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Introduction: Global Cardiovascular disease (CVD) is still one of the leading 
causes of death and requires the enhancement of diagnostic methods for 
the effective detection of early signs and prediction of the disease outcomes. 
The current diagnostic tools are cumbersome and imprecise especially with 
complex diseases, thus emphasizing the incorporation of new machine learning 
applications in differential diagnosis.

Methods: This paper presents a new machine learning approach that uses MICE 
for mitigating missing data, the IQR for handling outliers and SMOTE to address 
first imbalance distance. Additionally, to select optimal features, we introduce 
the Hybrid 2-Tier Grasshopper Optimization with L2 regularization methodology 
which we call GOL2-2T. One of the promising methods to improve the predictive 
modelling is an Adaboost decision fusion (ABDF) ensemble learning algorithm with 
babysitting technique implemented for the hyperparameters tuning. The accuracy, 
recall, and AUC score will be considered as the measures for assessing the model.

Results: On the results, our heart disease prediction model yielded an accuracy of 
83.0%, and a balanced F1 score of 84.0%. The integration of SMOTE, IQR outlier 
detection, MICE, and GOL2-2T feature selection enhances robustness while 
improving the predictive performance. ABDF removed the impurities in the model and 
elaborated its effectiveness, which proved to be high on predicting the heart disease.

Discussion: These findings demonstrate the effectiveness of additional machine 
learning methodologies in medical diagnostics, including early recognition 
improvements and trustworthy tools for clinicians. But yes, the model’s use and 
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extent of work depends on the dataset used for it really. Further work is needed 
to replicate the model across different datasets and samples: as for most models, 
it will be important to see if the results are generalizable to populations that are 
not representative of the patient population that was used for the current study.

KEYWORDS

multivariate imputation by chained equations, synthetic minority over-sampling 
technique, interquartile range, adaptive boosted decision fusion, cardiovascular 
disease and adaboost decision fusion (ABDF)

1 Introduction

Many communities are affected by heart disease, a major global 
health problem that is responsible for many cases of sickness and 
death. There is an increasing need to understand the complexity of 
heart diseases as our understanding of cardiovascular health expands. 
Think about this: someone dies of cardiovascular issues every 37 s in 
America, which highlights the urgency to quell this unseen epidemic 
(American Heart Association, 2022). This mind-boggling figure shows 
how huge numbers of people, families, and societies are affected by 
cardiac diseases (1).

The human heart is one fantastic example of biologically 
engineered machinery that coordinates life’s intricate workings by 
driving vital energy through a network of complex vessels. However, 
repercussions can be disastrous when this symphony gets disrupted. 
Heart problems include conditions like coronary artery disease, heart 
failure, arrhythmias and congenital malformations. Their etiology is 
multifactorial involving genetic predispositions, behavioral factors 
and countless sophisticated biochemical pathways (2). Beyond the 
confines of medical practice, heart diseases contain a rich assortment 
of stories—chronicles of courage, sadness and hope. Every heartbeat 
affects those whose lives are touched by it and every diagnosis carries 
along its own path for each of them which are distinct and personal.

A major global health issue, cardiovascular disease, and 
cardiovascular disorders. Coronary artery disease (CAD), the most 
common, causes narrowing or blockage of the coronary arteries, 
leading to angina or myocardial infarction. Heart failure reduces 
oxygen delivery because the heart cannot pump blood properly. Mild 
exercise causes an abnormal heart rate that can impair circulation. 
Valvular heart disease damages the heart muscles and limits blood 
flow. Cardiomyopathy occurs when the heart muscle contracts or 
stiffens, reducing its ability to carry blood (3).

Poor diet, lack of physical activity, tobacco use, alcohol abuse and 
obesity are major risk factors. Heart disease prevention includes 
healthy eating, exercise, weight control, and smoking cessation. 
Treatment options range from medical to surgical, depending on the 
severity. Routine inspections detect and address them quickly (4). 
Knowing the risk factors and prioritizing cardiovascular health helps 
reduce the impact of cardiovascular disease.

Risk factors for cardiovascular disease include smoking and 
alcohol misuse. Coronary artery disease (5), hypertension, decreased 
oxygen saturation, and accelerated blood clotting are all consequences 
of smoking. Consuming alcohol raises the risk of hypertension, heart 
disease (6, 7), and cholesterol. When smoked and drunk at the same 
time, oxidative stress rises, the immune system is weakened, and 

blood arteries and cholesterol are damaged. Heart disease, particularly 
myocardial, cerebral, and cardiac insufficiency, is greatly increased by 
this lethal combination. It is vital to quit smoking, restrict alcohol 
intake, and maintain cardiovascular health since these habits add up 
to a lot of harm. Although beating addiction could be difficult, the 
rewards in terms of heart health are substantial.

Adaptive enhanced decision fusion is crucial for disease 
prediction, especially in cardiovascular health. Combining numerous 
models and adjusting to changing data patterns enhances early disease 
detection and prediction. The ABDF educates doctors on cardiac 
illnesses to help them choose the best treatments and improve patient 
outcomes. In the complex realm of cardiovascular diseases, its 
versatility allows quick risk assessment and appropriate intervention. 
ABDF is a cutting-edge ensemble learning approach that enhances 
cardiovascular health patient care and predictive analytics.

As data reveals, the cardiovascular problem percentage among 
people in India as diagnosed in the year 2020 is shown in Figure 1, using 
the breakdown by age group. In cardiovascular matters, most often, the 
older age group was seen having more frequent problems than the 
younger age group. The rate of cardiovascular disease found among the 
teenagers of the age group below 19 is about 2.98%, which is comparably 
lower compared to that of the young people of the age group 20–29, 
which registers about 5%. Investigators have been able to ascertain that 
the 45- to 59-year-old population group had an illness rate of 
cardiovascular problems of about 11.9%, while that of the 30- to 
44-year-old group was about 6.28%. At a rate of 18.7%, the above-60-
year-old succession group accounts for the highest prevalence of 
cardiovascular diseases. Given the existence of age disparities, 
policymakers should focus on the development of auxiliary policies, 
early detection, effective healthcare delivery, and educational campaigns 
that will help in the ongoing battle against the rising frequency of 
cardiovascular diseases among the aging population (8–12).

2 Literature review

In 2020, Shah et al. (13) examine data mining and machine learning 
for heart disease prediction. The study stresses the need of precise and 
timely identification of heart disease, a top worldwide mortality. Using 
the enormous Cleveland database of UCI repository, 303 cases and 76 
characteristics are rigorously condensed to 14 important elements. The 
study compares popular algorithms including Naïve Bayes, decision 
tree, K-nearest neighbor (KNN), and random forest for heart disease 
prediction. KNN was the most accurate algorithm, demonstrating 
predictive modeling potential. The finding agrees with earlier research 
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that many algorithms are needed for complete findings. Future data 
mining approaches such time series analysis, clustering, association 
rules, support vector machines, and evolutionary algorithms are 
suggested to improve predicted accuracy. While insightful, the paper 
admits its limits and advocates for further research to improve early and 
accurate heart disease prediction algorithms.

In 2020, Katarya et al. (14) conducted a survey saying that heart 
disease is a global issue with rising treatment expenses, therefore early 
detection is essential. Alcohol, tobacco, and inactivity are essential heart 
disease indicators. The paper recommends using machine learning, 
particularly supervised methods, for healthcare decision-making and 
prediction to address this essential issue. Several algorithms, including 
as ANN, DT, RF, SVM, NB, and KNN, being investigated for heart 
disease prediction. The research summarizes these algorithms’ 
performance to reveal their efficacy. In conclusion, automated 
technologies to anticipate cardiac disease early on help healthcare 
professionals diagnose and empower patients to monitor their health. 
Feature selection is critical, and hybrid grid search and random search 
are suggested for optimization. Search algorithms for feature selection 
and machine learning will improve cardiac disease prediction, leading 
to better healthcare treatments, according to the report.

In 2021, Jindal et al. (15) highlights the increasing number of heart 
diseases and the need for prediction models. The declaration 
acknowledges the challenge of correct diagnosis and promotes machine 
learning techniques for accurate projections. Logistic regression and 
KNN are compared to naive Bayes in the research. The proposed heart 
disease prediction system reduces costs and improves medical care. The 
research also includes a Logistic Regression, Random Forest Classifier, 
and KNN cardiovascular disease detection model. The model’s accuracy 
is 87.5%, up from 85% for previous models. The literature shows that 
the KNN method outperforms other algorithms with an accuracy rate 
of 88.52%. The article claims that machine learning can predict cardiac 
issues more accurately than conventional techniques, improving patient 
care and lowering costs.

In 2019, Gonsalves et  al. (16) uses Machine Learning (ML) 
approaches such as Naïve Bayes (NB), Support Vector Machine 
(SVM), and Decision Tree (DT) to predict Coronary Heart Disease 
(CHD). Coronary heart disease (CHD) is a major cause of death 
around the world, highlighting the need of early detection. The work 
uses historical medical data and three supervised learning approaches 
to discover CHD data correlations to improve prediction precision. 
The summary of the literature acknowledges the complexity of 
medical data and CHD prediction linkages, stressing the challenges of 
existing techniques. The study’s focus on NB, SVM, and DT matches 
existing research techniques, highlighting the availability of disease 
prediction machine learning algorithms. Early screening and 
identification are crucial for patient well-being, resource allocation, 
and preventative interventions, according to the research. The 
discussion of ML model performance, including accuracy, sensitivity, 
specificity, and other characteristics, sheds light on Naive Bayes, 
Support Vector Machines, and Decision Trees. Despite not meeting 
threshold rates, the Naive Bayes (NB) classifier looks to be the best 
option for the dataset. According to the literature review, unsupervised 
learning and data imbalance should be studied in the future. This will 
enhance prediction algorithms and may lead to mobile CHD 
diagnosis apps.

In 2018, Nashif et  al. (17), addresses cardiovascular problems 
across the globe and highlights the necessity to detect and monitor 
them early. The cloud-based heart disease prediction system uses 
powerful machine learning. Interestingly, the Support Vector Machine 
(SVM) method has 97.53% accuracy. Real-time patient monitoring 
using Arduino for data collection is presented in the study, focusing 
on remote healthcare. Comparative evaluations show SVM 
outperforms other models. The abstract concludes with potential 
issues including photoplethysmography-based blood pressure 
monitoring. The literature analysis highlights cloud-based prediction 
and real-time patient monitoring as a solution to PPG-based 
system constraints.

FIGURE 1

Bar graph people with heart issues across India in 2020, by age group (8) (https://www.statista.com).
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In 2023, Bhatt et  al. (18) used Machine learning to create a 
cardiovascular disease prediction model. The study employed 70,000 
Kaggle-downloaded real-world samples. Huang initialization 
improves k-modes clustering classification accuracy. GridSearchCV 
optimizes random forest, decision tree, multilayer perceptron, and 
XGBoost models. With 86.37 to 87.28% accuracy, the models are 
great. Multiple layer perceptron outperforms other models. The study 
adjusts age, blood pressure, and gender to account for heart disease 
progression. Despite promising outcomes, the study had limitations. 
These include employing a single dataset, only considering particular 
clinical and demographic features, and not comparing results to other 
test datasets. More research is needed to overcome these restrictions, 
compare clustering algorithms, test the model on new data, and 
improves interpretability. Machine learning—particularly clustering 
algorithms—can effectively predict cardiac illness and guide focused 
treatment and diagnostic measures.

In 2023, Abood Kadhim et al. (19) examines the growing use of 
artificial intelligence—specifically machine learning—in cardiac 
disease diagnosis and prediction. Support vector machines, random 
forests, and logistic regression are tested on Cleveland Clinic data. 
Research on artificial intelligence in cardiac care is also examined. The 
study found that support vector machines are the most accurate heart 
disease diagnosis tools at 96%. It also presents a 95.4% accurate 
random forest model for cardiac attacks. The findings demonstrate the 
importance of AI in healthcare decision-making and early cardiac 
problem intervention.

Recent researches have stressed the need for global cardiovascular 
disease diagnosis and identification. Several papers in 2020 and 2021 
studied Naïve Bayes, decision tree, K-nearest neighbor (KNN), and 
random forest algorithms using data mining and machine learning 
methods. The primary findings are that K-Nearest Neighbors (KNN) 
may predict heart disease, that supervised machine learning may 
make healthcare decisions, and that logistic regression, KNN, and 
naive Bayes are comparable. These findings show the usefulness of 

predictive models in addressing the rising number of cardiac ailments, 
leading to healthcare technology advances for early identification and 
better patient treatment (Figure 2).

2.1 Motivation

Due to the global the amount of cardiovascular diseases, data 
mining and machine learnnng research on heart disease prediction is 
escalating. Heart disease is the most common cause of mortality 
worldwide. To reduce mortality rates, these medical conditions must 
be accurately and quickly detected. Researchers are studying machine 
learning to improve diagnostic skills since conventional methods 
frequently make inaccurate predictions. These studies aim to enhance 
early diagnosis and treatment. Medical data is complex and risk 
variables change, making machine learning an intriguing method for 
finding meaningful patterns and improving heart disease prediction.

2.2 Research gap

Despite the wealth of knowledge in machine learning approaches 
to heart disease prediction, additional research is needed. Shah et al. 
(13), Katarya et al. (14), Jindal et al. (15), Gonsalves et al. (16), Nashif 
et al. (17), Bhatt et al. (18), and Abood Kadhim et al. (19) all emphasize 
the importance of accurate and early heart disease detection. These 
researches have examined how K-nearest neighbor (KNN), Support 
Vector Machine (SVM), Random Forest, and logistic regression can 
increase predicted accuracy. These attempts are intriguing, but they also 
highlight limits like dataset dependence, feature selection optimization 
issues, and the need for more unsupervised learning research. Address 
data imbalance and real-time patient monitoring equipment concerns. 
Thus, even though machine learning could change cardiac illness 
prediction, more research is needed to improve algorithms, overcome 

FIGURE 2

Machine learning algorithms for heart disease prediction.
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data constraints, and improve cardiovascular health care outcomes. The 
current study lacks detailed algorithm assessments, leaving the best 
technique for exact predictions unknown. There is also insufficient 
research into using advanced data mining methods like time series 
analysis and evolutionary algorithms to better forecast heart illness. 
Overcome these gaps to increase prediction model robustness and 
precision in this critical healthcare sector.

The research’s scope is to create trustworthy and effective 
cardiovascular disease diagnostic tools. Our goal is to reduce heart 
disease deaths and improve heart disease predictions using powerful 
machine learning.

 • SMOTE, IQR outlier identification, and MICE are used to solve 
data difficulties in this work. We also introduce Hybrid GOL2-2 T, 
a hybrid feature selection approach.

 • It uses L2 regularization and the Grasshopper 
Optimization Algorithm.

 • A babysitter algorithm and Adaptive Boosted Decision Fusion 
(ABDF) ensemble learning increase predictive modeling accuracy.

 • Our model will be assessed by accuracy, recall, and AUC score.

The main goal of this project is to develop reliable diagnostic tools 
for early diagnosis and treatment of cardiovascular diseases. This can 
help doctors improve patient outcomes and reduce illness.

In the subsequent sections, Section 2 provides a comprehensive 
literature analysis of the corpus of recent publications. The suggested 
methodology is then presented in Section 3. Section 4 offers a 
thorough summary of the results and the discussion that follows. In 
Section 5, prospective avenues for further research are explored and 
the article is summarized with a conclusion.

3 Proposed methodology

For the two-tier Feature Selection Hybrid GOL2-2 T, starting from 
the data pre-processing stage among the partitions, 70% of the data 
partition is allotted for the training set and 30% for the testing set. An 
objective under this category makes it easy to evaluate the performance 
of the models in question based on it deeply. The second to the last step 
is the missing data estimate, which makes use of the Multivariate 
Imputation by Chained Equations (MICE) approach. This, in return, 
ensures the completeness of information from one or many variables. 
In this case, the following techniques were corrected with a deficiency 
of training the model and have high interoperability with the techniques 
of machine learning; Imputation, Data scaling, and Label encoding. 
Inside the method, it has the Inter Quartile Range (IQR) to identify and 
deal with an outlier in an effort to enhance the resilience of the model 
through a reduction in influence that emanates from abnormal data 
points. The major maxim is SMOTE, which a synthetic minority is over-
sampling technique aimed at the problem of class imbalance. The 
technique established a fair representation through the development of 
synthetic minorities, toward the reduction of biases that may associate 
with the general over-representation of the dominant class.

2-tier Feature Selection is based on the L2 Regularization (Ridge) 
(20) along with the Grasshopper Optimization (GOA) method; 
therefore, the proposed Hybrid GOL2-2 T model is going to form a 
2-level model for Feature Selection. It also employs ABDF 
hyperparameters, which have been babysitting algorithm to be fine-
tuned after proper pre-processing of the dataset. Therefore, AdaBoost 
Decision Fusion (ABDF) maximizes the predictive modeling tasks’ 
accuracies by pulling the performance measures out with respect to 
other models for comparison (Figure 3).

FIGURE 3

Heart disease forecasting workflow.
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3.1 Data collection

The 1988 heart disease dataset (21) is an excellent resource for 
studying and forecasting cardiovascular disease prevalence. Age, gender, 
type of chest pain, blood pressure, cholesterol levels, and the presence of 
numerous cardiovascular diseases are among the 14 important factors. 
There is a large variety of ages represented in the dataset, with the 
majority falling between 40 and 60. Of those, 207 are male and 96 are 
female. With a value of 1 for males and 0 for females, the variable “sex” 
is included in the data for each issue as an essential health indicator. 
While we display resting blood pressure (trestbps) and serum cholesterol 
levels (chol) as whole numbers, we categorize chest discomfort as 1, 2, 3, 
or 0. Exang, exercise-induced angina, exercise-induced ST depression 
compared to rest, the slope of the peak exercise ST segment, the number 
of major vessels colored by fluoroscopy, and thalassemia type are some 
other factors that improve the dataset. In order to promote a thorough 
study of cardiovascular health and facilitate the development of reliable 
prediction systems, the “target” property shows whether heart disease is 
present (1) or absent (0) (Figure 4).

3.1.1 Visualizing the attributes of heart disease 
dataset using pair plot

This dataset encompasses six numerical variables: RestingBP, 
Cholesterol, FastingBS, MaxHR, Oldpeak. Two variables are 
distributed in each grid subplot. Variable correlations in the Heart 
Disease dataset are shown in the pair plot. The correlation between 
two variables is displayed in every matrix scatterplot. The level of heart 
disease dictates the color of the dots. Early detection of data patterns 
and trends can be  aided by this. It can reveal whether there are 
commonalities between those who have cardiac disease and those 
who do not.

Histograms show variable distribution, while scatter plots show 
the connection between paired variables. In the upper left subplot, 
RestingBP distribution is presented. The y-axis shows data point 
frequency, and the x-axis shows RestingBP levels. The bottom right 

subplot displays the association between MaxHR and Oldpeak, an 
off-diagonal plot. This subplot shows Oldpeak on the y-axis and 
MaxHR on the x-axis. Examining the pair plot can reveal patterns and 
linkages, such as cholesterol-resting blood pressure correlations. This 
graphical tool simplifies dataset analysis, especially for outliers and 
linear correlations. We  consider non-diagonal scatter plots while 
examining linear relationships. Straight lines between scatter plot dots 
indicate the variables’ direction and strength. Outliers are scatter plot 
data points far from the main cluster. If we  want to use machine 
learning to forecast cardiac disease from patient data, we need to 
understand these tendencies. It might be  necessary to make 
adjustments and do further research on visual representations in order 
to have a better understanding of the dataset (Figure 5).

3.2 Pre-processing

3.2.1 Data cleaning with MICE
Data pretreatment requirements include cleaning the data to 

ensure dataset correctness and completeness and that it is analysis 
or model training ready. Absent data often hurts machine learning 
models. MICE (22) handle missing data thoroughly and statistically 
through Multiple Imputation by Chained Equations shown in 
equation (1). In an iterative process, MICE calculate conditional 
distributions for all variables with missing data using observed 
data and other variable imputations. As iterations continue until 
convergence, the process creates various entire datasets. To 
accommodate for missing value uncertainty, each dataset has its 
own imputations. Multiple Imputation by Chained Equations 
(MICE) works well for non-random missing data patterns in real-
world datasets where observed values may affect missing. It 
evaluates variables and predicts data distributions. The MICE 
technique provides imputations, updates models, and combines 
findings to provide credible imputed datasets. Finalized datasets 
can be  used to train machine-learning models. MICE address 

FIGURE 4

Histograms of numeric columns.
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missing data to improve model performance and assure unbiased 
parameter estimates.

 
y f xji

imputed
i j i∧ = ( )+∈−,  (1)

 • y ji
imputed∧ shows the value that has been ascribed to the 

absent item.
 • f: The missing value is estimated by the function. The data type 

of variable j might affect this function.
 • xi j,− : With the exception of variable j, all observed values of the 

variables are represented by the vector in the ith observation.
 • ∈i: Error term

The observed values of all the variables in this context, with the 
exception of variable j in observation i, are stored in the vector xi j,− . 
By using these observed values, the function f is used to estimate the 
missing value. The assumed value’s error word ∈i  denotes any 
inexplicable volatility or unpredictability.

3.2.2 Scaling with label encoder
There are two essential methods for preparing machine 

learning data: label encoding and scaling. To transform 
categorical data into a numerical form, Label Encoding assigns 
unique integer labels to each category. One method for giving 
numerical values to categorical variables is Label Encoding (23). 
With Label Encoding, “Male” and “Female” would be represented 
as 0 and 1, respectively, in a “Gender” column. For algorithms 
that can only take numerical input, this simplifies the usage of 
categorical variables. On the flip side, numerical features can 
be scaled to be uniform in size so that no one characteristic can 
have an outsized impact due to size disparities. Model 
convergence and performance are both enhanced by methods 
Standard Scaling, [shown in equation (2)] which ensure that all 
features contribute equally. A typical preprocessing step involves 
converting categorical characteristics using Label Encoding and 
then scaling numerical features to make their magnitudes 
consistent. Label Encoding and Scaling, when used together; 
make it easy to get datasets ready to be  used in machine 
learning algorithms.

FIGURE 5

Visualizing the attributes of heart disease dataset using pair plot.

TABLE 1 Machine learning algorithms for heart disease prediction.

Algorithm Accuracy rate Citation

SVM 97.53 Nashif et al. (17)

NB 85 Gonsalves et al. (16)

KNN 88.52 Jindal et al. (15)

KNN 90.78 Shah et al. (13)

GridSearchCV + MLP 87.28 Bhatt et al. (18)

Random Search + RF 95.4 Abood Kadhim et al. (19)

https://doi.org/10.3389/fmed.2024.1407376
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Praveen et al. 10.3389/fmed.2024.1407376

Frontiers in Medicine 08 frontiersin.org

 
X X
scaled =

− µ
σ  

(2)

 • The initial feature value was X.
 • The feature values mean is represented by μ.
 • The feature values’ standard deviation is represented by σ.

3.2.3 Handling outliers with IQR
Careful data preparation, including outlier removal, improves 

machine learning model durability. Interquartile Range (IQR) is a 
prominent method for finding and treating dataset outliers. 
Interquartile range (IQR) is the difference between a distribution’s 
third and first quartiles, or 75th and 25th percentiles [shown in 
equation (3)]. Abnormal data points fall below or above the lower and 
higher limits (Q1–1.5 * IQR and Q3 + 1.5 * IQR, respectively) [shown 
in equations (4, 5)]. Outliers might hurt the model’s performance, but 
the IQR-based technique would find and fix them. To minimize 
outliers’ impact on learning, alter them. This reduces model sensitivity 
to unexpected data sets. This is crucial for algorithms that respond fast 
to data distribution changes (Table 1).

The initial stage in IQR-based outlier treatment is splitting the 
sample into quartiles and determining the IQR (24). Outliers can 
be  deleted or altered by comparing them against boundaries. This 
technique emphasizes creating more extensive and reliable datasets to 
improve ML model generalizability and prediction accuracy. The IQR 
outlier control approach must be used to prepare data for future machine 
learning experiments to ensure reliability and efficiency (Figure 6).

 IQR Q Qoutlier = −3 1 (3)

 LowerBound Q IQR= − ∗1 1 5.  (4)

 UpperBound Q IQR= + ∗3 1 5.  (5)

3.2.4 Handling imbalanced dataset with SMOTE
To ensure that machine learning algorithms are not biased toward 

the dominant class and hence reduce prediction accuracy, imbalanced 
datasets must be  handled. In order to rectify class imbalance, 
particularly in cases when minority occurrences are underrepresented, 
this system applies the Synthetic Minority Over-sampling Technique 
(SMOTE) (25) [shown in equation (6)]. Class distribution has an 
imbalance with 508 class 1 instances and 410 class 0 instances (shown 
in Table 2 and Figure 7). It would indicate that the 0.8071 imbalance 
ratio is less than the 1  - imbalance_threshold threshold. SMOTE 
manipulates the underrepresented class’s dataset presence by creating 
false instances of it. This is accomplished by building artificial instances 
along line segments that connect instances of minority classes. With a 
more evenly distributed dataset, the model may learn from more 
examples and, perhaps, make better predictions with new data.

Model prediction is improved with SMOTE (26) because it 
decreases class imbalance. When data from minority groups is limited, 
this strategy really shines in terms of model performance. To aid in 

TABLE 2 Before and after applying SMOTE.

Before applying SMOTE After applying SMOTE

Class Count Class Count

0 410 0 508

1 508 1 508

FIGURE 6

Before and after outlier capping by using IQR.
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the management of unbalanced datasets, SMOTE encourages correct 
and equitable predictions across all classes.

 

Imbalanced Ratio IR

The count of occurrences in the major

( )
=

iity class

The count of occurrences in the minority class  
(6)

3.2.5 Feature selection using hybrid GOL2-2  T
A new hybrid feature selection approach called the Hybrid 

GOL2-2 T, in which L2 regularization is fused with the Grasshopper 
Optimization Algorithm (GOA) (27), is discussed. This solution of 
the metaheuristic attracts a promising subset of the feature set 
through the application of an objective function and global search. 
We  then applied L2 regularization to the selected feature set. 
Majorly, the objective of L2 regularization is to penalize too many 
coefficients, promote sparsity, and preserve only the most useful 
features. Hybrid GOL-2 T combining fine tuning powers from L2 
regularizations with the muscular strength of GOA combined gives 
a dependable feature selection technique. In this respect, models 
that provide predictive classification via two-level approaches 
should have higher classification accuracy and dependability since 
they help in selecting the most relevant characteristics and 
reducing overfitting. As has been correctly pointed out, for these 
reasons, this approach has gained significant acceptance and has 
become an indispensable tool for many machine learning 
applications, like regression and classification tasks.

3.2.6 Grasshopper optimization algorithm
Developed in 2017 by Saremi et  al. (32), the Grasshopper 

Optimization Technique (GOA) is a metaheuristic optimization 
technique inspired by nature. The idea originated from the way 

grasshoppers behaved in unison. GOA has been used to solve a 
variety of optimization problems, including feature selection in the 
context of machine learning. Here is a brief description of how GOA 
works shown in Algorithm 1, complete  with formulas and the 
algorithm itself:

Algorithm 1: Grasshopper Optimization Algorithm (GOA)
Initialize population of grasshoppers (solutions)
Initialize best solution (best_solution)
Initialize number of iterations (iterations)
While (termination criterion is not met)
    For each grasshopper ii
        Calculate social interaction component Sii  shown in 

equation (7)
        Calculate gravity component Gii  shown in equation (8)
        Calculate wind component Aii shown in equation (9)
        Calculate movement of grasshopper ii (xii)
        Update position of grasshopper ii (xii)
        Evaluate objective function for new position ( fitnessii)
        If (( fitnessii) > fitness of best_solution)
            Update best solution (best_solution)
        End If
    End For
    Update number of iterations (iterations)
End While
Return best solution

 
S C

sum x x
Nii
jj ii

= ∗
−( )











 
(7)

 G g x oii ii= − ∗ −( )  (8)

FIGURE 7

Before and after applying SMOTE.
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 A U x xii e ii= ∗ −( )  (9)

Where,

 • c is a decreasing coefficient that balances the processes of 
exploration and exploitation.

 • g is a constant that determines the strength of the gravity 
component is the center of the search space.

 • U is a constant that determines the strength of the 
wind component.

 • xe is the position of the best solution found so far.
 • N is the number of grasshoppers.
 • xii and x jj are the positions of the grasshoppers.

The algorithm generates grasshoppers, each representing a 
possible solution. The first grasshopper in the population gets the best 
answer. The algorithm then loops through each grasshopper in the 
population. The application calculates grasshopper social interaction, 
gravity, and wind components. These components steer the 
grasshopper toward the best alternative.

The components calculated in the previous stage are used to 
modify the grasshopper’s movement. The objective function 
measures grasshopper positioning and solution efficacy. A new site 
becomes the ideal option if it outperforms the old one. After 
reaching grasshopper population termination criteria, the technique 
continues iteratively. A maximum number of iterations, a minimum 

fitness value, or any other suitable stopping condition may be used 
for the job. After optimization, the technique returns the ideal 
answer (Figure 8).

3.2.7 L2 regularization
L2, sometimes called ridge regression (28), is a machine learning 

technique used to reduce a model’s complexity by adding a penalty 
term to the loss function. The penalty term is directly correlated with 
the square of the magnitudes of the coefficients, encouraging the 
model to have smaller coefficients and reducing the likelihood of 
overfitting shown in Algorithm 2.

The L2 regularization term is added to the loss function as shown 
in equation (10).

 
Loss MSE alpha sum coefficient= + ( )( )∗ ^ 2

 
(10)

Where:
MSE is the mean squared error between the predicted and actual 

values shown in equation (11).
alpha is the regularization parameter (a hyperparameter).
Coefficient is the coefficient of the feature in the model.
The algorithm for L2 regularization can be described as follows:

Algorithm 2:  L2 regularization
Initialize coefficients to small random values
While (termination criterion is not met)

FIGURE 8

Feature selection flow chart for Grasshopper optimization algorithm.
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    Calculate MSE using the current values of the coefficients by 
using equation (11)

    Calculate sum of squared coefficients by using equation (12)
    Calculate regularized loss function as the sum of the MSE and 

the regularization term (alpha * sum of squared coefficients)
    Update coefficients to minimize the regularized loss function
End While
Return the optimized coefficients

 
Mean Squared Error MSE( ) = −( )

=
∑1

1

2

n
y y

ii

n
ii ii

ι

 
(11)

 
Sum of squared coefficients SSC( ) =

=
∑
jj

p

jj
1

2θ
 

(12)

Where,

 • p is the number of coefficients.
 • yii as the data point’s observed value ii
 • yiiι  as the anticipated value for data point ii.

The L2 regularization approach may be used to a wide range of 
models due to its computational efficiency. To achieve the optimal 
balance between bias and variance, the regularization 
hyperparameter alpha has to be changed. Features that are more 
effective at lowering the Mean Squared Error (MSE) are chosen 
when L2 regularization reduces the size of the model’s coefficients. 
L2 regularization may be used as a feature selection method by 
selecting only those features in the model that have coefficients 
greater than zero (Figure 9).

3.3 Hyperparameter tuning using 
babysitting algorithm

The babysitting Algorithm (BA) (29) in AdaBoost (30) decision 
fusion manually evaluates the model’s performance after iteratively 
modifying the hyperparameters. Setting hyperparameters, 

constructing a table, separating the dataset into training, validation, 
and testing sets, and progressively experimenting with different 
combinations are the steps. For each combination, an AdaBoost 
classifier is trained on the training set and assessed on the validation 
set using a performance metric. The hyperparameter table is updated 
when the trial number, hyperparameters, and performance measure 
change. Select the hyperparameters with the best validation set 
outcomes after all trials. The training and validation sets are utilized 
to train a new AdaBoost classifier using the optimum hyperparameters. 
For an impartial evaluation, the finished model is tested on the testing 
set shown in Algorithm 3.

Algorithm 3:  Hyperparameter Tuning Babysitting on 
AdaBoost Decision Fusion

// Initialize hyperparameters and performance metric
InitializeHyperparameters()
// Initialize the hyperparameter table
InitializeHyperparameterTable()
// Main loop for hyperparameter tuning
while (stopping criterion not met) do
    // Iterate through hyperparameter combinations
    for each hyperparameter combination do
        // Train AdaBoost classifier with current hyperparameters
        model = 

TrainAdaBoostClassifier(current_hyperparameters)
        // Evaluate the model's performance on the validation set
        performance_metric = EvaluateModelPerformance(model, 

validation_set)
        // Update hyperparameter table with current hyperparameters 

and performance metric
        UpdateHyperparameterTable(current_hyperparameters, 

performance_metric)
    end for
    // Select best hyperparameters based on the highest 

performance metric
    best_hyperparameters = SelectBestHyperparameters()
    // Train AdaBoost classifier with the best hyperparameters on 

the combined training and validation sets
    best_model = TrainAdaBoostClassifier(best_hyperparameters, 

combined_training_validation_set)

FIGURE 9

Feature selection flow chart for L2 regularization.
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TABLE 4 Selected Features with Scores using L2 regularization.

Feature Score

cp 0.051832

oldpeak 0.047056

ca 0.037252

thalach 0.007355

trestbps 0.002556

    // Evaluate the final model on the testing set
    final_performance_metric = EvaluateModelPerformance(best_

model, testing_set)
    // Update stopping criterion based on convergence or 

maximum iterations
    UpdateStoppingCriterion()
end while

3.4 Model building for heart failure 
prediction

3.4.1 Ensemble technique with adaptive boosted 
decision fusion

“Adaptive Boosted Decision Fusion (31) is an advanced ensemble 
learning algorithm that effectively combines the principles of 
Adaptive Boosting (AdaBoost) and Decision Fusion.” To prioritize 
instances that are harder to classify, this innovative approach has the 
algorithm adaptively changing the weights [shown in equation (13)] 
given to less effective learners. When combined with decision fusion, 
ABDF sequential training method for weak models allows for the 
efficient integration of results from many decision-makers [shown in 
equations (14–18)]. The ultimate result is a very accurate and reliable 
prediction model that is both adaptable and resilient. One way to 
make the ensemble better is via adaptive boosted decision fusion, 
which uses iterative refinement and smartly gives different learners 
different weights depending on how well they do. When it’s critical 
to combine multiple decision-making viewpoints to get superior 
predicted outcomes, this method shines.

Input:
Training dataset: D ux uy ux uy ux uyn n= ( )( ) …… ( ){ }1 1 2 2, , , , , .

Where uxi the feature is vector and uyi is the corresponding label.
Number of weak learners: UT
Initialization:

1. Initialize instance weights : , , .uw
n
for i ni = = ……

1
1 2 3  (13)

2. Initialize an empty ensemble of weak learners.

 For each iteration : , , . :ut UT= ……1 2 3  (14)

3. Train a weak learner uht  using the current instance weights.

 

i.Compute the error of the weak learner :

. | (∈ =
=
∑t
i

n
i tuw uh u

1

xx uyi i( ) ≠
 

(15)

where ꟾ(.) is the indicator function.

 

ii.Compute the learner weight :

ln

αt
t

t

=
−∈
∈




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
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(16)

 

iii. Update instance weights :

, , . , .exp .for i n uw uwi i t= …… ← −1 2 3 α uuy uh uxi t i. ( )( )  (17)

 

Normalize weights :uw uw

uw
i

i

i
n

i
←

=∑ 1  

(18)

iv Add the weak learner uht  to the ensemble with weightαt.
Output:

 Ensemble of weak learners , , , , ,: α α α1 1 2 2uh uh uhT UT( )( ) ( ){ }……  (19)

Predictions:

 

For a new instance the final prediction is given byux

H ux

, :

si( ) = nn(

ut

UT
t ux

=
∑ ( )

1

α
 
(20)

This method combines the best features of AdaBoost and Decision 
Fusion in a way that strengthens the ensemble (26), making it better 
at handling misclassifications and making accurate predictions. A 
long-lasting ensemble model that frequently outperforms individual 
models is produced by ABDF iterative method of correcting errors of 
weak models [shown in equation (19)]. Classification problems, such 
as the prediction [shown in equation (20)] of cardiac illness, frequently 
use ABDF. It finds usage in a variety of domains due to its flexibility 
in accommodating varied poor learners (Tables 3, 4).

4 Result and discussion

4.1 Performance assessments

4.1.1 Feature selection outcome using GOL2-2 T
The Grasshopper Optimization Algorithm (GOA) (32) 

identified heart disease predictors. This method found critical 
characteristics like chest pain type (cp), resting blood pressure 
(trestbps), serum cholesterol (chol), maximum heart rate (thalach), 

TABLE 3 Selected features with scores using GOA.

Features Score

cp 0.047363

trestbps 0.002171

chol 0.000873

thalach 0.007371

oldpeak 0.047905

ca 0.03526
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ST depression caused by exercise compared to rest (oldpeak), and 
the number of main vessels colored by fluoroscopy (ca). High 
scores showed relevancy. The prediction model ranked attributes 
by score. Next, we  used ridge regression, also known as L2 
regularization, to enhance feature selection. Revised features 
included oldpeak, thalach, ca, trestbps, and cp. Revaluating 
characteristics using L2 regularization yielded scores that 
accurately represent their value in heart disease prediction. 
Comparing the two feature selection approaches shows 
convergence in the selected qualities, suggesting they may 

be  essential for heart disease identification. However, slight 
discrepancies in feature significance showed that GOA and L2 
regularization use different techniques and criteria. We need more 
study to evaluate the predictive modeling of the upgraded features 
and the implications for heart disease diagnostics (Figures 10, 11).

4.1.2 Hyperparameter tuning outcome using 
babysitting algorithm on ABDF

The AdaBoost Decision Fusion model’s hyperparameters were 
optimized by a two-pronged approach involving tuning the 

FIGURE 10

A line graph denoting selected features with scores using GOA.

FIGURE 11

A bar graph denoting selected features with scores using L2 regularization.
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n_estimators and learning rate with the help of the Babysitting 
Algorithm (see in Table 5). A narrow range of the search space for 
n_estimators, which was from 50 to 200, and a more broad range 
of the learning rate, which was from 0.5 to 1, was seen. The 
hyperparameter optimization was made through a number of runs 
by substituting various combinations of parameters for n_
estimators and learning_rate (see in Table 6 and Figure 12). The 
data obtained from the ABDF model showed deviation across the 
many attempts conducted in the experiment; Trial No. 8 gave 8 as 
the most accurate results, their accuracy being 83.00%. The 

FIGURE 12

A dotted line graph denoting ABDF hyperparameters with babysitting.

TABLE 7 IQR outlier detection ABDF performance metrics.

IQR outlier detection with ABDF results

Metrics Values

Accuracy 0.83

Precision 0.84

Recall 0.85

f1_score 0.84

AUC Score 0.89

TABLE 5 AdaBoost decision fusion model hyperparameters tuning summary.

Models used Hyperparameters tuning 
algorithm

Hyperparameters Search Space

AdaBoost decision Fusion Babysitting n_estimators 50–200

learning_rate 0.5–1

TABLE 6 AdaBoost decision fusion hyperparameters with babysitting.

Trial no. Accuracy n_estimators learning_rate

0 0.802 50 0.1

1 0.82 50 0.5

2 0.812 50 1

3 80.00 100 0.1

4 0.822 100 0.5

5 0.804 100 1

6 0.819 200 0.1

7 0.79 200 0.5

8 83.00 200 1
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crucial aspiration of this process was the attainment of an optimal 
accuracy and robustness model for the ABDF model, specifically 
as it concerned the given task.

4.2 IQR outlier detection with ABDF

Heart disease may be  reliably predicted using the ABDF 
method and the IQR outlier preprocessing strategy. The model 

achieves an 83% accuracy rate in instance categorization and an 
84% success rate in accurately anticipating predicted positives (see 
in Table 7 and Figure 13). The model correctly identifies a large 
number of positive examples, as evidenced by its impressive recall 
score of 85%. An F1 Score of 84% (a measure of both recall and 
accuracy) indicates that the model is performing well. With an 
Area Under the Curve (AUC) score of 89% (see in Figure 14), the 
model clearly can differentiate between positive and negative 
occurrences. Based on these metrics, it appears that preprocessing 

FIGURE 13

Bar graph shows IQR outlier detection with ABDF performance metrics.

FIGURE 14

ROC for IQR outlier detection with ABDF.
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TABLE 8 Comparison of proposed method and other methods on heart disease dataset.

Algorithm Accuracy Precision Recall f1_score

Classification tree (33) 77.0 79.0 79.0 79.0

ANN (17) 77.39 78.30 77.40 76.90

NB (34) 81.25 57.89 73.33 32.35

Proposed method 83.0 84.0 85.0 84.0

FIGURE 15

Line graph for comparison of proposed method and other methods on heart disease dataset.

FIGURE 16

Bar graph for comparison of proposed method and other methods on heart disease dataset.

https://doi.org/10.3389/fmed.2024.1407376
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Praveen et al. 10.3389/fmed.2024.1407376

Frontiers in Medicine 17 frontiersin.org

using ABDF and IQR improves the accuracy, precision, recall, and 
overall predictive performance of models used to forecast cardiac 
diseases. According to its reliable performance, the model may 
be  relied on by healthcare providers to aid in the rapid 
identification and treatment for people at risk of heart disease.

4.2.1 Comparison of proposed method and other 
methods on heart disease dataset

In Table  8, multiple approaches are used to a heart disease 
dataset to assess accuracy, precision, recall, and F1-score. The 
suggested technique outperforms the others with 83.0% accuracy. 
This shows that it locates dataset instances properly. This method 
outperforms the Classification Tree and Artificial Neural Network 
(ANN) methods in classification testing. The new approach 
outperforms previous methods in accuracy, recall, and F1-score. 
Its great overall performance is due to its balanced trade-off 
between precisely recognizing positive examples (precision) and 
capturing all positive occurrences (recall).

The Naive Bayes (NB) technique exceeds the suggested method 
in accuracy (81.25%) but much worse in precision, recall, and 
F1-score. More particular, the NB technique has poorer precision 
and F1-score than the suggested strategy, suggesting more false 
positives and a worse accuracy-recall trade-off. The findings 
suggest that the proposed technique balances accuracy and 
precision-recall, making it suitable for heart illness classification 
(see in Figures 15, 16). The comparison research also emphasizes 
the need of choosing the right technique for favorable performance 
indicators. This scenario shows that the recommended strategy is 
better than the present options.

5 Discussions

Our work presents an 83% reliable machine learning heart disease 
prediction approach. We used cutting-edge methods like SMOTE, IQR 
outlier detection, MICE, and GOL2-2 T, a hybrid feature selection 
technique, to improve predictive accuracy and robustness. Combining 
these techniques improved feature selection and model performance, 
according to our findings. Our heart disease patient identification 
approach is very accurate. These results demonstrate the need of using 
cutting-edge machine learning algorithms in medicine to identify and 
cure diseases early.

Our findings may help doctors predict cardiac disease, 
improving patient care and intervention. Our accurate diagnostic 
equipment may enhance patient outcomes and minimize 
cardiovascular disease mortality. However, our research has some 
drawbacks. Our hopeful results are limited to a dataset and may 
not apply to other patient populations or healthcare situations. 
Data quality and feature selection criteria may also affect our 
model’s performance.

We urge additional research to corroborate our results across a 
variety of datasets and populations. Using additional machine 
learning methods (35–40) and domain-specific information may 
improve the model’s interpretability and prediction accuracy. To 
evaluate the long-term effects of early cardiac disease identification 
on patient outcomes, longitudinal studies are needed. In conclusion, 
our results emphasize the necessity for ongoing study to develop 
cardiovascular prediction analytics.

6 Conclusion and future scope

In conclusion, our study met the urgent demand for precise and 
effective cardiovascular disease prognostic diagnostic tools. MICE, 
IQR outlier detection, SMOTE, and Adaptive Boosted Decision 
Fusion (ABDF) were used to improve heart disease prediction 
models’ precision and reliability. The Hybrid GOL2-2 T feature 
selection technique has enhanced our process by discovering 
important features and decreasing overfitting.

We solved class imbalance, missing data, and outlier identification 
to create a model that outperforms previous methods. The accuracy 
rate of 83.0% and balanced F1 score of 84.0% of our heart disease 
prediction method were impressive. The accuracy, recall, and AUC 
score demonstrate the validity and applicability of our methods. Our 
findings show that powerful machine learning techniques must 
be  used in healthcare to produce reliable cardiovascular disease 
diagnosis tools. The study gives doctors tools for early diagnosis and 
effective treatment of cardiovascular disease risk.

Future study may improve prediction models and examine 
additional factors to improve diagnostic precision.
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