zero coefficients 
to zero but penalizes the loss function by adding quadratic terms of 
coefficient values. This greatly reduces the impact of multicollinearity 
and thus stabilizes the coefficients (32).

The observed differences in radiomics features among scanners 
have important clinical implications. The identification of latent 
subgroups within the dataset based on scanner type suggests that 
these features could potentially influence diagnostic accuracy and 
treatment planning. Understanding the modality-specific 
characteristics revealed by radiomics may guide clinicians in selecting 
the most appropriate imaging modality for specific clinical scenarios, 
thereby improving patient outcomes. The results of examinations on 
animals using specialized scanners can be better understood and the 
information obtained can be  translated more concretely to the 
diagnosis and treatment of humans.

In summary, our study contributes to the understanding of 
radiomics as a valuable tool for bridging the gap between experimental 
and clinical CT imaging. Our study shows that radiomics can be used 
as a statistical and thus scale-independent tool to enable a sufficient 
translation between animal CT scanners and human scanners (in this 
case the novel PCCT). Future directions should involve expanding the 
dataset to enhance model generalization, exploring additional 
radiomics features, and validating findings in clinical cohorts. A 
notable consideration in radiomics research is the high correlation 
and potential confounding effects among many radiomic features, as 
highlighted by Traverso et al. (33). They demonstrated that first-order 
features, such as entropy, tend to exhibit higher reproducibility 
compared to shape and texture metrics, which often show significant 
variability. This underscores the importance of carefully selecting and 
validating radiomic features to ensure robust and generalizable results. 
Our study, while focusing on a specific subset of features, 
acknowledges these findings and suggests that future work should not 
only expand the spectrum of investigated features but also incorporate 
rigorous methods to assess and mitigate feature redundancy and 
confounding effects, enhancing the reliability of radiomic analyses 
across different imaging modalities. As radiomics continues to evolve, 
its role as a scale-independent translation tool holds promise for 
improving the integration of experimental imaging technologies into 
clinical practice, ultimately advancing personalized medicine.
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