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The rapid spread of COVID-19 pandemic across the world has not only 
disturbed the global economy but also raised the demand for accurate disease 
detection models. Although many studies have proposed effective solutions for 
the early detection and prediction of COVID-19 with Machine Learning (ML) 
and Deep learning (DL) based techniques, but these models remain vulnerable 
to data privacy and security breaches. To overcome the challenges of existing 
systems, we introduced Adaptive Differential Privacy-based Federated Learning 
(DPFL) model for predicting COVID-19 disease from chest X-ray images which 
introduces an innovative adaptive mechanism that dynamically adjusts privacy 
levels based on real-time data sensitivity analysis, improving the practical 
applicability of Federated Learning (FL) in diverse healthcare environments. 
We compared and analyzed the performance of this distributed learning model 
with a traditional centralized model. Moreover, we  enhance the model by 
integrating a FL approach with an early stopping mechanism to achieve efficient 
COVID-19 prediction with minimal communication overhead. To ensure privacy 
without compromising model utility and accuracy, we evaluated the proposed 
model under various noise scales. Finally, we discussed strategies for increasing 
the model’s accuracy while maintaining robustness as well as privacy.
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1 Introduction

The global healthcare system faces an unprecedented challenge due to SARS-CoV-2. The 
COVID-19 pandemic has emerged as a significant global health crisis, impacting millions 
worldwide and causing widespread economic and societal disruption on a global scale. The 
rapid spread of the virus has led to the harnessing of cutting-edge technologies for patient data 
collection, disease prediction, surveillance, and management. COVID-19 disease-related data 
being generated or collected by the various Internet of Things (IoT) applications are being 

OPEN ACCESS

EDITED BY

Amin Ul Haq,  
University of Electronic Science and 
Technology of China, China

REVIEWED BY

Ebrahim Elsayed,  
Mansoura University, Egypt
Gurjot Singh Gaba,  
Linköping University, Sweden
Misbah Abbas,  
Nencki Institute of Experimental Biology 
(PAS), Poland
Lakshmana Ramasamy,  
Higher Colleges of Technology,  
United Arab Emirates

*CORRESPONDENCE

Praveen Kumar Reddy Maddikunta  
 praveenkumarreddy@vit.ac.in

RECEIVED 29 March 2024
ACCEPTED 15 May 2024
PUBLISHED 03 June 2024

CITATION

Ahmed R, Maddikunta PKR, Gadekallu TR, 
Alshammari NK and Hendaoui FA (2024) 
Efficient differential privacy enabled federated 
learning model for detecting COVID-19 
disease using chest X-ray images.
Front. Med. 11:1409314.
doi: 10.3389/fmed.2024.1409314

COPYRIGHT

© 2024 Ahmed, Maddikunta, Gadekallu, 
Alshammari and Hendaoui. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 03 June 2024
DOI 10.3389/fmed.2024.1409314

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2024.1409314&domain=pdf&date_stamp=2024-06-03
https://www.frontiersin.org/articles/10.3389/fmed.2024.1409314/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1409314/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1409314/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1409314/full
mailto:praveenkumarreddy@vit.ac.in
https://doi.org/10.3389/fmed.2024.1409314
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2024.1409314


Ahmed et al. 10.3389/fmed.2024.1409314

Frontiers in Medicine 02 frontiersin.org

managed and processed using efficient big data analytics and 
computational methods such as ML or DL algorithms (1). Diverse 
healthcare datasets are collected, encompassing epidemiological data 
(e.g., confirmed cases, deaths, recoveries), clinical records (e.g., 
symptoms, comorbidities), demographic information (e.g., gender, 
age), and socio-economic factors (e.g., population density, mobility 
patterns). However, this data inherently contains sensitive information 
related to specific patients, regions, or locations (2). Therefore, robust 
measures are crucial to safeguard data privacy and confidentiality 
during various activities such as sharing, exchanging, managing, and 
processing, which often involve multiple entities and tools. Healthcare 
data privacy standards guarantee that only authorized individuals or 
organizations have access to a patient’s personal medical information. 
This protects sensitive information like a patient name, patient 
address, date of birth, and important medical status being shared 
without their consent (3). However, traditional centralized systems 
have major drawbacks, including significant processing time, 
increased network traffic, and a heightened risk of unauthorized 
data access.

Over the years, various methods have been developed for 
addressing the limitations of centralized architectures. While 
preserving data privacy and confidentiality through authorized access 
control. However, recent advances in applied AI technologies provide 
promising results with distributed learning techniques, resulting in 
increased data processing. FL is a distributed learning approach in 
which only model parameters are exchanged between the server and 
clients over several iterations, rather than actual data being transferred 
to the server. The clients perform training on their data using the 
model parameters provided by the server. Throughout this process, 
initial privacy is provided, and communication costs are reduced. 
Since the amount of data on clients is less compared to the central data 
pool, local learning is attained with minimal hardware requirements 
(4). Figure 1 illustrates the processing of medical data from various 
hospitals using FL architecture. Although FL achieves privacy through 
the physical isolation of data, it does not guarantee privacy for local 
data. During the model transmission process, the server can invert the 
client’s local information using model gradients, leading to a potential 
inference attack. Even though FL fulfills the design principles 
necessary for achieving privacy, but still, the attacker can still steal the 
private information of a user through the intermediate results of the 
FL process (5). However, this be addressed in two ways. First, we can 
consider encryption methods to protect the information flow of 
intermediate results such as Homomorphic Encryption (HE) (6) and 
Secure Multi-party Computation (MPC) (7). Secondly, we  can 
consider the perturbation of the original private information, through 
techniques such as Differential Privacy (DP), which can prevent the 
revelation of intermediate results (8).

By introducing noise to the original dataset or learning 
parameters, the DP technique guarantees a high level of privacy 
protection in data analysis, thus making it impossible for attackers 
to access sensitive data. Although DP was proposed in 2006, its 
recent AI applications to improve data security, stabilize the 
learning process, develop unbiased models, and apply composition 
in specific AI domains have attracted significant interest from 
researchers and tech titans such as Google, Microsoft, and Apple 
(9). These organizations are interested in retrieving statistics from 
client devices, either by developing applications with Central 
Differential Privacy (CDP) or Local Differential Privacy (LDP) 

techniques (10). CDP techniques involve the inclusion of random 
noise to the actual data after it has been acquired from all clients 
by a data curator in a central server. However, the LDP mechanism 
introduces noise before transmitting the data or learning parameter 
to the central server, guaranteeing privacy from the beginning of 
data transmission process. Besides applications in ML and DL, DP 
has also improved the convergence rate by guaranteeing privacy in 
distributed learning environments (11). An adaptive Differential 
Privacy Federated Learning Medical IoT (DPFL-MIoT) uses 
several techniques such as DP, FL, and deep neural networks with 
adaptive gradient descent to mask model parameters by infusing 
noise (12).

The main contributions of the work are as follows:

 1 We have developed a distributed learning model to predict 
COVID-19 disease by considering the three different classes of 
Chest X-Ray images such as COVID, Normal, and Pneumonia.

 2 We designed Adaptive Differential Privacy-Enhanced 
Federated Learning (DPFL) framework with an early-stopping 
technique to preserve patient data while maintaining utility.

 3 We have conducted several experiments to analyze and evaluate 
the Utility and Privacy of the data, and the impact of the early 
stopping mechanism on the performance of the proposed 
DPFL model.

The rest of the paper is organized as follows: Section 2 discusses 
existing works on FL and AFL using DP. Section 3 presents the 
proposed FL models with a DP mechanism. A detailed discussion of 
the experimental setup, dataset, and obtained results are provided in 
Section 4. Finally, the conclusion and future research directions are 
discussed in Section 5.

2 Literature review

FL revolutionizes ML by decentralizing model training across 
devices, safeguarding local data privacy. This collaborative model 
involves a central server managing global parameters and clients with 
local datasets. Model updates from clients enhance the global model 
iteratively. FL offers advantages like privacy preservation, reduced 
communication overhead, and collaborative learning. Challenges 
include handling heterogeneous data and addressing communication 
and security concerns. This sets the stage for exploring privacy-
preserving mechanisms like Differential Privacy within the FL 
framework. To reduce the prediction bias and to eradicate the 
overfitting problems caused by to small dataset, Chen et al. (13) have 
proposed a DP-based adaptive worker selection algorithm. The 
proposed framework generated a vulnerability prediction map 
considering COVID-19 data through various apps using distributed 
FL models to ensure privacy. Wu et al. (14) suggested an FL model 
with an adaptive gradient descendent and differential privacy 
mechanism for a multiparty collaborative environment by ensuring 
efficient model training with minimal communication cost. Even 
though, the proposed technique enhances the accuracy and stability 
of the model but still lacks model convergence efficiency due to 
hyperparameter fluctuations. Ulhaq et  al. (15) have developed a 
Differential privacy-enabled FL framework for COVID-19 disease 
diagnosis by ensuring data privacy. The authors have designed and 
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developed the theoretical model, hence the model needs to 
be implemented for further analysis.

Similarly, Wang et  al. (16) have designed a privacy-enhanced 
disease diagnosis using FL. The proposed model incorporates 
Variational Autoencoder (VAE), differential privacy noise, and 
incentive mechanism during the disease diagnosis process in a 
distributed environment. Simulation results have shown that the 
accuracy of the global model decreases with an increase in the privacy 
budget. The privacy requirements of the individuals are not the same, 
hence the authors Liu et al. (17) have introduced a hybrid differential 
privacy technique to the existing privacy-friendly FL framework by 
dividing the user into groups as per their privacy requirements. The 
adaptive gradient clipping mechanism and improved composition 
methods of the model will improve the model accuracy by reducing 
the noise issues. To reduce the impact of noise on the accuracy of the 
model the authors Yang et al. (18) have proposed Kalman Filter-based 
Differential Privacy Federated Learning Method (KDP-FL). The 
Proposed algorithm was tested in a simulated environment; however, 
the Kalman filter noise reduction method results in better accuracy 
but increases the computational overhead.

To reduce and nullify the leakage of sematic information of the 
training data by the Generative Adversarial Networks (GAN), the 
author’s Zhang et al. (19) have developed a “Federated Differentially 
Private Generative Adversarial Network (FedDPGAN)” model for the 
detection of COVID-19 pneumonia, which is aimed to improve the 
data privacy of the patients. DP-GAN of the proposed model protects 
the sematic information of the training dataset in a distributed 
learning environment. The model was tested and analyzed by 
considering both the IID and Non-IID settings of the COVID-19 
dataset. The experimental results have shown 3% increase in the 
overall performance compared to the FL model by ensuring the 
privacy of data. Similarly, Ho et al. (20) introduced a privacy-focused 
FL system for COVID-19 detection, aiming to create a decentralized 

learning framework among multiple hospitals that does not need the 
transfer of actual patient data. The proposed framework ensures the 
privacy of patient data by incorporating differential privacy techniques 
such as DP stochastic gradient descent (DP-SGD). The experimental 
results show that incorporating a spatial pyramid pooling layer into a 
2D CNN, as well as specific design choices for handling Non-IID data, 
such as the number of total clients, the degree of client parallelism, 
and the computations per client, resulted in an increase in 
overall accuracy.

To achieve privacy with high utility in a distributed learning 
environment, the authors Li et  al. (21) have proposed a secure 
Asynchronous Federated Learning (AFL) with DP algorithm for 
collaborative edge-cloud devices. The multi-stage adjustable private 
algorithm of the proposed model will dynamically adjust the noise 
and learning rates to improve the efficiency and convergence. The 
experimental findings show better results compared to the existing 
machine learning models with improved privacy. Lu et al. (22) has 
proposed a differentially private AFL approach for data sharing in 
vehicular networks. The authors have proposed local DP technique to 
nullify the attacks caused by the centralized curator during the 
weighted aggregation process. The experimental results have shown 
faster convergence with a few observations as the number of clients’ 
increases such as increased training period required to learn from the 
server model with reduced accuracy. Nguyen et al. (23) has proposed 
a novel asynchronous federated optimization framework with buffered 
asynchronous aggregation and Differential privacy scheme. The model 
was aimed to achieve improved privacy and scalability. The simulation 
results of the model outperformed the traditional methods.

Li et al. (24) have proposed an optimized asynchronous federated 
model for a depression detection system. The model was designed to 
enhance both the communication efficiency and the convergence rate 
while maintaining users’ privacy using the DP technique. The 
experimental results have shown 86.67% accuracy and minimal 

FIGURE 1

Federated learning in healthcare systems.
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communication cost. Even though the FL provides a privacy guarantee 
for the user’s data, to strengthen the privacy safeguards the authors, 
Nampalle et al. (25) have proposed a novel FL with a DP technique for 
medical image classification. The proposed method consists of a novel 
noise calibration mechanism and adaptive privacy budget allocation 
strategy. Even though the simulation results have shown an improved 
efficiency in the classification of skin lesions and brain tumor images, 
the model requires further analysis and testing to improve the overall 
performance. Malik et al. (26) introduced DMFL_Net, a FL-based 
model for COVID-19 image classification. The study aims to improve 
COVID-19 classification, data privacy, and communication efficiency 
across medical institutions. The model incorporates DenseNet-169 
into FL environment to enable collaborative training without sharing 
its contents to clients, thus guaranteeing privacy. The experiments 
were conducted on chest X-ray images to compare the performance 
of DMFL_Net with the conventional transfer learning approaches 
VGG-19 and VGG-16. The experimental results show that the 
proposed DMFL_Net model attains an accuracy of 98.45%, 
outperforming all other models and ensuring data privacy and 
optimal communication efficiency between participating hospitals. 
Dayan et al. (27) proposed a FL model named EXAM, that predicts 
the future oxygen requirements for COVID-19 patients based on chest 
X-rays, vital signs, and test results. The primary objective of the 
present study is to design a robust, generalizable model that can 
classify patients efficiently and effectively among different healthcare 
systems without the need for personal information sharing, thereby 
enhancing privacy and data security. The proposed model utilizes a 
34-layer CNN (ResNet34) for extracting features from chest X-rays 
and a Deep & Cross network for integrating EMR features. The 
experiments were performed on data collected from 20 institutes 
around the world, and the results indicate that the proposed EXAM 
model enhanced accuracy and generalizability across trained models, 
with an AUC increase of 16 and 38% for generalizability.

Table 1 represents the summary of existing differential privacy-
based Federated Learning models.

The literature review for Section 2 was carried out in accordance 
with the PRISMA guidelines shown in Figure 2.

3 Proposed model

In this section we present the preliminaries of Federated average 
algorithm and differential privacy mechanism. Following that, 
we  present an overview of our proposed model, including the 
architecture and approaches used to classify Chest X-ray images to 
identify COVID-19 cases.

3.1 Differential privacy

Differential privacy (DP) enables the analysis of the features of an 
entire dataset or population without disclosing any personal 
information. A differentially private algorithm ensures that the 
inclusion or exclusion of a tuple from the dataset has no vital effect on 
the output. Dwork et al. defined DP as follows:

Definition 1: ,δ( ) —Differential Privacy—“A randomized 
algorithm R:J → K with input domain J and output range K is  ,δ( )
-differentially private if for all pairs of neighboring datasets J, ′∈J J , 

and every measurable L K⊆ , we  have 
Pr ·PrR J L e R J L( )∈( ) ≤ ( )∈( ) +′ε δ  where probabilities are with 
respect to the coin flips of R Equation.”

Where the privacy budget  is used to determine the strengths of 
privacy protection and δ = 0 result in -differential private mechanism. 
This type of DP is accomplished by introducing noise, which is 
identified through a sensitivity analysis of the dataset. Lower values of 
ε improve privacy but reduce effectiveness because of more noise, 
which lead to poor accuracy. Higher ε values improve data utility 
while compromising privacy. The chance of a further privacy violation 
after the ε guarantee is controlled by a measure called δ. When 
adjusting ε and δ, we must consider the desired prediction accuracy, 
acceptable privacy risk, and data sensitivity.

The following two probabilistic methods help to induce noise.
Laplace mechanism (10): The Laplace mechanism is a process of 

adding noise derived from the continuous Laplace distribution 

0,
p∆










  where p∆  is the sensitivity of function p, which measures 

the largest change in function p’s output generated by adding or 
removing a single individual’s data from the dataset. A higher 
sensitivity indicates that the function is more responsive to changes in 
the input dataset. During the process of noise addition to the dataset, 
L1 sensitivity and the epsilon value (i.e., the privacy budget) are 
considered for effective results. Hence, the Laplace mechanism can 
be defined as below:

Definition 2: “Given a function p J Y
i

: → , where Y is the set of all 
possible outputs, and  > 0.” The Laplace mechanism is represented in 
Eq. (1).

 
R J p J Lap p( ) = ( ) + 







0,

∆
  

(1)

Gaussian mechanism (10): The Gaussian Mechanism is a 
substitution to the Laplace Mechanism, which adds Gaussian Noise 
and supports tractability of the privacy budget under composition. 
Unlike Laplace Mechanism, Gaussian Technique uses L2 sensitivity 
rather than the L1 sensitivity, providing better control over the privacy 
budget by ensuring reasonable privacy guarantees and smoother noise 
distribution of L2 sensitivity will also preserve the utility. It can 
be defined as below.

Definition 3: "Given two neighboring datasets J and J’ in the 
dataset universe Ji, a query function p J G

i
: → , where G is the set of 

all possible outputs, and  > 0″. The -Gaussian DP (-GDP) 
mechanism is given in Eq. (2).

 
R J p J p( ) = ( ) +













N 0

2

2
,
∆

ε  
(2)

Where, N
ε

0

2

2
,

p∆











 is considered as the normal distribution.

3.2 Federated averaging process

In a FL system that includes one server and n clients, where each 
client maintains local database Ji where i = {1, 2, 3,…,n}. The server’s 
objective is to continuously learn from the data stored on n clients 
through multiple iterations, employing the local weights sent by the n 
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clients to minimize loss. The optimization problem can be represented 
as shown in Eq. (3).

 
Wt p F Wt

Wt i

n
i i i

∗

=
= ( )∑arg min

1

,
 

(3)

Here, Wt* denotes the server model parameter generated after 
aggregating the local models from n clients, Wti is denoted as the 
model parameter from the ith client, and Fi is considered as the loss 
function of the ith client. Overfitting to specific client datasets in a 
heterogeneous data environment is a challenge in FL. Regularization 
and model averaging methods are used to address this issue. Applying 
regularization to the loss functions Fi helps in minimize overfitting, 
and Federated Averaging engages averaging model updates from 
clients to reduce overfitting. pi  is proportional to the amount of data 
 i  contained by client i, affecting the client total model. The value of 
pi  impacts the convergence rate of the model. Managing these 
weights is essential for guaranteeing that the model performs well 
among all client data transfers. The training mechanism of FL systems 
consists of several steps: Initially, the FL model sets the server’s 
weights. After that, it executes the following steps over 
multiple rounds:

Step  1: Forwarding the server weights: Server weights are 
forwarded to N clients in a network. Later, each client keeps a buffer 
to store the received weights in multiple iterations for future reference.

Step 2: Client Model Training: Using the latest model sent by the 
server, the clients will train their data on local machines. Soon after 
the training process, the updated models are returned to the server for 
further operations.

Step  3: Client Model Aggregation: The updated client model 
weights from n clients are transferred to the server. Later, the server 
will generate new weight by aggregating all client weight updates 
through mean computation, which is represented in Eq. (4).

 

Wt
Wt

i
i
n

i

i
n

′ = =

=

∑
∑

0

0  

(4)

3.3 DP enabled federated averaging 
algorithm

In this section, we will discuss the architecture and steps involved 
in the proposed DPFL model and the pseudocode of the DPFL.

TABLE 1 Summary of existing DP-based FL models.

References Methodology Advantages/salient 
feature

Disadvantages/future enhancement

Chen et al. (13) “DP Based adaptive worker selection 

algorithm for FL with LSTM training 

model.”

Resolves the issues of inadequate 

amount of dataset, ensure users data 

privacy using DP mechanism

Requires further threat analysis.

Wu et al. (14) Adaptive gradient descendent 

mechanism with DP for collaborative 

learning

The model shows strong robustness 

and is less volatile.

The model suffers from convergence issues for a large 

set of data.

Ulhaq and Burmeister (15) FL-based DP model for disease 

diagnosis.

Seven design principles are defined 

for effective implementation.

Only a theoretical model, hence it requires actual 

implementation for proper analysis

Wang et al. (16) FL model with variational autoencoder 

(VAE) and DP preserve the patient’s data 

privacy

The model guarantees high accuracy 

and low adversarial inference attacks

Lack of strategies to improve the accuracy of a global 

model.

Liu et al. (17) Hybrid Differential Privacy Model for 

FL.

The model removes the adverse 

effect of noise addition by using the 

adaptive clip method

Lack of strategies to stabilize correctness, privacy, and 

communication in FL

Zhang et al. (19) GAN-based DP mechanism for FL 

(FedDPGAN). GAN Based DP 

mechanism for FL (FedDPGAN).

High-quality training samples 

generation.

High-quality training samples generation.

Ho et al. (20) FL-based DPSGD for disease analysis, 

CNN model incorporating a spatial 

pyramid pooling strategy.

Improved robustness of the Model 

and improved accuracy of Non-IID 

data.

The model requires further analysis by considering a 

large dataset.

Nampalle et al. (25) Adaptive privacy budget allocation 

mechanism for FL.

Improved privacy of medical data. The proposed model failed to harmonize privacy and 

model performance

Malik et al. (26) DMFL_Net for the classification of 

COVID-19

High classification accuracy and 

robustness in privacy preservation.

The FL model’s complexity limits its ability to scale to 

larger networks of organizations.

Dayan et al. (27) FL for predicting clinical outcomes 

COVID-19 patients

The use of FL improved accuracy 

and privacy, making it appropriate 

for sensitive medical applications.

Due to the complexity of managing and synchronizing 

updates across the network, it does not scale smoothly 

as the number of participating sites increases.
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3.3.1 Model architecture
The proposed DP-based FL model is aimed at providing user-level 

privacy by modifying the basic Federated Average algorithms in two 
different ways:

 1 Clip the Model Updates: Model clipping is performed using 
adaptive methods instead of predefined clipping norms. The 
adaptive approach updates the clipping threshold based on a 
specific quantile, ensuring that values are accurately estimated 
within that range. Also, enables the model to maintain stability 
and convergence while effectively controlling the magnitude of 
updates, aimed to improve training performance and 
model accuracy.

Let A S∈  be a random variable and β ∈[0,1] be a quantile to 
be satisfied. Then, for any T is given in Eqs. (5, 6) results in Eq. (7).

  
β

β
β

T;A
T A if A T

A T otherwise
( ) =

−( ) −( ) ≤
−( )







1

 
(5)

So  β
β

β
′ ( ) = −( ) ≤

−




T;A
if A T

otherwise

1
 (6)

Hence,  
 β

β β

′ ( )



 =

−( ) ≤[ ] − >[ ] = ≤[ ] −
T;A

A T A T A T1 Pr PrβPr
 

(7)

 2 Addition of noise: In order to improve privacy without 
degrading the utility of data, the proposed model will 
be monitored using the standard deviation of the Gaussian 
noise and number of clients. Initially, we  determine the 
noise tolerance of the model based on a varied amount of 
noise values by considering a small number of clients per 
round. Then we train the final model with increased noise 
on the sum and more clients per round. Reducing the 
number of clients at first eases the computational load and 
allows for effective noise level exploration. This methodology 
facilitates the assessment of the impact of varying noise 
levels on the usefulness of the information while offering 
valuable perspectives on the balance between privacy and 
usefulness. Figure  3 depicts the stages of the proposed 
DPFL model.

3.3.2 DPFL algorithm
Considering n as the number of users in a round and β ∈[0,1] as 

the target quantile for the norm distribution where clipping is to 
be applied, for every iteration m M∈[ ], let Vm  represent the clipping 

FIGURE 2

Prisma flow chart.
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threshold, and ηV  the learning rate. Let Ym be the set of users sampled 
in round m. Each user k Ym∈ will send the binary indicator ak

malong 
with the usual model update m

k∆ , where ak
m

Vk
m m= ≤( ) ∆ 2

. Defining 
a

n
am

k
k
m

m

=
∈
∑1


, we  apply the update V V aV← − −( )( )·exp η γ  

However, to prevent the leakage of private information 
through model updates, we  add Gaussian noise to 

the sum 
a
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= + ( )
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
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The target quantile (β) for the normal distribution affects the 
clipping threshold (Vm) by selecting the value at which the distribution’s 
tails are trimmed. Higher β values result in higher clipping thresholds, 
allowing for further removal of the distribution. The learning rate ηV  
in the update rule for V controls how quickly the clipping threshold 
adjusts to observed gradients. Higher ηV  results in quicker V 
modifications, potentially speeding up convergence by allowing the 
model to react to changes in data distribution. Excessive ηV  values 
disrupt training, leading to divergence. A lower ηV  promotes stability 
but delay convergence rates. The regularization parameter γ maintains 
the clipping threshold within the intended bounds by modifying it in 
response to the discrepancy between the target value γ and the average 
clipping rate a . Thus, the federated learning process’s privacy-utility 
trade-off is adjusted by varying γ. Algorithm 1 depicts DPFL Algorithm.

ALGORITHM 1 : DPFL Algorithm

Function Train n xv z V a, , , , , , ,β η η η σ β( )

Initialize model θ0 , clipping bound V 0

x x b∆ ← − ( )( )− − −
2 2

1 2
2σ

/

For (each round m = 0,1,2, ………) do

m samplemusers uniformly←( ) 

For each user k m∈  in parallel do

∆k
m
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m m v ma FedAvg k V, , , ,( )← ( )θ η

End For
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End For

function FedAvg i V , , ,θ η0( )
θ θ← 0

←( )′user k slocal data is divided into batches     

Forbatchb∈ do

θ θ η θ← − ∇ ( ) ;b

∆← −θ θ0

a V← ≤
 ∆

′← 







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∆
·min 1,

V
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End For

return ′( )∆ ,a

FIGURE 3

Stages of proposed DPFL model.
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3.4 Early stopping mechanism

The early stopping technique is a widely utilized method for 
regularization in DNN. It is an effective and simple technique that 
typically outperforms most of the general regularization approaches. 
During training, the model continually stores and updates the best 
parameters attained so far. If there’s no further improvement in 
validation error after a set number of iterations, the training halts, 
retaining the last best parameters. When dealing with models that are 
prone to overfitting, it is common to recognize a gradual decrease in 
training error followed by an increase in validation error. Early stopping 
represents a balance between training duration and generalization error, 
minimizing communication overhead while still achieving optimal 
parameters. By reducing the need for communication and subsequently 
diminishing noise, early stopping enhances the utility of the data. The 
early stopping algorithm can be represented in  Algorithm 2 as follows:

ALGORITHM 2 : General Early Stopping Mechanism

Input: s➔ represents the number steps during the evaluation period.

e➔ represents the number of epochs, meaning it terminates after observing the worse 

performance.

θ0 ➔ represents the initial parameter.

θ θ← 0

p ← 0

q r p p← ←∞ ← ←∗ ∗
0, , ,θ θ

While (q e< ) do

Execute the training algorithm for s steps and update θ  

p p n← +

′←r  validation_set_error θ( )

If ′ <r r  then

q p p r r← ← ← ← ′∗ ∗
0, , ,θ θ

Else

q q← +1

End If

End while

Output: The optimal parameter θ∗, the optimal number of training steps p∗

4 Experimental results

This section discusses the experimental activities used to analyze 
and evaluate the effectiveness of the proposed algorithm. We discuss 
the dataset, experimental setup, model and training data, and 
performance analysis using various metrics.

4.1 Dataset description

The proposed model is evaluated considering the Covid19, 
Pneumonia, Normal Chest X-Ray Image dataset from Mendeley Data 

(28). This dataset includes 5,228 chest X-ray images categorized into 
three categories: 1,626 COVID-19, 1,802 normal (asymptomatic), and 
1,800 pneumonia (non-COVID-19). All images are resized to 256 * 
256 pixels to reduce computational load, which is important in a FL 
environment where computations are distributed across devices of 
different capabilities. During the process we classify the image dataset 
into train and test sample datasets having 4,182 training samples and 
1,046 testing samples, respectively. Table  2 describes the data 
distribution among each of the categories, and Figure 4 depicts sample 
images from each category.

4.2 Implementation and model

The proposed model is developed using the Python programming 
language and evaluated within a Tensorflow framework in a Colab 
environment. TensorFlow Federated and TensorFlow Privacy 
packages allow developers to simulate and test the functioning of 
distributed learning with privacy. TensorFlow Federated provides a 
wide range of FL-specific features. This allows for the modeling of FL 
processes on decentralized data, which is crucial for our research as 
data privacy and local computation are essential. The TensorFlow 
Privacy framework includes pre-built mechanisms, such as optimizers, 
to make it easier to integrate differential privacy into machine learning 
processes. The primary objective is to categorize the disease into three 
groups: normal, COVID-19, and pneumonia, through the use of CNN 
model. Our CNN model, depicted in Figure 5, contains two 3 × 3 
convolutional layers with 32 and 64 channels, followed by a 2 × 2 max 
pooling layer. The two convolutional layers were used to achieve a 
balance between model complexity and computational efficiency, 
which is important in a FL environment where edge devices have 
limited computational resources. It includes a fully connected layer 
with 128 units and utilizes ReLU activation, a softmax output layer for 
classification. To prevent overfitting during the training process, two 
dropout layers with probabilities of 0.25 and 0.5 are positioned just 
before and after the fully connected layer.

4.3 Distributed and central architecture

The CNN model is trained in both distributed and traditional 
central learning environments considering the parameters as number_
of_clients = 100, client_ratio = 0.3, local_epochs = 2, and batch_
size = 16. With the increase in number of rounds, the accuracy in 
identifying COVID-19 diseases enhances more in FL-based 
environments. Therefore, the FL model shows superior learning 
capabilities compared to conventional learning systems. The FL-based 
model performs better after 50 rounds of execution. Therefore, the 
overall accuracy of the FL-based approach achieves 94.3%, while 
central learning is 93.5%. Figure  6 depicts an analysis of 
communication rounds between FL and central learning models, 
indicating that training on diverse datasets from various clients results 

TABLE 2 Distribution of the COVID-19 dataset into training and testing 
sets.

Data-split details Normal Covid-19 Pneumonia

Train data samples 1,442 1,300 1,440

Test data samples 360 326 360

https://doi.org/10.3389/fmed.2024.1409314
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ahmed et al. 10.3389/fmed.2024.1409314

Frontiers in Medicine 09 frontiersin.org

in better model generalization. In FL, the client trains a model using 
local data and only shares model updates. This minimizes the risk of 
overfitting for COVID-19 patient data. Each round of FL training 
provides new updates from multiple client datasets, improving the 
model’s ability to predict and achieve higher accuracy. This finding 
highlights distributed learning’s advantage over traditional central 
learning methodologies in terms of improving model performance.

The proposed distributed learning techniques are further 
evaluated by comparing various existing CNN models such as 
Resnet18, Resnet50, and VGG18, with our model. The analysis uses 
number_of_clients = 100, client_ratio = 0.3, local_epochs = 2, and 
batch_size = 16. Our CNN has an optimal number of layers, and 
activation functions that handle the data’s features more efficiently.

The model is designed to generalize better when trained on 
decentralized datasets and is highly parameter-efficient, resulting in 
higher accuracy with less parameters. This efficiency is important in 
FL, where models are updated throughout networks using minimal 
computational resources. Figure 7 depicts the accuracy analysis of the 
models where the CNN model outperforms the aforementioned 
models in terms of accuracy for different communication round. The 

primary goal of FL is to manage communication rounds with the 
computational and communication overheads. Frequent updates 
result in faster convergence and higher accuracy. We noticed that as 
the number of rounds increased, the model’s accuracy enhanced, 
implying that more frequent updates benefit model performance.

The proposed distributed FL model undergoes additional analysis 
by varying the batch size, which shows that the FL model’s accuracy 
increases exponentially as the batch size increases across various 
rounds, as shown in Figure 8. Increasing the batch size leads to a larger 
volume of data processed during every round of training. Larger batch 
sizes help to smooth out noisy gradients and stabilize the training 
process, resulting in better convergence and accuracy. Therefore, this 
aids in enhancing the accuracy of the model’s learning process.

4.4 FL with differential privacy mechanism

FL guarantees privacy by eliminating the need to share data 
between participants or servers. To improve the privacy mechanisms 
of FL-based learning, we proposed the Differential Privacy Federated 

FIGURE 4

Normal, COVID19, pneumonia chest X-ray image samples.

FIGURE 5

CNN model architecture.
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Learning model. The experiment is carried out in a distributed 
learning environment with a 0.2 noise_multiplier, 50 clients_per 
round, a learning_rate of 0.01, two epochs, and a client_ratio of 0.01. 

However, the introduction of noise reduces the accuracy of the 
DP-based FL when compared to the traditional FL. Figure 9 shows a 
3% drop in accuracy for the DPFL-based model compared to FL. The 

FIGURE 6

Comparison of model accuracy over communication rounds for central and federated learning architectures.

FIGURE 7

Comparative accuracy performance of CNN model against standard CNN architectures.
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noise disrupts the learning process, lowering the model’s capability 
to accurately capture the underlying patterns in the data. As a result, 

the introduced noise necessitates a compromise between privacy and 
model accuracy.

FIGURE 8

Accuracy analysis of FL model with respect to varied batch size.

FIGURE 9

Comparison of FL vs. DP enabled FL.
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4.5 Model noise sensitivity analysis

Model Noise Sensitivity Analysis in FL is important for deploying 
FL models in environments where data noise is unavoidable, as it 
helps to understand how noise in the data affects the performance and 
reliability of learning models trained on various decentralized devices 
or servers. In the healthcare domain, the main focus is the accuracy of 
diagnosis models, as inaccurate predictions can have an immediate 
effect on the health of patients (29). However, because medical records 
are so sensitive, patient data privacy is a major concern (30, 31). To 
meet these requirements, healthcare professionals can select a lower 
noise multiplier if the model’s predictive accuracy is vital for critical 
diagnostic tasks. Yet, for less sensitive tasks, a higher noise multiplier 
may be  sufficient to ensure more privacy. Our findings suggest a 
strategic approach in which noise levels are adjusted depending on the 
sensitivity of the data and the importance of the task. This enables 
health care professionals to keep patient trust by protecting their data 
while guaranteeing that the diagnostic models are as accurate as 
needed. Data scientists working in a variety of sectors particularly 
healthcare, are frequently challenged with creating models that 
balance usability and privacy standards. They could apply our findings 
to create adaptive privacy mechanisms that dynamically adjust the 
noise multiplier according to real-time assessments of data sensitivity 
and model performance. Understanding and minimizing the impact 
of noise can improve the reliability, accuracy, and effectiveness of FL 
models. To improve utility and maintaining privacy, our proposed 
model includes an adaptive clipping mechanism based on an increased 
noise addition mechanism. The adaptive clipping mechanism 
automatically adjusts the sensitivity between aggregated data as well 

model updates, resulting in an optimal balance of data privacy and 
model utility. This mechanism helps in controlling the impact of noise 
introduced to ensure privacy, improving the model’s learning 
efficiency, and protecting each data point. Initially, we train the model 
by considering 50 clients per round by considering noise multipliers 
in the range [0, 0.25, 0.5, 0.75, and 1.0].

Figures 10, 11 show that the model can tolerate noise multipliers 
up to 0.5, implying that noise multipliers of 0, 0.25, and 0.5 do not 
decrease the utility of the data. However, a noise multiplier of 0.75 
reduces accuracy, while 1.0 causes the model to completely diverge. 
The adaptive clipping mechanism allows the model to withstand noise 
up to a certain level (0.5 in this case) while maintaining utility. This 
demonstrates the effectiveness of the proposed method, which 
balances privacy and accuracy. Additional simulations are carried out 
to determine the implications of changing the client count in each 
round while keeping a constant noise multiplier of 0.25 and client 
ratio of 0.01 throughout the process. As the client count increased 
from 10 to 40, the model’s accuracy improved and the loss percentage 
decreased. However, based on the results of our previous experiments 
and with the goal of reducing data privacy risks while preserving data 
utility, we ran another simulation with a privacy budget of 1e-05 and 
a total of 120 clients per round. In spite of the increased noise 
multiplier, the outcomes show enhanced precision in comparison to 
earlier tests, suggesting that the privacy-preserving mechanisms 
successfully discover a balance between privacy and utility. Figure 12 
depicts the improved accuracy of the proposed model. Therefore, 
increasing the number of clients per round results in a more diverse 
and representative dataset, resulting in better generalization and 
model efficiency.

FIGURE 10

Accuracy analysis of DP enabled FL based on varied noise multiplier.
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FIGURE 11

Loss analysis of DP enabled FL based on varied noise multiplier.

FIGURE 12

Accuracy analysis of DP enabled FL based on increased client ratio.
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4.6 Model performance for early stopping 
mechanism

Another experiment was carried out with a configuration of 50 
clients_per round, a learning_rate of 0.01, and 100 epochs to 
investigate the impact of incorporating an early stopping mechanism 
into the proposed DPFL model, as shown in Figure 13. During the 
experiment, the proposed DPFL model’s accuracy improved as the 
number of training epochs increased by dynamically adjusting the 
noise range within a specific privacy level. By evaluating the model’s 
performance on a validation dataset during training, the early 
stopping mechanism terminate the training process when the model 
begins to overfit, thus improves the model’s generalizability. As a 
result, the integration of the early stopping mechanism with DPFL 
model achieved an accuracy of 91.2% after 80 epochs, hence it 
ensures the consistent privacy level throughout the training process, 
without sacrificing accuracy and also minimizes overall 
communication costs.

Early termination of training may have a disproportionate impact 
on specific clients, resulting in biased model updates and imbalances. 

This issue can be addressed by using the early stopping criterion 
based on client attributes or performance measures, ensuring that all 
clients contribute significantly to the training process and are 
treated equally.

5 Conclusion

In this work, we propose an enhanced Privacy-Preserving FL 
system with Differential Privacy techniques to predict COVID-19 
using Chest X-Ray images. Initially, we trained Chest X-Ray image 
data using a CNN model, evaluating Federated and non-Federated 
training methods. The results show that FL-based training enhances 
performance by 0.8% over non-FL or traditional centralized 
learning. Secondly, we introduce an enhanced FL-based system that 
includes additional differential privacy and an adaptive noise 
inclusion mechanism. This system’s adaptive clipping effectively 
identifies the model’s noise tolerance level while preserving data 
utility across different noise scales. However, the proposed DPFL 
model’s initial results show a 3% reduction in accuracy when 

FIGURE 13

Accuracy analysis of early stopping mechanism.
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predicting COVID-19 due to the masking process. The integration 
of an efficient privacy-utility trade-off and an early stopping 
mechanism to DPFL has resulted in a 1% increase in accuracy and a 
decrease in communication rounds. As a result, the proposed early 
stopping-based DPFL model outperforms existing DP-based FL 
models in terms of COVID-19 predictions. The model can be further 
enhanced by considering the popular pre-trained models for a large 
dataset and also considering other aspects such as improving the 
scalability and robustness of the FL. Additionally the incorporation 
of various to techniques for model personalization, model 
generalization, and fair client contribution evaluation will further 
strengthen the model.
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