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Introduction: Acute kidney injury (AKI) is a prevalent complication in older 
people, elevating the risks of acute kidney disease (AKD) and mortality. AKD 
reflects the adverse events developing after AKI. We  aimed to develop and 
validate machine learning models for predicting the occurrence of AKD, AKI and 
mortality in older patients.

Methods: We retrospectively reviewed the medical records of older patients 
(aged 65  years and above). To explore the trajectory of kidney dysfunction, 
patients were categorized into four groups: no kidney disease, AKI recovery, 
AKD without AKI, or AKD with AKI. We developed eight machine learning models 
to predict AKD, AKI, and mortality. The best-performing model was identified 
based on the area under the receiver operating characteristic curve (AUC) and 
interpreted using the Shapley additive explanations (SHAP) method.

Results: A total of 22,005 patients were finally included in our study. Among 
them, 4,434 patients (20.15%) developed AKD, 4,000 (18.18%) occurred AKI, 
and 866 (3.94%) patients deceased. Light gradient boosting machine (LGBM) 
outperformed in predicting AKD, AKI, and mortality, and the final lite models with 
15 features had AUC values of 0.760, 0.767, and 0.927, respectively. The SHAP 
method revealed that AKI stage, albumin, lactate dehydrogenase, aspirin and 
coronary heart disease were the top 5 predictors of AKD. An online prediction 
website for AKD and mortality was developed based on the final models.

Discussion: The LGBM models provide a valuable tool for early prediction of 
AKD, AKI, and mortality in older patients, facilitating timely interventions. This 
study highlights the potential of machine learning in improving older adult 
care, with the developed online tool offering practical utility for healthcare 
professionals. Further research should aim at external validation and integration 
of these models into clinical practice.
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1 Introduction

Acute kidney injury (AKI), a complex public health concern, 
prevalent in about 12% of patients (1–3) and often accompanied 
by multiple organ failure especially in older people, which leads 
to up to 1.7 million annual deaths (4–8). Studies reported that 
older AKI survivors face a considerable risk of progressing to 
chronic kidney disease (CKD) (9). The poor prognosis of older 
patients with kidney disease poses significant challenges to the 
healthcare system and result in a substantial economic burden on 
families due to multi-system damage or long-term 
hemodialysis treatment.

Current evidence indicates that AKI can progress to an 
intermediate stage called acute kidney disease (AKD), defined by 
the 16th Acute Disease Quality Initiative (ADQI) meeting as acute 
or subacute damage and/or loss of kidney function for 7–90 days 
after an AKI-initiating event (9). Distinguishing between AKD and 
AKI in clinical practice is crucial, as the management strategies and 
prognostic implications for these conditions differ. While AKI 
represents a sudden decline in kidney function, AKD encompasses 
a broader timeframe and includes patients who do not fully recover 
from an episode of AKI, presenting a poorer prognosis in older 
patients, with a study showing a 31.8% in-hospital mortality rate for 
older patients in the validation cohorts (10). Explaining this clinical 
distinction is vital for understanding the progression of kidney 
diseases and the necessity for targeted prediction models. As a 
transitional period, AKD may serve as a turning point for improving 
patients’ renal function and presents significant potential for 
clinical research. Developing accurate prediction models for AKD 
has substantial clinical implications. These models can facilitate 
early identification of at-risk patients, enabling timely interventions 
that may prevent further kidney damage and improve patient 
outcomes. However, current studies mainly focus on AKI, with 
insufficient exploration of AKD’s impacts and trajectories in the 
older adult, underscoring the importance of targeted 
research on AKD.

Recently, several studies have demonstrated that the superior 
predictive capabilities of machine learning (ML) models over 
traditional statistical methods in predicting AKI. For instance, in 
pediatric critical care, the prediction of Stage 2/3 AKI by a ML model 
showed an AUROC of 0.89 (11). The random forest (RF) model for 
predicting AKI in patients undergoing cardiac surgery achieved an 
AUC of 0.839 (12). Despite ML’s complexity, the SHapley Additive 
exPlanation (SHAP) method has been developed to make these models 
more interpretable (13, 14). Nevertheless, the application of ML and 
SHAP methods for the prediction of AKD in older patients 
remains limited.

Hence, the primary aim of this study was to investigate the 
incidence rates of AKD, AKI, and mortality among older patients, 
addressing a gap in the epidemiology of kidney injury trajectories in 
the older adult. Secondly, we aimed to pioneer the development of 
predictive ML models for AKD, AKI, and mortality. Furthermore, 
we  integrated the SHAP approach to bolster the interpretability of 
prediction models. Finally, we  have also developed an innovative 
online risk calculator rooted in ML algorithms. These may provide a 
critical window for early targeted interventions to improve the 
prognosis of the older adult, thereby alleviating pressure on 
healthcare systems.

2 Materials and methods

2.1 Data collection

We retrospectively reviewed the medical records of 40,325 patients 
aged ≥65 years between October 2012 and October 2019. Patients were 
excluded if they met one of the following criteria: continuous dialysis, 
renal transplantation before AKD diagnosis, less than two serum 
creatinine (Scr) tests during hospitalization or missing inpatient data and 
the duration of hospitalization <48 h. We collected data on demographic 
characteristics, comorbidities, laboratory parameters, and medications 
from the hospital information system. Comorbidities mentioned in this 
study were all defined according to the International Classification of 
Disease (ICD) 10th Revision. The study was approved by the Institutional 
Review Board (IRB; QYFY WZLL 28250), ensuring patient confidentiality 
through anonymized data collection and adherence to privacy protocols.

2.2 Definition

The primary outcome was the occurrence of AKD, with secondary 
outcomes including AKI and mortality. AKI was diagnosed based on 
Kidney Disease: Improving Global Outcomes (KDIGO) 2012 as 
follows: Scr level > 26.5 mmol/L (0.3 mg/dL) within 48 h; an increase 
in Scr to more than 1.5-fold the baseline-confirmed value or an 
increase presumed to have occurred within 7 days; or urine output 
<0.5 mL/kg/h for more than 6 h (15). AKD was defined following the 
2017 ADQI as acute or subacute damage and/or loss of kidney 
function for a duration of between 7 and 90 days after exposure to an 
AKI initiating event (9). Diagnosis and staging of AKI and AKD were 
determined at the first fulfillment of these criteria.

Based on the diagnostic criteria of AKI and AKD, patients were 
classified into the following four groups. AKI Recovery: This group 
included patients whose Scr levels returned to baseline within 7 days, 
indicating a renal impairment duration of less than 7 days or a rapid 
recovery within that timeframe. AKD without AKI: This group 
comprised patients whose Scr levels increased gradually but remained 
elevated for more than 7 days, indicating subacute AKD without meeting 
the AKI criteria. AKD with AKI: Patients in this category experienced 
stage ≥1 AKI that persisted for at least 7 days after the initial AKI event, 
indicating a continuous progression from AKI to AKD. No Kidney 
Disease (NKD): Patients falling into this category had an eGFR of 60 mL/
min/1.73 m2 or higher, no detectable albuminuria, and did not meet the 
criteria for either AKI or AKD. To thoroughly assess the influence of 
evolving kidney injury patterns on mortality among older patients, 
we integrated AKI and AKD into a unified metric termed ‘dynamic’ 
during the mortality model’s construction. The ‘dynamic’ variable adopts 
values 0, 1, 2 and 3 corresponding to NKD, AKI recovery, AKD without 
AKI, and AKD with AKI, respectively. Baseline Scr was defined as the 
first Scr value measured during hospitalization. The baseline estimated 
glomerular filtration rate (eGFR) was calculated using the Chronic 
Kidney Disease Epidemiology Collaboration formula (16).

2.3 Model development

We engineered predictive models for AKD, AKI, and mortality, 
respectively. Scikit-learn (https://github.com/scikit-learn/scikitlearn) 
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package was used to build models including logistic regression (LR), 
support vector machine (SVM), random forest (RF), naïve byes (NB), 
k-nearest neighbor (KNN), multi-layer perceptron (MLP), gradient 
boosting machine (GBM) and light gradient boosting machine (LGBM). 
The data were divided, with 80% utilized for training and 20% for testing. 
Grid search method with ten-fold cross validation was used in the 
training set to prevent overfitting and to identify the optimal 
hyperparameters for each model. To address the disparity in the 
distribution of positive and negative samples, we implemented a strategy 
of class weight adjustment during the training phase of the ML model (17).

2.4 Model interpretation and evaluation

SHAP method was designed to address the “black-box” issue in 
prediction models by providing a means to rank the importance of 
input features and explain model results (14, 18). This approach offers 
both global and local explanations, enhancing our understanding of 
the model’s decision-making process. Globally, it provides consistent 
attribution values for each feature, revealing associations. Locally, it 
explains specific predictions for individual cases, enhancing 
interpretability. In our pursuit of feature optimization, we also utilized 
the SHAP method for feature selection in the optimal model. SHAP 
value-assisted feature selection was utilized to identify the top 20, 15, 
10, and 5 features for model construction. This approach was to find 
the best balance between accuracy and complexity, leading to a final 
lite model. SHAP method was implemented using Python shap 
package (https://shap.readthedocs.io/en/latest/).

The performance of our predictive models was evaluated on the 
test set, focusing on their discriminative ability and clinical utility. 
Discrimination was quantitatively assessed using a suite of 
performance metrics, including area under curve (AUC) of the 
receiver operating characteristic (ROC) curve (19), sensitivity, 
specificity, recall, accuracy, F1 score, Brier score and Matthews 
correlation coefficient (MCC). The model demonstrating the highest 
AUC was designated as the optimal one. For clinical applicability, 
decision curve analysis (DCA) was employed, which calculated the 
net benefit of the final model by contrasting the predicted benefits 
against the expected risks associated with the outcomes (20). 
Furthermore, the performance of the final model was showed through 
precision-recall (PR) curves, Kolmogorov–Smirnov (KS) plots, and 
confusion matrix.

2.5 Online prediction website

We created an online web-based risk calculator utilizing the 
Streamlit Python framework, employing the model with the optimal 
number of features. Upon the values of corresponding features are 
provided, the website can return the probability of AKD and mortality, 
respectively. This tool showed the practical application of our research 
in a clinical setting.

2.6 Sensitivity analysis

A sensitivity analysis was performed to thoroughly examine the 
predictive efficacy of the models, focusing specifically on stages 2–3 of 

AKD. Additionally, the models’ performance underwent a thorough 
assessment across various subgroups, with a particular emphasis on 
patients stratified by age brackets: 65–74 years, 75–84 years, and those 
aged over 85 years.

2.7 Statistical analysis

Variables with over 15% missing values were excluded, while 
those with less than 15% missing data were imputed using the 
Multivariate Imputation by Chained Equations (MICE) algorithm 
(21). Continuous variables were shown as mean with standard 
deviation, or median with interquartile range and compared by the 
Independent-sample T test or Wilcoxon rank-sum test. Categorial 
variables were expressed in quantities and percentages and compared 
by the Chi-square tests. All analyses were carried out with Python 
version 3.10.11, R version 4.3.1, and SPSS version 25.0. A 2-tailed p 
value of <0.05 was considered statistically significant.

3 Results

3.1 Patient characteristics

In total, this study enrolled 22,005 patients (Supplementary Figure S1), 
in which 4,434 patients (20.15%) developed AKD, and 4,000 (18.18%) 
occurred AKI. Specifically, 2,237 patients (10.17%) had AKD with AKI, 
2,671 (12.14%) had AKD without AKI, and 1,763 (8.01%) had AKI 
recovery. On top of that, there were 866 (3.94%) patients deceased. In the 
AKD group, 3,553 patients (16.15%) were at stage 1, 663 (3.01%) at stage 
2, and 218 (0.99%) at stage 3. These findings suggested that the high 
occurrence of AKI and AKD among older patients.

The differences in characteristics between kidney injury group 
and NKD group are partially shown in Table  1, with a detailed 
comparison of all characteristics provided in Supplementary Table S1. 
In brief, compared to the NKD group, patients with acute/subacute 
kidney dysfunction were older on average (75.00 ± 13.00 vs. 
73.00 ± 12.00, p < 0.05) with more risk factors like smoking, alcohol 
use, diabetes and other conditions. The baseline lab tests including 
eGFR, blood urea nitrogen (BUN), cystatin C (Cys), blood glucose, 
lipid profiles, uric acid (UA) and others were also worst in kidney 
dysfunction group (p < 0.05). Furthermore, the data indicated that 
patients with renal impairment endured longer hospital stays 
(18.00 ± 14.00 vs. 17.00 ± 9.00 days, p < 0.05) and encountered higher 
hospital mortality rates (9.6% vs. 1.5%, p < 0.05) in comparison to the 
NKD group. This signified that older patients with kidney dysfunction 
were susceptible to a worsening prognosis.

3.2 Feature selection and model 
performance

Eight ML models were developed to predict AKD occurrence in 
older patients, by utilizing all available features, with the ROC curves 
illustrated in Figure  1A. The LGBM model emerged as the most 
efficacious in predicting AKD, achieving an AUC of 0.781. The 
performance metrics of these eight ML models in predicting AKD 
were comprehensively tabulated in Table 2. Given LGBM’s superior 
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TABLE 1 The partial baseline characteristics of the current cohort.

Variables NKD 
(n  =  15,334)

Acute/subacute renal impairment

AKI recovery 
(n  =  2,237)

AKD without 
AKI 

(n  =  2,671)

AKD with 
AKI 

(n  =  1763)

Total 
(N  =  6,671)

|t/Z/χ2| p-value

Demographics

Age (years) 73.00 (12.00) 75.00 (13.00) 76.00 (14.00) 75.00 (12.00) 75.00 (13.00) 11.731 <0.001

Male, n (%) 9,474 (61.80) 1,308 (58.50) 1,473 (55.10) 1,023 (58.00) 3,804 (57.00) 44.038 <0.001

BMI (kg/m2) 23.71 (5.06) 24.00 (45.30) 23.44 (5.19) 23.66 (5.34) 23.66 (5.22) 1.884 0.060

SBP (mmHg) 132.00 (28.00) 133.00 (30.00) 131.00 (28.00) 130.00 (29.00) 131.00 (29.00) 2.536 0.011

DBP (mmHg) 78.00 (14.00) 78.00 (17.00) 75.00 (15.00) 76.00 (18.00) 76.00 (17.00) 4.808 <0.001

Smoke, n (%) 5,738 (37.40) 741 (33.10) 856 (32.00) 574 (32.60) 2,171 (32.50) 48.009 <0.001

Drink, n (%) 4,227 (27.60) 532 (23.80) 635 (23.80) 440 (25.00) 1,607 (24.10) 28.843 <0.001

Laboratory data

Scr (umol/L) 83.00 (27.92) 82.00 (59.00) 82.00 (41.00) 83.00 (69.80) 82.00 (52.73) 1.835 0.066

eGFR (ml/

min/1.732)

70.96 (20.42) 68.36 (32.93) 68.75 (26.45) 67.77 (33.69) 68.36 (30.72) 6.322 <0.001

BUN (mmol/L) 5.78 (2.89) 6.70 (5.59) 6.14 (4.49) 6.92 (6.42) 6.52 (5.22) 19.940 <0.001

Cys (mg/L) 1.00 (0.46) 1.08 (0.87) 1.09 (0.69) 1.23 (1.13) 1.12 (0.82) 21.540 <0.001

Glucose (mmol/L) 5.53 (2.15) 6.50 (3.90) 5.92 (2.79) 6.50 (3.78) 6.24 (3.42) 22.283 <0.001

CK (U/L) 66.00 (64.48) 73.00 (93.05) 55.00 (70.00) 71.00 (108.00) 65.00 (88.40) 0.392 0.695

Hb (g/L) 122.02 (23.48) 118.94 (27.07) 112.81 (25.21) 112.75 (26.46) 114.85 (26.33) 19.161 <0.001

PLT (109/L) 225.98 (95.49) 207.07 (89.12) 217.94 (102.33) 204.51 (95.89) 210.74 (96.54) 10.793 <0.001

RBC (1012/L) 4.08 (0.71) 3.96 (0.87) 3.80 (0.80) 3.77 (0.86) 3.85 (0.84) 19.962 <0.001

WBC (109/L) 6.42 (3.17) 7.42 (5.09) 7.06 (4.18) 7.50 (5.10) 7.33 (4.73) 21.405 <0.001

ALT (U/L) 17.00 (15.00) 19.00 (23.00) 18.00 (20.00) 21.00 (32.00) 19.00 (23.50) 11.193 <0.001

GGT (U/L) 20.00 (25.00) 21.40 (36.65) 25.00 (41.00) 28.00 (63.70) 25.00 (43.00) 15.013 <0.001

TBIL (umol/L) 13.40 (9.30) 14.20 (12.68) 13.90 (12.50) 15.80 (17.07) 14.50 (13.46) 10.485 <0.001

AST (U/L) 18.00 (11.00) 20.00 (22.00) 20.00 (17.00) 23.00 (29.00) 20.50 (21.00) 18.597 <0.001

HDL (mmol/L) 1.23 (0.41) 1.15 (0.48) 1.14 (0.46) 1.08 (0.55) 1.13 (0.49) 14.933 <0.001

LDH (U/L) 163.00 (60.00) 179.00 (93.00) 181.00 (93.00) 193.00 (105.00) 183.60 (96.00) 25.053 <0.001

UA (umol/L) 291.82 (114.30) 323.06 (161.04) 293.09 (145.84) 318.84 (175.47) 309.55 (159.83) 8.192 <0.001

LDL (mmol/L) 2.61 (1.25) 2.38 (1.30) 2.35 (1.30) 2.28 (1.35) 2.34 (1.31) 16.083 <0.001

A/G (mmol/L) 1.26 (0.34) 1.22 (0.43) 1.15 (0.33) 1.17 (0.33) 1.18 (0.37) 16.356 <0.001

ALB (g/L) 35.09 (6.07) 33.19 (6.53) 32.07 (6.32) 32.07 (6.54) 32.44 (6.47) 28.366 <0.001

PT (s) 10.50 (2.20) 11.30 (3.00) 11.10 (2.50) 11.40 (3.00) 11.20 (2.80) 26.097 <0.001

FIB (g/L) 3.53 (1.09) 3.56 (1.19) 3.62 (1.20) 3.59 (1.24) 3.59 (1.21) 3.544 <0.001

TT (s) 14.50 (3.20) 14.90 (3.60) 15.00 (3.60) 15.00 (3.60) 15.00 (3.60) 11.825 <0.001

Comorbidities, n (%)

CKD 630 (4.10) 181 (8.10) 210 (7.90) 249 (14.10) 640 (9.60) 257.189 <0.001

Respiratory failure 514 (3.40) 128 (5.70) 235 (8.80) 172 (9.80) 535 (8.00) 223.101 <0.001

Diabetes 3,296 (21.50) 469 (21.00) 688 (25.80) 448 (25.40) 1,605 (24.10) 17.662 <0.001

Atrial fibrillation 221 (1.40) 69 (3.10) 134 (5.00) 103 (5.80) 306 (4.60) 196.797 <0.001

CHD 4,153 (27.10) 662 (29.60) 1,052 (39.40) 619 (35.10) 2,333 (35.00) 139.166 <0.001

Shock 87 (0.60) 77 (3.40) 48 (1.80) 140 (7.90) 265 (4.00) 342.416 <0.001

Hypertension 6,611 (43.10) 919 (41.10) 1,328 (49.70) 807 (45.80) 3,054 (45.80) 13.423 <0.001

(Continued)
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performance, we subsequently conducted a feature selection process 
specifically within the LGBM model framework. Additionally, 
Supplementary Figure S2 presented a correlation matrix heatmap, 
delineating the interrelationships between the predictive outcomes of 
the various ML models.

To identify the most significant features, we ranked the importance 
of LGBM features using the SHAP method in the training set. The 
evaluation metrics for LGBM models with different numbers of 
features were presented in Table 3. The model’s AUC increased to 0.760 
when considering the top 15 features, leading to notable improvements 
in accuracy and precision. However, expanding the feature set to 20 did 
not yield a substantial uplift in AUC, and the other performance 
metrics exhibited a tendency toward stabilization. Given that, 
we selected the top 15 critical variables as the final lite prediction model 
for AKD (Figure 2A). Performance of the final lite LGBM model for 
AKD were presented in Supplementary Figure S3. We showed a DCA 
demonstrating the model’s substantial clinical utility. Furthermore, the 
confusion matrix, KS plot, and PR curve demonstrated the model 
exhibited satisfactory classification capabilities and maintained a 
favorable balance between precision and recall.

We employed the aforementioned methodology to derive 
features and construct models for both AKI and mortality prediction, 
with detailed results included in the supplementary files. The ROC 
curves utilizing all available features were illustrated in 
Figures 1B,C. The LGBM emerged as the optimal model for both 
AKI and mortality predictions (Supplementary Tables S2, S3), with 
15 features identified as the ideal number for model performance 
(Supplementary Tables S4, S5). The refined model of AKI had an 
AUC of 0.767. In addition, it’s worth emphasizing that the final lite 
LGBM model of mortality showed impressive predictive capabilities, 
achieving an AUC of 0.927, and high recall and accuracy at 0.731 and 

0.933, respectively. The ROC curves and DCA of the final lite 
LGBM model for AKI and mortality were presented in 
Supplementary Figures S4, S5.

3.3 Model interpretations

The SHAP summary plot (Figure 2B) displayed the contributions 
of the feature to the model. The analysis revealed that the primary 
factors influencing the model’s predictions were AKI stage, albumin 
(ALB), lactate dehydrogenase (LDH), the use of aspirin, and coronary 
heart disease (CHD). SHAP dependence plots (Figure 3) facilitated 
understanding how a single feature affected the output of the prediction 
model and showed the relationship between two features at the same 
time. For instance, as the value of Cys increased, so did the SHAP value 
and AKI stage, which implied a rising risk of developing AKD and a 
positive correlation between Cys and AKI stage (Figure 3A). The SHAP 
interaction plot (Supplementary Figure S6) revealed the interactions 
between all features. Furthermore, local explanation analyzed how 
features contributing to a particular prediction for an individual. The 
force plots (Figure  4) mainly presented the major factors that 
contributed to the final model output in a certain individual. 
Furthermore, the SHAP decision plots for other four patients 
(Supplementary Figure S7) provided a clear visualization of the 
decision-making paths attributed to each feature.

The SHAP method was also used for the AKI and mortality 
models, and detailed results were in the supplementary files. 
For the AKI model, Scr was the top contributing factor, as 
expected (Supplementary Figure S8). In the mortality model, the 
‘dynamic’ variable ranked second in terms of significance 
(Supplementary Figure S9). The increasing ‘dynamic’ grade correlated 

TABLE 1 (Continued)

Variables NKD 
(n  =  15,334)

Acute/subacute renal impairment

AKI recovery 
(n  =  2,237)

AKD without 
AKI 

(n  =  2,671)

AKD with 
AKI 

(n  =  1763)

Total 
(N  =  6,671)

|t/Z/χ2| p-value

Medications, n (%)

β-receptor blocker 5,539 (36.10) 791 (35.40) 962 (36.00) 810 (45.90) 2,563 (38.40) 10.550 0.001

ACEI 1,242 (8.10) 249 (11.10) 390 (14.60) 247 (14.00) 886 (13.30) 142.887 <0.001

ARB 3,059 (19.90) 418 (18.70) 661 (24.70) 372 (21.10) 1,451 (21.80) 9.261 0.002

β-lactam 

antibiotics

5,629 (36.70) 920 (41.10) 1,276 (47.80) 978 (55.50) 3,174 (47.60) 228.844 <0.001

Cardiac glycosides 8,209 (53.50) 1,371 (61.30) 1,502 (56.20) 1,270 (72.00) 4,143 (62.10) 138.653 <0.001

Aspirin 5,461 (35.6) 929 (41.5) 1,201 (45.0) 933 (52.9) 3,063 (45.9) 202.865 <0.001

Omeprazole 6,396 (41.70) 796 (35.60) 1,254 (46.90) 868 (49.20) 2,918 (43.70) 7.850 0.005

Outcomes

Hospital mortality, 

n (%)

223 (1.50) 167 (7.50) 140 (5.20) 336 (19.10) 643 (9.60) 823.653 <0.001

LOS (days) 17.00 (9.00) 14.00 (11.00) 20.00 (12.00) 20.00 (16.00) 18.00 (14.00) 2.691 0.007

Values are presented as mean with standard deviation, or median with interquartile range unless stated otherwise. The P-value was calculated among NKD and three subtypes of acute/
subacute renal impairment. * BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; Scr: serum creatinine; eGFR: estimated glomerular filtration rate; BUN: blood 
urea nitrogen; Cys, cystatin C; CK: creatine kinase; Hb: hemoglobin; PLT: platelet; RBC: red blood cell; WBC: white blood cell; ALT: alanine aminotransferase; GGT: gamma glutamyl 
transferase; TBIL: total bilirubin; AST: aspartate aminotransferase; HDL: high-density lipoprotein; LDH: lactate dehydrogenase; UA: uric acid; LDL: low-density lipoprotein; A/G: albumin/
globulin ratio; ALB: albumin; PT: prothrombin time; FIB: fibrinogen; TT: thrombin time; CKD: chronic kidney disease; ACEI: angiotensin-converting enzyme inhibitors; ARB: angiotensin II 
receptor blockers; CCB: calcium channel blockers; CHD: coronary heart disease; LOS: length of stay.
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with rising SHAP values, suggesting a higher mortality risk, 
highlighting the significant impact of kidney injury trajectory on older 
patients’ survival rates.

3.4 Online prediction website

Based on the lite prediction models, we developed an online risk 
website to streamline external validation and assess AKD and 
mortality risk in older patients. https://xuly94-elderly-hospitalized-
patients-app-app-dxfrws.streamlit.app/, which can promptly generate 
the estimated risk for AKD and mortality offering immediate support 
for clinical decision-making.

3.5 Sensitivity analysis

The LGBM model demonstrated robust predictive accuracy for 
AKD stages 2–3, achieving an AUC of 0.843  in the test set 
(Supplementary Figure S10A). This indicated the model’s enhanced 
capability in predicting more severe cases of AKD, which was crucial 
to improve patient outcomes. When tested across various age groups, 

the performance of the model also remained stable 
(Supplementary Figures S10B–D). Specifically, the model yielded its 
highest performance in the 65–74 age subgroup, with an AUC 
of 0.755.

4 Discussion

In this retrospective cohort study, we developed and validated ML 
algorithms to forecast AKD, AKI, and mortality among older patients. 
The LGBM algorithm exhibited the strongest discrimination capability 
across all three outcomes. Additionally, SHAP was used for 
individualized patient interpretations, and an online AKD and 
mortality risk calculator for older patients was created, aiding early 
prediction and intervention. To the best of our knowledge, our study 
is the first to establish ML models for AKD, AKI and mortality in 
older patients that are valuable for risk assessment and clinical 
decision-making.

Several investigations have been conducted to explore the 
epidemiology of AKD before. James et al. reported that among more 
than one million Canadian residents, AKD without AKI was common 
— the incidence per 100 of the population tested was 3.8  in 

FIGURE 1

Performance of eight ML models for different outcomes with all features. (A) The ROC curve of AKD. (B) The ROC curve of AKI. (C) The ROC curve of 
mortality.
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TABLE 2 Performance of eight ML models for predicting AKD.

Models AUC Precision Recall Accuracy F1 score Brier score Matthewscorrelationcoefficient

Training set

SVM 0.693 (0.682–0.704) 0.273 (0.147–0.398) 0.007 (0.004–0.011) 0.797 (0.796–0.798) 0.014 (0.007–0.022) 0.159 (0.159–0.160) 0.016 (0.000–0.036)

KNN 0.576 (0.568–0.585) 0.316 (0.293–0.339) 0.160 (0.149–0.172) 0.760 (0.755–0.766) 0.212 (0.198–0.227) 0.194 (0.190–0.197) 0.096 (0.077–0.114)

NB 0.727 (0.716–0.739) 0.365 (0.351–0.379) 0.559 (0.523–0.595) 0.715 (0.703–0.727) 0.441 (0.423–0.459) 0.266 (0.255–0.276) 0.272 (0.249–0.295)

MLP 0.697 (0.681–0.713) 0.459 (0.425–0.492) 0.323 (0.255–0.391) 0.783 (0.769–0.797) 0.369 (0.329–0.409) 0.161 (0.155–0.167) 0.256 (0.229–0.282)

RF 0.681 (0.672–0.690) 0.435 (0.416–0.454) 0.197 (0.187–0.208) 0.786 (0.782–0.790) 0.271 (0.259–0.283) 0.153 (0.152–0.155) 0.184 (0.170–0.198)

GBM 0.721 (0.711–0.730) – – 0.798 (0.798–0.798) – 0.153 (0.153–0.154) –

LR 0.679 (0.671–0.688) 0.469 (0.400–0.539) 0.045 (0.038–0.053) 0.797 (0.794–0.800) 0.083 (0.070–0.095) 0.152 (0.150–0.153) 0.094 (0.070–0.117)

LGBM 0.781 (0.770–0.793) 0.407 (0.396–0.418) 0.649 (0.629–0.669) 0.738 (0.731–0.746) 0.500 (0.487–0.513) 0.173 (0.170–0.177) 0.352 (0.334–0.370)

Test set

SVM 0.695 0.394 0.015 0.798 0.028 0.158 0.042

KNN 0.587 0.303 0.156 0.758 0.206 0.192 0.087

NB 0.744 0.371 0.586 0.717 0.454 0.260 0.289

MLP 0.753 0.456 0.445 0.782 0.450 0.144 0.315

RF 0.689 0.448 0.084 0.795 0.141 0.152 0.122

GBM 0.720 - - 0.799 - 0.153 -

LR 0.687 0.414 0.033 0.796 0.061 0.151 0.068

LGBM 0.781 0.400 0.649 0.734 0.495 0.175 0.346

*AUC, area under curve of the receiver operating characteristic curve.
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individuals without preexisting CKD and 0.6  in individuals with 
pre-existing CKD (22). Su et  al. reported the incidence rate of 
community-acquired AKD was 4.60%, while it was 28.2% for 
hospital-acquired AKD (23). In our own study cohort, we observed 
that 4,434 patients, accounting for 20.15% of the total, satisfied the 
criteria for AKD.

In recent years, ML methods have been widely employed in 
predicting AKI (24–27). However, there is comparatively limited 
research on predicting AKD, particularly in older patients. A 
nomogram was developed and validated to predict the transition from 
AKI to AKD in patients undergoing partial nephrectomy for renal 
masses, demonstrating good discrimination with a concordance index 

TABLE 3 Performance of LGBM model for predicting AKD.

Models AUC Precision Recall Accuracy F1 score Brier score Matthews 
correlation 
coefficient

Training set

Top 5 features

0.732 (0.718–

0.747)

0.352 (0.339–0.365) 0.637 (0.612–

0.663)

0.690 (0.679–0.702) 0.453 (0.438–

0.469)

0.202 (0.198–

0.205)

0.284 (0.262–0.307)

Top 10 features

0.754 (0.740–

0.768)

0.369 (0.358–0.380) 0.662 (0.638–

0.686)

0.703 (0.694–0.712) 0.474 (0.459–

0.488)

0.192 (0.188–

0.196)

0.314 (0.293–0.335)

Top 15 features

0.766 (0.752–

0.780)

0.380 (0.368–0.391) 0.676 (0.652–

0.701)

0.712 (0.703–0.720) 0.486 (0.472–

0.500)

0.187 (0.183–

0.191)

0.332 (0.311–0.353)

Top 20 features

0.773 (0.760–

0.785)

0.379 (0.368–0.391) 0.685 (0.661–

0.710)

0.710 (0.701–0.720) 0.488 (0.474–

0.502)

0.188 (0.184–

0.192)

0.335 (0.315–0.356)

All features

0.781 (0.770–

0.793)

0.407 (0.396–0.418) 0.649 (0.629–

0.669)

0.738 (0.731–0.746) 0.500 (0.487–

0.513)

0.173 (0.170–

0.177)

0.352 (0.334–0.370)

Test set

Top 5 features 0.732 0.346 0.631 0.687 0.447 0.203 0.276

Top 10 features 0.746 0.351 0.658 0.688 0.458 0.197 0.292

Top 15 features 0.760 0.366 0.671 0.701 0.474 0.192 0.315

Top 20 features 0.766 0.372 0.673 0.706 0.479 0.190 0.323

All features 0.781 0.400 0.649 0.734 0.495 0.175 0.346

*AUC, area under curve of the receiver operating characteristic curve.

FIGURE 2

Importance matrix plot and SHAP summary plot of the final lite LGBM model. (A) The importance ranking of the first 15 features of the LGBM model. 
(B) The SHAP summary plot demonstrates the general importance of each feature in LGBM model. The color bar on the right indicates the relative 
value of a feature in each case. Red dots indicate high values and blue dots indicate low values. The violin graph lining up on the midline is the 
aggregation of dots representing each case in the train set. The distance between the upper and lower margin of the violin graph represents the 
amount of the cases that end up with the same SHAP values offered by this feature. SHAP force plots of 4 examples of patients. Categorical features 
including AKI stage, CHD, Omeprazole and β-lactam antibiotics were represented by 0 and 1, while “0” means “No” and “1” means “Yes.” *ALB, albumin; 
LDH, lactate dehydrogenase, CHD, coronary heart disease; CK, creatine kinase; Cys, cystatin C; GGT, gamma-glutamyl transferase; Scr, serum 
creatinine, CCB, calcium channel blocker; RBC, red blood cell count.
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of 0.891 (95% CI: 0.830, 0.953) (28). Chen et al. demonstrated that 
predictive models of acute decompensated heart failure (ADHF) 
patients had C-statistics of 0.726 (95% CI: 0.712–0.740) for AKD (29). 
Li et  al. found that SVM showed better discrimination in older 
patients admitted to the intensive care unit (ICU) with AUC of 0.810 
and 0.776 in the training and external validation cohorts, respectively 
(10). Unlike their study, which focused on older patients with AKD in 
the ICU, our research encompassed a broader spectrum, targeting the 
entire older patient population within hospital settings. What’s more, 
we have crafted models for predicting not only AKD but also AKI and 
mortality among older patients.

International consensus emphasizes the importance of early 
detection and prevention of AKD to mitigate its impact on patients 
and healthcare systems (9). Although, in theory, all older patients 
would benefit from comprehensive preventive measures against AKD, 
technical limitations often hinder early intervention. To address this 
issue, the ML algorithm simplifies early prediction. Furthermore, an 
online prediction website utilizing LGBM models can quickly identify 
high-risk older patients. This enables early detection and preventive 

interventions to enhance the prognosis for older individuals. The 
SHAP summary plot and force plots in Figure  2 enhanced 
understanding of the model’s decision-making process and can 
further assist physicians in implementing targeted preventive 
interventions for AKD.

In our study, the importance of variables showed that AKI stage, 
ALB, LDH, the use of aspirin and CHD were the most important 
factors that contributed to the predicted occurrence of AKD among 
older patients. Numerous studies have shown that AKI is intricately 
linked to the development of AKD (23, 29–31). Although current 
studies predominantly focus on AKI, they also suggest that these 
factors are risk for renal function impairment, consistent with our 
findings. Specifically, low serum albumin levels and elevated LDH 
levels are both associated with AKI AND poor outcomes (32–40). 
Aspirin, a common NSAID, and CHD have also been identified as 
independent risk factors for AKI, particularly among older people 
(34, 41–44).

This study has several key clinical implications. Firstly, it 
represents the initial effort to compare the baseline characteristics and 

FIGURE 3

SHAP dependence plots demonstrate the distribution of SHAP output value of a single feature. The colors on the dependence plot correspond to 
another feature that could potentially interact with the feature being analyzed. (A) The relationship between Cys and AKI stage SHAP values, with the 
color bar indicating various levels of AKI stage. (B) The relationship between Cys and Scr SHAP values, where the color bar represents different levels of 
Scr. (C) The relationship between Scr and AKI stage SHAP values, with the color bar also denoting distinct AKI stage levels. (D) The relationship between 
Scr and ALB SHAP values, with the color bar reflecting varying ALB levels. *ALB, albumin; Cys, cystatin C; Scr, serum creatinine.
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hospital mortality across three distinct renal function trajectories 
post-injury. Secondly, we have successfully formulated succinct yet 
highly discriminative LGBM models for AKD, AKI, and mortality. 
Thirdly, the application of the SHAP method mitigated the opacity of 
ML models by globally and locally identifying and elucidating the 
most influential features for all three outcomes. In addition, 
we selected an optimal number of features for our final model to 
ensure a balance between complexity and clinical applicability, 
emphasizing its practicality with features that are readily obtainable in 
standard clinical settings. Furthermore, our models have been 
designed for direct clinical use, exemplified by a web-based risk 
calculator that assesses the risk of AKD and mortality in older 
patients, thus providing physicians with a valuable tool to enhance 
decision-making.

Our study faced several limitations. Firstly, it had a single-center 
design and a lack of ethnic diversity, which may affect the generalizability 
of our findings. Additionally, the identification of AKD and AKI could 
benefit from incorporating more early diagnostic markers, such as 
cystatin C, to improve predictive accuracy. Besides, the retrospective 

nature of our data collection introduces potential recall and selection 
biases. To address these issues, future research should aim for 
nationwide, multi-center prospective trials to enhance the validation and 
reliability of our predictive models, ensuring their applicability across 
diverse populations, including testing and verifying the model among 
people of other ethnicities. Last but not least, this article aims to predict 
kidney injury in older adult patients without specifically distinguishing 
the etiology. Due to the complex conditions of older adult patients, 
including numerous underlying diseases, susceptibility to infections, use 
of nephrotoxic drugs, and other common causes of kidney injury, it is 
often the result of multiple factors combined (8). Therefore, we have 
established a universal, comprehensive, and representative risk 
prediction model. However, its effectiveness in predicting kidney injury 
caused by different specific factors may not be optimal. Consequently, in 
future research, we plan to conduct separate studies on kidney injury 
caused by specific factors, such as sepsis.

This study highlights the increased susceptibility of older 
patients to AKD. We presented LGBM models to forecast AKD, 
AKI, and mortality at the time of admission. Furthermore, the web 

FIGURE 4

Force plots of the final lite LGBM model. (A,B) Show the examples of patients predicted to have AKD. (C,D) Show the examples of patients predicted to 
be non-AKD. The features shown in red represent a higher risk of AKD, while the features shown in blue represent a lower risk. The plots help 
physicians identify the main features in the model that have high decision power at the individual level. Categorical features including AKI stage, CHD, 
Omeprazole and β-lactam antibiotics were represented by 0 and 1, while “0” means “No” and “1” means “Yes.” *ALB, albumin; LDH, lactate 
dehydrogenase, CHD, coronary heart disease; CK, creatine kinase; Cys, cystatin C; GGT, gamma-glutamyl transferase; Scr, serum creatinine, CCB, 
calcium channel blocker; RBC, red blood cell count.
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tool we developed to identify high-risk AKD and mortality cases in 
older patients can aid in clinical decision-making. Moving forward, 
we  will conduct nationwide, multi-center trials with diverse 
participation, validating our predictive models across various 
ethnic groups.
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