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Introduction: Cardiovascular disease (CVD) stands as a pervasive catalyst 
for illness and mortality on a global scale, underscoring the imperative for 
sophisticated prediction methodologies within the ambit of healthcare data 
analysis. The vast volume of medical data available necessitates effective 
data mining techniques to extract valuable insights for decision-making and 
prediction. While machine learning algorithms are commonly employed for 
CVD diagnosis and prediction, the high dimensionality of datasets poses a 
performance challenge.

Methods: This research paper presents a novel hybrid model for predicting CVD, 
focusing on an optimal feature set. The proposed model encompasses four 
main stages namely: preprocessing, feature extraction, feature selection (FS), 
and classification. Initially, data preprocessing eliminates missing and duplicate 
values. Subsequently, feature extraction is performed to address dimensionality 
issues, utilizing measures such as central tendency, qualitative variation, degree 
of dispersion, and symmetrical uncertainty. FS is optimized using the self-
improved Aquila optimization approach. Finally, a hybridized model combining 
long short-term memory and a quantum neural network is trained using the 
selected features. An algorithm is devised to optimize the LSTM model’s weights. 
Performance evaluation of the proposed approach is conducted against existing 
models using specific performance measures.

Results: Far dataset-1, accuracy-96.69%, sensitivity-96.62%, specifity-96.77%, 
precision-96.03%, recall-97.86%, F1-score-96.84%, MCC-96.37%, NPV-96.25%, 
FPR-3.2%, FNR-3.37% and for dataset-2, accuracy-95.54%, sensitivity-95.86%, 
specifity-94.51%, precision-96.03%, F1-score-96.94%, MCC-93.03%, NPV-94.66%, 
FPR-5.4%, FNR-4.1%. The findings of this study contribute to improved CVD 
prediction by utilizing an efficient hybrid model with an optimized feature set.

Discussion: We have proven that our method accurately predicts cardiovascular 
disease (CVD) with unmatched precision by conducting extensive experiments 
and validating our methodology on a large dataset of patient demographics and 
clinical factors. QNN and LSTM frameworks with Aquila feature tuning increase 
forecast accuracy and reveal cardiovascular risk-related physiological pathways. 
Our research shows how advanced computational tools may alter sickness 
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prediction and management, contributing to the emerging field of machine 
learning in healthcare. Our research used a revolutionary methodology and 
produced significant advances in cardiovascular disease prediction.

KEYWORDS

quantum neural network, cardiovascular disease prediction, feature extraction, self-
improved Aquila optimization, machine learning

1 Introduction

CVD is a global health issue that kills many people. The WHO 
estimates a 37% mortality rate, affecting 17.9 million people (1). CVD 
deaths are mostly caused by stroke and heart disease. These frightening 
findings highlight the need to understand the complex causes of 
CVD. The complex nature of CVD, which is linked to risk factors like 
high blood pressure, insulin levels, smoking, and sedentary lifestyles, 
highlights the need for comprehensive prevention, early detection, and 
management strategies (2). Understanding these risk variables is 
essential for establishing targeted therapies and reducing the global 
effect of cardiovascular health issues as researchers study CVD (3). 
Studies show that up to 90% of CVD cases are avoidable, but early 
detection, treatment, and recovery are crucial. Early CVD detection is 
essential for timely interventions. However, CVD prediction is too 
sophisticated for the brain. Time dependency, erroneous results, and 
knowledge upgradation due to vast CVD datasets complicate 
identification (4). These datasets typically have irrelevant and redundant 
features that hamper classification. Noise from unwanted features 
affects system performance. Addressing this, our research focuses on FS 
to eliminate unwanted features before applying classification 
approaches. This process enhances model simplification, reduces the 
risk of overfitting, and improves computational efficiency (5).

Traditional diagnosis heavily relies on clinical signs and 
symptoms, making disease analysis challenging. Predicting CVD is 
particularly complex due to multiple contributing factors, leading to 
inconsistent outcomes and assumptions. In the medical domain, data 
mining (DM) methods, especially ML techniques (6), are employed 
to analyze diseases like cancer, stroke, diabetes (7), and CVD. This 
research specifically utilizes advanced DM approaches for studying 
CVD. Also, some more accurate DM approaches are being used to 
study heart disease. Researchers have applied various DM systems 
such as support vector machines (SVM), decision trees (DT), and 
artificial neural networks (ANN) to identify CVD (8). With all of the 
above methods, patient records are continuously categorized and 
predicted. It continuously checks the patient’s movements and informs 
the patient and doctor of the risk of illness if there is a change. With 
the help of techniques like ML, doctors can easily detect CVD in the 
early stage itself. Amongst the traditional invasive-based method, 
angiography is represented as the well-known heart problem diagnosis 
method but, it has some limits. Conversely, a method such as 
intelligent learning-based computational approaches, non-invasive-
based techniques is considered more effective for predicting 
CVD. Cardiovascular disease (CVD), one of the leading causes of 
death worldwide, causes much morbidity and death. Early detection 
and prediction are essential to prevent CVD and reduce its impact on 
individuals and healthcare systems. Medical advances in machine 

learning and predictive analytics have created promising new 
opportunities for early cardiovascular disease risk factor diagnosis (9).

Predicting cardiovascular disease is crucial due to its incidence and 
damage. High-risk patients can be  identified, advised on lifestyle 
changes, and prevented from developing cardiovascular disease (CVD). 
Genetic and risk factor-based predictive diagnostics provide 
individualized healthcare and tailored medicines. Traditional risk 
assessment and advanced machine learning algorithms predict 
cardiovascular disease. Traditional risk assessments like the Framingham 
Risk Score and Reynolds Risk Score use demographic, clinical, and 
biochemical data to estimate CVD risk across time. These techniques 
have directed primary preventive initiatives by identifying high-risk 
populations. Machine learning algorithms’ ability to search massive data 
sets for detailed patterns has propelled their rise in cardiovascular disease 
prediction. More accurate and powerful predictive models have been 
constructed combining electronic health records, imaging data, genetic 
information, and lifestyle factors using supervised learning approaches 
such logistic regression, support vector machines, random forests, and 
neural networks. Before predictive analytics can fully forecast 
cardiovascular illness, many challenges must be overcome. Multiple data 
sources, such as genetic data, wearable sensor data, and socioeconomic 
characteristics, make cohesive prediction models difficult. Integrating all 
these data types while maintaining privacy, interoperability, and quality 
is still difficult. When clinical decision-making is crucial, machine 
learning model interpretability is a concern. Black-box algorithms can 
produce accurate predictions, but healthcare practitioners are wary of 
them since they do not expose their inner workings. Because 
cardiovascular disease risk changes, models must be developed and 
validated for varied populations and healthcare systems (10).

Future multidisciplinary teams of medics, data scientists, and AI 
professionals will improve cardiovascular disease prediction. 
Integrating data from microbiomics, proteomics, metabolomics, and 
genomes may lead to new cardiovascular risk biomarkers and better 
risk prediction models. Wearables, smartphone health apps, and 
remote monitoring systems enable real-time risk assessment and 
personalized treatments based on lifestyle and physiological 
parameters. Here, a Hybrid Intelligent Model with an Optimal Feature 
Set is introduced for the prediction of CVD. The main contributions 
are summarized below:

 1. The proposed research addresses the issue of dimensionality 
reduction by implementing FS techniques to reduce the 
number of features.

 2. To introduce the SIAO method for optimal FS, overcoming 
challenges in extensive CVD datasets.

 3. Proposing a hybrid model that combines LSTM and QNN to 
enhance the prediction performance of CVD.
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The subsequent sections follow a structured framework: Section 
2 reviews conventional CVD prediction models. In Section 3, the 
proposed model architecture is presented, and discussions on feature 
extraction, central tendency, dispersion, qualitative variation, and 
symmetrical uncertainty are provided. Section 4 introduces SIAO for 
optimal FS. The hybrid LSTM-QNN classification method is covered 
in Section 5. Experimental results and discussions are presented in 
Section 6. Section 7 contains the conclusion, summarizing 
contributions, and suggesting future research.

2 Literature review

This section critically analyses CVD prediction approaches, 
highlighting significant research and their contributions to the 
discipline. Using an Improved Quantum CNN (IQCNN) for accuracy, 
Pitchal et al. (11) developed an automated model for heart disease 
prediction that includes preprocessing, feature extraction, and 
prediction. This technique, which surpassed Bi-LSTM and CNN with 
0.91 accuracy, shows promise for using IoT technologies for health 
diagnosis. Innovative computer methods improve cardiac disease 
prediction in their work.

Li et al. (12) used a hybrid deep learning (DL) model to predict 
CVD. The hybrid model, which uses 7,291 patient data and two deep 
neural network (DNN) models and one RNN for training, 
outperformed standard methods in prediction accuracy. Secondary 
training with a kNN model improved predicted accuracy. Prediction 
accuracy of 82.8%, precision of 87.08%, recall of 88.57%, and F1-score 
of 87.82% in the test set outperform single-model ML predictions. The 
hybrid model reduced overfitting, improving CAD prediction and 
clinical diagnosis. Singh et  al. (13) examined how IoMT devices 
transformed continuous CVD patient monitoring. Their study 
proposed an advanced DL framework for the IoMT ecosystem that 
could improve patient care by predicting CVD. They effectively extract 
spatial and sequential characteristics from diverse IoMT data sources, 
such as pulse oximeters and electrocardiograms, using their innovative 
hybrid CNN-RNN architecture. With the utilization of transfer 
learning (TL) and real-world data, the proposed model surpasses 
previous methods in terms of precision and resilience. Their research 
assists medical professionals in gaining insights into predictive factors, 
enhancing the model’s ability to be  understood and its impact 
on therapy.

In their study, Oyewola et  al. (14) utilized an ensemble 
optimization DL method to diagnose early CVD. They employed the 
Kaggle Cardiovascular Dataset for both training and testing purposes. 
The ensemble model achieves superior performance compared to 
neural network architectures, boasting an impressive accuracy rate of 
98.45%. The research examined and provided a practical solution to 
streamline CVD diagnosis for doctors. It showcased the model’s 
impressive speed and precision in identifying patients and interpreting 
CVD test results, leading to advancements in healthcare practices. 
Incorporating wearable systems, exploring advanced ensemble 
techniques, and utilizing diverse data sources have been found to 
enhance predictive capabilities and improve model performance in 
real-world healthcare settings, according to recent research. In 2023, 
a team of researchers developed a cutting-edge model for assessing the 
risk of cardiovascular disease (CVD). They utilized advanced 
algorithms and optimization strategies to create the SOLSSA-CatBoost 

model, which shows great promise in this field. Their approach proved 
to be highly effective, surpassing the performance of multiple machine 
learning models and optimization techniques on Kaggle CVD 
datasets. They achieved impressive F1-scores of 90 and 81.51%. This 
work contributes to the field of predictive healthcare by offering a 
more precise tool for assessing the risk of cardiovascular disease. 
However, further research is required to evaluate its practicality and 
effectiveness in diverse populations.

In their study, Palanivel et al. (15) discussed the global health 
concern of cardiovascular disease (CVD) and emphasized the 
importance of early prediction. They presented a compelling approach 
that combines FS and an innovative Multi-Layer Perceptron (MLP) 
for Enhanced Brownian Motion based on Dragonfly Algorithm 
(MLP-EBMDA) classification using DM methods. This contribution 
encompasses an optimized unsupervised feature selection technique, 
a distinctive classification model with an accuracy of 94.28%, and a 
methodical approach to predicting early cardiovascular disease. The 
methodology is meticulously organized and precise, but it requires 
validation and real-world implementation.

In their study, Yewale et  al. (16) devised a comprehensive 
framework for predicting cardiovascular disease. They made a 
deliberate choice to exclude FS and instead focused on data balance 
and outlier identification. Their work involved utilizing the Cleveland 
dataset to investigate various performance factors and achieve an 
impressive accuracy rate of 98.73% and sensitivity rate of 98%, 
surpassing previous research findings. The methodology demonstrates 
an impressive level of precision, with a specificity of 100%, positive 
prediction value of 100%, and negative prediction value of 97%. It also 
implemented OD by using a separate forest for a thorough analysis. 
Their work is notable for its meticulous evaluation metrics.

In their study, Behera et  al. (17) devised a novel approach 
combining machine learning techniques to predict heart and liver 
diseases. They utilized a modified particle swarm optimization (PSO) 
algorithm in conjunction with support vector machines (SVM). The 
study focused on the rising occurrence of heart and liver disorders and 
the importance of promptly detecting them for better patient 
outcomes. By integrating SVM with modified PSO, the hybrid model 
achieved significant improvements in classification accuracy, error 
reduction, recall, and F1-score. The research’s empirical foundation is 
strengthened by the data from the UCI ML collection. In their study, 
Sudha and Kumar (18) proposed a hybrid CNN and LSTM network 
for predicting cardiovascular disease, aiming to tackle the pressing 
issue of timely and accurate detection on a global scale. Utilizing 
cutting-edge DL advancements, the suggested model seamlessly 
combined CNN and LSTM to surpass the accuracy limitations of 
traditional ML methods. The hybrid system achieved an accuracy of 
89% on a CVD dataset following 10 k-fold cross-validation. The 
suggested analysis outperformed SVM, Naïve Bayes (NB), and DT 
models in terms of performance. Their approach stands out with its 
distinctive technique, impressive precision, and practicality as an 
alternative to ML models in predicting CVD.

Elavarasi et  al. (19), provided a summary of the recent 
challenges in predicting cardiovascular disease (CVD), focusing on 
the issues faced by traditional systems and the complexity of deep 
learning (DL). They utilized the elephant search algorithm (ESA) to 
explore innovative interpretability solutions during their 
investigation. ESA is seamlessly integrated with SVM to enhance 
the accuracy of CVD prediction, even though it faces challenges 
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when dealing with large datasets and computational complexity. 
They strive to enhance FS by enhancing the accuracy and 
interpretability of CVD dataset. Their research enhanced clinical 
decision support systems (DSSs), shedding light on the ongoing 
debate surrounding CVD prediction methodologies.

Table 1 summarizes standard CVD prediction models’ features 
and drawbacks. An Automated IQCNN Model improved heart 
disease prediction and IoT diagnostics (11), however dataset 
specificity and scalability were issues. Wei et  al. (20)’s SOLSSA-
CatBoost Model improved CVD risk assessment accuracy through 
algorithmic fusion, however real-world applicability was questioned. 
In Palanivel et  al. (15), the MLP-EBMDA classification model 
showcased optimized unsupervised FS, a novel classification model 
with higher accuracy, and a systematic approach to early CVD 

prediction. Li et al. (12), proposed a hybrid DL model with features 
like the utilization of two DNN models and an RNN, achieving 
average accuracy and effectively addressing overfitting challenges. 
Singh et  al. (13), introduced an IoMT-Enhanced DL framework, 
incorporating a hybrid architecture combining CNNs and RNNs, 
extracting spatial and sequential features from heterogeneous IoMT 
data sources, and emphasizing interpretability and impact on 
treatment processes. Oyewola et  al. (14) proposed an ensemble 
optimization DL technique that stands out for outperforming various 
NN architectures with high accuracy and simplifying CVD diagnosis 
for medical professionals. Elavarasi et  al. (19) presented an 
ESA-integrated SVM for CVD prediction, focusing on interpretability 
through FS and optimizing FS using ESA and SVM while addressing 
challenges associated with traditional systems. Yewale et  al. (16), 

TABLE 1 Review of features and challenges of conventional models based on a prediction of CVD.

References Deployed model Features Challenges

Pitchal et al. (11) Automated IQCNN Model Incorporates preprocessing, feature 

extraction, and prediction with IQCNN; 

Notable high accuracy level; Advances 

IoT use in health diagnostics

Reliance on specific datasets; Scalability in 

diverse healthcare settings

Li et al. (12) Hybrid DL model Utilizes two DNN models and an RNN; 

Achieved Average accuracy, precision, 

recall, and F1-score

Effectively addresses overfitting challenges

Singh et al. (13) IoMT-Enhanced DL framework Hybrid architecture combining CNNs 

and RNNs; Extracts spatial and 

sequential features from heterogeneous 

IoMT data sources; Incorporates TL and 

real-world data

Ensuring interpretability and impact on 

treatment processes

Oyewola et al. (14) Ensemble Optimization DL technique Outperforms various NN architectures 

with higher accuracy; Simplifies CVD 

diagnosis for medical professionals

Use of sophisticated ensemble techniques

Palanivel et al. (15) MLP-EBMDA classification Optimized unsupervised FS; Novel 

classification model with high accuracy; 

Systematic approach to early CVD 

prediction

Use more datasets to get accurate results.

Yewale et al. (16) Ensemble techniques with data balancing and 

OD

Achieves High accuracy and sensitivity; 

Demonstrates High specificity and 

positive prediction value

Need to use a diverse composition of 

metrics.

Behera et al. (17) Hybrid ML algorithm with PSO and SVM Utilizes modified particle swarm 

optimization and SVM; Showcases 

Average classification accuracy and error 

reduction

Need to investigate the runtime 

complexity.

Sudha and Kumar (18) Hybrid CNN and LSTM Network Combines CNNs with LSTM networks 

for CVD prediction; Achieves High 

accuracy validated through k-fold cross-

validation

Apply the hybrid approach to real-world 

applications

Wei et al. (20) SOLSSA-CatBoost Model Integrates improved SSA with CatBoost; 

Enhanced by salp swarm algorithm, OBL, 

and lateral mutation; Superior F1-scores

Real-world applicability and diverse 

population performance

Elavarasi et al. (19) ESA-integrated SVM Addresses challenges with traditional 

systems; Focuses on interpretability 

through FS; Optimizes FS using ESA and 

SVM

Handling large datasets and computational 

complexity
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ensemble techniques with data balancing and OD achieved higher 
accuracy and sensitivity, demonstrating high specificity and positive 
prediction value, although a need for a diverse composition of metrics 
was identified. Behera et al. (17) proposed a hybrid ML algorithm 
incorporating PSO and SVM showcased the utilization of modified 
PSO-SVM, resulting in average classification accuracy and error 
reduction, with a call to investigate runtime complexity. Finally, Sudha 
and Kumar (18) proposed a hybrid CNN and LSTM CVD prediction 
approach with great accuracy proven by 10 k-fold cross-validation and 
recommended for real-world applications. These systematic reviews 
shed light on these models’ strengths and weaknesses, leading to CVD 
prediction methodology development between paragraphs belonging 
to the same section.

In essence, our proposed model, as outlined, integrates the 
strengths of DL, and bio-inspired algorithms techniques while 
systematically addressing the limitations identified in the existing 
approaches. The innovative features of our model, including optimized 
FS through SIAO and the hybridization of LSTM and QNN, contribute 
to its potential to provide enhanced accuracy, efficiency, and practical 
applicability in real-world CVD prediction scenarios.

3 Methodology

The hybrid model averages LSTM and QNN classifier outputs to 
predict. The SIAO method optimizes LSTM weight adjustment, 
improving prediction model accuracy. Thus, CVD prediction works. 
As shown in Figure  1, CVD prediction involves four key steps: 
preprocessing, feature extraction, FS, and prediction.

 • Step 1: Preprocessing – The initial stage removes duplicates and 
missing data to ensure data quality and dependability for analysis.

 • Step 2: Feature Extraction – This phase involves detailed feature 
extraction. Central tendency, qualitative variation, dispersion, 
and symmetrical uncertainty are identified. These attributes help 
solve the dataset’s high dimensionality problem.

 • Step 3: Feature Selection – The Symmetrical Uncertainty-based 
Iterative Algorithm Optimization (SIAO) technique is used to 
choose features optimally. This smart selection procedure 
improves model efficiency and accuracy by using only the most 
important features.

 • Step 4: CVD Prediction – A hybrid model combining LSTM and 
QNN technology is trained using ideally selected features. This 
stage optimizes LSTM model weights using the SIAO algorithm. 
This optimization technique improves the model’s 
predictive power.

The proposed CVD prediction approach is shown in Figure 1.

3.1 Optimal selection of features via 
self-improved Aquila optimization

The extracted features pose challenges related to dimensionality 
reduction, prompting the utilization of an SIAO Algorithm for optimal 
FS in this research endeavor.

3.1.1 SIAO algorithm
In 2021, Abualigah et al. (1) proposed an Aquila Optimization 

(AO), which is a modern swarm intelligence (SI) algorithm. 
Aguila consists of 4 types of hunting behaviors for specific sorts 
of prey. Aquila adeptly adapts hunting strategies for specific prey, 
utilizing its rapid velocity and robust talons; correspondingly, the 
AO Algorithm comprises four intricately designed stages 
as follows:

Expanded Exploration (X1): Excessive ascend with a vertical bend. 
Eq.  1 and Eq.  2 define the mathematical expression of expended 
exploration of AO, in which Aquila flies excessively over the floor and 
explores the quest area widely, and then a vertical dive can be taken as 
soon as the Aquila identifies the prey’s location.

 
X t X t

t
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Where better position attained was represented as X tbest ( ) and 
XM t( ) represents the mean position of Aquila in the present iteration. 
t denoted as the current iteration and the T represents the maximum 
iteration. The size of the population is mentioned as N and a random 
number (between 0 and 1) is indicated as rand.

Narrowed Exploration (X2): Outline flight with the brief skim 
attack. Narrowed exploration is one of the frequently used hunting 
approaches for Aquila Employing brief gliding maneuvers for targeted 
prey attacks, the AO Algorithm elegantly combines sliding within the 
selected area and precise aerial navigation around the prey, with the 
refined exploration process succinctly defined by Eq. 3.

 X t X t LF D X y x randbest R t2 1+( ) = ( ) ( ) + + −( )( ). .  (3)

Where Hawks’ random position is indicated as XR t( ), and the size 
of a dimension is denoted as D. Function of Levy flight LF D( ), is 
expressed in below Eq. 4a and Eq. 4b.
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Where Γ  and K  means stable values equivalent to 0.01 & 1.5; u 
and v denote random values between 0 & 1; y and x represent the 
spiral shape in the search. These values are mathematically calculated 
as follows (See Eq. 5):

 x = × ∅r sin
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 y r= × ∅cos

 r D= + ×r1 0 00565 1.

 
∅ = − × +

×
ω

πD1
3

2  
(5)

Where, the search cycle number is represented as r1, which exists 
between the range of 1 and 20, the value of ω is equal to 0.005. Also, 
D1 is mentioned as the integer values and D indicates the size of 
the dimensions.

Extended Exploitation (X3): Executing the minimal flight strategy 
with a calibrated descent attack, the Aquila adopts a nuanced approach. 
In this tactical maneuver, the prey’s location is approximately 
ascertained, prompting the Aquila to initiate a vertical assault. The AO 
algorithm strategically capitalizes on the identified region, 
meticulously navigating closer to the prey before launching the attack. 
This intricate behavior is mathematically articulated in Eq. 6.

 

X t X t X t r
and UB LB rand LB

best M3 1+( ) = ( ) − ( ) −

−( ) +( ) × ∂
.

. .

α

 (6)

The parameters of the exploitation adjustment are assigned a value 
of 0.1 in this context. UB and LB are boundary values. In this, we have 
proposed Eq. 7 for choosing a random number between o and l, which 
is calculated using a logistics map. The mathematical expression for 
the random value is given in Eq. 7.

 rand LB rand UB LB= + ( )× −( )01,  (7)

Subsequently, the arithmetic crossover is performed, in which two 
regions are randomly selected, and by performing linear combination 
2 offspring are produced.

Narrowed Exploitation (X4): Executing a strategy involving 
pursuit and ground-based assault, the Aquila pursues prey, following 
the trajectory of its escape, culminating in an attack on the ground, as 
mathematically articulated in Eq. 8–11.
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Where a current position is denoted as X t( ), for search strategy 
balancing quality function value and is indicated as QF t( ). During the 
tracking of prey, Aquila’s movement parameter is denoted by G1. 
When chasing the prey, the slope of flight is termed as G2, which is 
minimized linearly from 2 to 0.

Algorithm 1 describes the steps of proposed SIAO algorithms.

Algorithm 1:  Proposed SIAO
Step 1: Initialization Phase.

Commence by initializing the population of the AO.
Initialize the relevant parameters associated with AO.
WHILE (termination condition) do.

Calculate the values of the fitness function.
X tbest ( ) finds the best solution.

for (i = 1,2…, N) do.
Improve the mean value of the present solution.
Improve the x, y, LF (D), G1, G2

FIGURE 1

Proposed approach of CVD prediction.
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   If   t T≤ ( )×2 3/  then

   If   0.5r and ≤  then

Step 2: Expanded exploration (X1).
Improve the present solution using Eq. 1.
If Fitness X t1 1+( ) < Fitness (X(t)) then

X t X t( ) = +( )( )1 1

If Fitness X t1 1+( )( ) < Fitness (X tbest ( )) then

X t X tbest ( ) = +( )( )1 1

Step 3: Narrowed exploration (X2).
Improve the present solution using Eq. 3.
If FitnessX t2 1+( ) < Fitness (X(t)) then

X t X t( ) = +( )( )2 1

If Fitness X t2 1+( )( ) < Fitness (X tbest ( )) then

X t X tbest ( ) = +( )( )2 1

  If  then 0.5r and ≤

The rand is calculated using the proposed Eq.
“rand LB rand UB LB= + ( )× −( )01, .”

Step 4: Expanded Exploitation (X3).
Improve the present solution detailed in Eq. 6.
If Fitness X t3 1+( ) < Fitness (X(t)) then

X t X t( ) = +( )( )3 1

If Fitness X t3 1+( )( ) < Fitness (X tbest ( )) then

X t X tbest ( ) = +( )( )3 1

Step 4: Narrowed Exploitation (X4).
Improve the present solution detailed in Eq. 8.
If Fitness X t4 1+( )( ) < Fitness (X(t)) then

X t X t( ) = +( )( )4 1

If Fitness X t4 1+( )( ) < Fitness (X tbest ( )) then

X t X tbest ( ) = +( )( )4 1

return the best solution (Xbest).

3.1.2 Solution encoding
In this work, the optimization strategy is applied in two phases. 

For selecting the optimal FS from the extracted feature set F , the 
selected features are termed as Fs. Second, the weight of LSTM 
indicated as Wf  is tuned optimally, and the tuned weights are denoted 
as Wf∗. The graphical representation in Figure 2 illustrates the input 
solution for the envisaged SIAO methodology.

3.2 Classification process via hybrid 
LSTM-QNN classifier

As delineated earlier, the optimal features chosen undergo 
integration into a hybrid classifier for disease presence prediction. To 
augment the classifier’s performance, the fine-tuning of LSTM weights 
is intricately executed through the application of the proposed SIAO 
methodology (Figure 3).

3.2.1 LSTM model
The learning outcome of RNN influences the base theory of 

LSTM. LSTM can study the lengthy dependencies among variables 
(21). The long-period series is evaluated using LSTM pseudocode. 
Activation functions like tanh and sigmoid are essential for NNs, as 
they introduce non-linearity, allowing the network to tackle complex 
data patterns and decisions. The resultant outcome enhances the 
explosion gradient disappearance of the NN algorithm. For controlling 
the process of memorizing LSTM uses the mechanism called Gating. 
The unit of LSTM comprises three gates namely input, output, and 
forget gates.

 1. Forget Gate: Here, the attention and ignorance of information 
are decided. Through the function of the sigmoid, the 
information from the current input and hidden state is passed 
where the current input is denoted as X t( ) and the hidden 
state is indicated as h t −( )1 . 0 and 1 are the range of values 
generated by the sigmoid function. For the point-by-point 
multiplication, the value of f t( ) is used in Eq. 12.

 f W h x bt f t t t= [ ] +( )−σ . 1,  (12)

where timestamp id is denoted as t, ft  denotes the forget gate of t, 
input is determined as xt , ht−1 is the previous hidden state, Wf  signifies 
weight matrix, and bt denotes the connection bias at timestamp t .

 2. Input Gate: Here, the operations were performed to update the 
status of cells. The current position state and hidden position 
state are projected into the function of the sigmoid. The 
transformation of values takes place between 0 and 1. Then the 
same information will get passed to the function of the. For 
performing network regulation, the tanh operator generates a 
value range between 0 and 1. The generated values are ready for 
point-by-point multiplication in Eq. 13–17.

 i W h x bt i t t i= [ ] +( )−σ . 1,  (13)

FIGURE 2

Proposed methodology of CVD prediction.
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C W h x bt c t t c= [ ] +( )−tanh . 1,  (14)

Where, Wi denotes the weight matrix, bi indicated the bias vector 
at t, the value generated by tanh is denoted as Ct, weight matrix of the 
tanh operator between cell state information and network output is 
indicated as Wc , and the bias vector is represented as bc.

 3. Cell state: The subsequent step is to select and save the 
information in the cell state. The multiplication is performed 
for the previous cell state and forgets the vector. If the value of 
the resultant outcome is 0, then in the cell state the value will 
drop. Then the point-by-point addition is performed by the 
output value of the vector in the input.

 C f C i Ct t t t t= × + ×−1   (15)

Here, the cell state of information is denoted as Ct , the previous 
timestamp is indicated by Ct−1, and the value generated by tanh is 
expressed as Ct .

 4. Output Gate: To determine the value of the hidden state, the 
output gate is utilized. In this state, the information on the 
inputs that came before it is stored. Within the beginning, the 
sigmoid function will be given both the value of the current 
state as well as the value of the hidden state that came before it. 
A new cell state will be generated as a result of this, and it will 
be sent to the function that is responsible for calculating tanh. 
After that, a multiplication operation will be carried out on 
those outputs on a point-by-point basis. The network decides 
the information that is carried out for the hidden state based 
on the results that it has obtained. The hidden state that is 
produced as a result is then utilized for prediction.

 o W h x bt o t t o= [ ] +( )−σ . 1,  (16)

 h o Ct t t= × ( )tanh  (17)

Where the output gate at t  is denoted by ot, out gates’ weight 
matrix is indicated by Wo, a vector is represented as bo, and the output 
of LSTM is mentioned as ht.

3.2.2 QNN model
A QNN (22), as elucidated in reference, constitutes a multi-

layered feedforward NN renowned for its efficacy in classifying 
uncertain data. The QNN state shift function embodies a linear 
composition of multiple sigmoid functions, commonly referred to as 
a multi-level switch function. Unlike the binary expression of 
traditional sigmoid functions with two states, the QNN’s hidden layer 
neural cells exhibit a richer spectrum of states. Introducing a discrete 
quantum interval for the sigmoid function allows for the mapping of 
diverse data onto distinct levels, affording enhanced classification 
flexibility. The quantum interval within a QNN is acquired through a 
training process. Structurally, a QNN comprises input, hidden, and 
output layers, with the output function of the hidden layer 
mathematically articulated in Eq. 18.

 
b

ns
f W Xr

s

ns
T

s= −( )





=
∑1

1
β θ

 
(18)

Where, γ = …1 2 3, , , u  and f x x( ) = + −( )( )1 1 1/ exp  is an 
excitation function in which W is expressed as the weight of the 
network, X is the input vector, the slope factor is indicated as β , the 
input of the quantum cell is represented as W XT , and the quantum 
interval is termed as θs.

FIGURE 3

Hybrid model (Average of LSTM and QNN).
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3.3 Preprocessing phase

The preprocessing phase is conducted as an initial step to assess 
the data quality. Data cleaning is performed to eliminate incorrect and 
incomplete data. Additionally, null values and duplicate entries are 
removed during this preprocessing phase.

3.3.1 Central tendency
Toward a central point the size of the sample inclined toward 

infinity. This data property is termed a central tendency and the point 
toward the data gets inclined is termed a central tendency measure 
(23). A central propensity can be  suitable for both a constrained 
association of features and for a theoretical transference. Moreover, 
some of the measures of central tendency for n data points with value 
Idata i( )  extracted in our proposed model are given as follows:

 1. Arithmetic Mean (AM, Idata i( ) ): The arithmetic mean, a 
fundamental measure of central tendency, is denoted as the 
sum of all data annotations divided by the total number of data 
points. Eq. 19 expresses the mean of the data.

 
I

n
Idata i

i

n

data i( )
=

( )= ∑1

1  
(19)

 2. Median: A statistical metric denoting the central value within 
a dataset, effectuates a division of the dataset into two 
equidistant halves. This partition is achieved through the 
meticulous arrangement of data points in ascending order, 
facilitating the identification of a singular data point 
characterized by an equitable distribution of values both 
superior and inferior to it. The methodology for ascertaining 
the median subtly diverges contingent on whether the dataset 
harbors an odd or even count of values. Eq. 20 elucidates the 
mathematical formulation encapsulating the concept of 
the median.

 
Medi n

Idata i
a =

+











( ) 1

2  
(20)

 3. Mode: In the dataset, one of the frequently occurring values is 
the mode. The mode is also a degree of central tendency that 
identifies the group or rating that happens the maximum often 
inside the distribution of data.

 4. Standard deviation (SD, σ ): In statistics, standard deviation 
measures the dataset dispersion relative to the mean. Also, the 
SD is calculated as the variance square root. Eq. 21 denotes the 
mathematical expression for SD.

 
σ = −( )

=
( ) ( )∑1

1n
I I

i

n

data i data i
n

 
(21)

The minimum value obtained was considered as the initial order 
statistics and the maximum value is the last order statistics.

 5. Geometric mean (GM): A sophisticated measure of central 
tendency, that computes the product of specified values in a 
numerical series. Importantly, it is undefined if any element 
in the series is negative or zero, as succinctly expressed 
in Eq. 22.

 
GM I

i

n

data i
n

=










=
( )∏

1

1

 
(22)

 6. Harmonic Mean (HM): Delineated as the reciprocal of the AM, 
computed from the reciprocals of individual annotations. Its 
evaluation is confined to a comprehensive "positive scale," 
ensuring meticulous consideration of positive values 
exclusively. Eq. 23 elegantly captures the intricate mathematical 
formulation underpinning the HM.

 

HM n

i
n

data i

=










= ( )

∑ 1

1

I  

(23)

 7. Trimmed Mean (TM): It encompasses the determination of the 
mean following the selective omission of specific elements 
from the extremes of a probability distribution or pattern. This 
procedure uniformly excludes an equal quantity from both the 
high and low ends.

 8. Interquartile range (IQR): Within statistical analysis, IQR 
assumes a pivotal role as a metric to gauge the dispersion of 
data and observations. The precise mathematical notation for 
IQR is succinctly expressed in Eq.  24, providing an exact 
quantification of this statistical characteristic.

 

IQR
n

I
i n

n

data i=

= +

( )∑2

4
1

3

4

.

 

(24)

 9. Midrange: The midrange is defined as the mean of the 
maximum and minimum number in the dataset. It is expressed 
mathematically in Eq. 25.

 
M

low I high I
rg

ata i data i
=

( ) + ( )( ) ( )d

2  
(25)

 10. Midhinge: The midhinge is considered as the estimation of 
central tendency (C) shown in Eq. 29.

 
M C I

C I C I
hg data i

data i data i
= ( ) = ( ) + ( )
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( ) ( )
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(26)
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 11. Trimean: A trimean is represented as the general tendency of a 
data set and its mathematical notation is given in Eq. 27 where 
C1, C2, C3 are central tendencies for quartiles.

 
Tri C C C
m =

+ +1 2 32

4

.

 
(27)

 12. Winsorized means: This method pertains to an averaging 
technique that initially substitutes the smallest and largest 
values with the annotations nearest to them. This strategic 
replacement is executed to mitigate the influence of anomalous 
extreme values during the computation process.

3.3.2 Degree of dispersion
In statistical analysis, dispersion, also interchangeably referred to 

as variability, spread, or scatter, characterizes the degree of deviation 
or spreading inherent within a distribution (24). This metric delineates 
the extent to which data points diverge or converge from a central 
tendency, offering valuable insights into the distribution’s 
inherent dynamics.

 1. IQR: Serves as a sophisticated metric embodying statistical 
dispersion, elucidating the nuanced spread encapsulated 
between the 75 and 25 percentiles. This measure offers a 
granular depiction of variability by meticulously assessing the 
interquartile span.

 2. Range: In the domain of statistical analysis, the Range assumes 
the role of a fundamental measurement, meticulously 
quantifying the explicit divergence existing between the 
uppermost and lowermost values within a dataset. This metric 
provides an unambiguous reflection of the dataset’s 
inherent variability.

 3. Mean absolute difference (MAD): It is a quantitative facet of 
dispersion, that delineates the dissonance between two 
independently drawn values from a probability distribution. 
This metric affords a nuanced insight into the distributional 
nuances characterizing the dataset.

 4. Average absolute deviation (AAD): It assumes the mantle of 
quantifying the normative divergence of data points from the 
pivotal central tendency within an informational index, thereby 
encapsulating the comprehensive variability inherent in 
the dataset.

 5. Distance standard deviation: In the insight’s hypothesis, the 
departure distance relationship is a fraction of dependence 
between two mutually uneven vectors of unrestricted 
measurement. A diverse fraction of divergence is 
“dimensionless.”

 6. Coefficient of Variation (CV): It ensconced within the domain 
of probability statistics, and surfaces as a comprehensive 
barometer of dispersal within a probability or recurrence 
distribution. Articulated as a ratio, the CV serves as a 
standardized gauge, representing the fraction of SD to 
the mean.

 7. Quartile coefficient of dispersion (QCD): A nuanced statistical 
metric, that assumes symbolic relevance in evaluating 
divergence within a dataset. Its precise calculation leverages the 
first (P1) and third (P3) quartiles for each dataset, culminating 

in the articulation of the scattering coefficient, as rigorously 
expressed in Eq. 28.

 
QCD =

−
+

P P
P P
3 1

3 1  
(28)

 8. Replicating the coefficient of Gini & relative mean difference: 
MAD, which is a precise measure of accurate divergence 
equivalent to the AAD of 2 independent attributes drawn from 
a probability distribution. A noteworthy metric associated with 
MAD is the AAD, representing the MAD divided by the 
AM and twice the Gini coefficient.

 9. Entropy (H): The entropy of a discrete variable displays 
invariance in both location and scale, signifying inherent scale 
independence. In contrast to traditional dispersion measures, 
the entropy of a continuous variable remains constant across 
regions and seamlessly accommodates new information, 
exhibiting a unique scalability. The entropy function H y( ) for 
continuous variable x , c can be  arithmetically expressed 
in Eq. 29.

 H y H x c( ) = ( ) + ( )log  (29)

3.3.3 Qualitative variation (QV)
This index is the measure of arithmetical dispersion in the ostensible 

distribution (25). Between the 0 and 1 bounds, the data normalization 
exists and then changes to level 4. The data level changes are expressed 
in Table 2.

Twenty-three features are there in the QV index. Also, indices of 
Wilcox’s and its characteristics include RanVR, MNDif, R packages, 
ModVR, B index, HRel, StDev, MNDif, and AvDev. Gibbs’ indices 
include M1, M2, M4, and M6, while single-order sample indices 
encompass Menhinick’s, Lloyd & Ghelardi’s, Shannon–Wiener, 
Average taxonomic distinctness, Hill’s diversity numbers, Theil’s H, 
Brillouin, McIntosh’s D and E, Cotgreave’s, Bulla’s E, Berger–Parker, 
Index of qualitative variation, Margalef ’s, Caswell’s V, Rarefaction, 
Smith and Wilson’s B, Q statistic, Harvey, Camargo’s, E, Smith & 
Wilson’s, Simpson’s, Heip’s, Rényi entropy, Strong’s, Horn’s, and 
Fisher’s alpha. FQV  determined the characteristics of extracted 
qualitative variation.

3.3.4 Symmetric uncertainty
The characteristics and class of symmetric uncertainty are 

evaluated based on the estimated SU relationship metric (26). The 
communal information is calculated using Eq. 30.

 
CM Q P PO Q B

PO Q P
PO Q PO P

, ,
,( ) = ∑ ( ) ( )

( ) ( )
log

.
2

 
(30)

In Eq. 31, communal information is indicated by CM , the feature 
is represented as Q, the class is denied as P, and the function of 
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probability is represented as PO. Also, Eq.  31 indicates 
symmetrical uncertainty.

 SU Q P CM Q P H Q H P, ,( ) = ( )( ) ( ) ( )( )2 / .  (31)

In Eq. 32, the entropy function is indicated as H. FSU  denotes the 
symmetric uncertainty feature. So, the entire feature F combines the 
features that are extracted like central tendency FCT , degree of 
dispersion FD, qualitative variation FQV, and symmetrical uncertainty 
FSU  were termed in Eq. 32.

 F F F F FCT D QV SU= + + +  (32)

4 Results and discussions

4.1 Simulation details

The execution of the CVD prediction model within the Python 
3.11 environment involves a systematic evaluation, methodically 
assessing a plethora of Type I  metrics and Type II metrics. This 
comprehensive scrutiny unfolds across two distinct datasets: Dataset 
1, sourced from the Cleveland dataset (UCI Machine Learning 
Repository, n.d.-a) featuring 76 attributes, with a focused exploration 
of a refined subset of 14 attributes, notably emphasizing the Cleveland 
dataset. Meanwhile, Dataset 2, attained from the (UCI Machine 
Learning Repository, n.d.-b) comprises 13 attributes and an intricately 
defined cost matrix denoted as ‘abse’ and ‘pres.’ The orchestrated 
training and testing processes systematically unfold across varied 
proportions (60, 70, 80, and 90%), providing a structured lens for a 
nuanced examination of the predictive model’s performance.

 

absence
presence

0 1

5 0

In the above matrix, the row indicates the true values and the 
columns predicted.

4.2 Performance analysis of the adopted 
and traditional model for Dataset-1

The performance of the proposed model is evaluated over the 
existing models like SVM (21), DBN (Deep Belief Network) (22), 
RNN (27), DCNN (Deep CNN) (28), 7 classifiers (DT, NB, LR, SVM, 
k-NN, ANN and Vote (a hybrid technique with NB and LR)) (4), 4 

ML classifiers (DT, LR, XGBoost, SVM) (29), BiGRU (Bidirectional 
Gated Recurrent Unit) (30), SMO (Sequential Minimal 
Optimization) + HC (Hybrid Classifiers) (26), SSA (Salp Swarm 
Algorithm) + HC (31), DHOA (Dear Hunting Optimization 
Algorithm) + HC (32), AO + HC (7), SI + AO + LSTM + QNN + HC, 
accordingly. The predictive model’s performance is rigorously 
evaluated through key metrics, including accuracy, precision, and 
sensitivity, across various learning percentages (60, 70, 80, and 90%). 
Figure  4 illustrates the exceptional accuracy of the compositional 
model, achieving a remarkable 95.54% during the 90% training phase. 
The projected approach consistently surpasses the performance of 
other existing models at all learning percentages, such as SVM, DBN, 
RNN, DCNN, 7 classifiers, 4 ML classifiers, BiGRU, SMO + HC, 
SSA + HC, DHOA + HC, AO + HC, SI + AO + LSTM +  
QNN + HC. Figure 5 sheds light on the superior sensitivity of the 
proposed SI-AO-LSTM-QNN approach, particularly evident with a 
peak sensitivity of 95.86% at the 90% training percentage. This notable 
performance outshines other existing approaches. Sensitivity rates for 
the 60, 70, and 80% training percentages are also substantial, standing 
at 91.6, 92.95, and 94.39%, respectively. Precision analysis, as depicted 
in Figure 6, further emphasizes the prowess of the proposed model. 
Achieving the highest precision rate of 96.03% during the 90% 
training phase, the SI-AO-LSTM-QNN approach outperforms the 
already existing models. Precision rates for the other training 
percentages are commendable, measuring at 92.76, 94.33, and 95.47%.

Table 3 provides a comprehensive performance analysis for the 
prediction of CVD on Dataset 1, focusing on a Training percentage 
(TP) of 90%. Various metrics, including accuracy, sensitivity, 
specificity, precision, recall, F1-score, Matthews Correlation 
Coefficient (MCC), Negative Predictive Value (NPV), False Positive 
Rate (FPR), and False Negative Rate (FNR), are reported for a range 
of existing models, as well as the proposed model, 
SI + AO + LSTM + QNN + HC. Notably, the proposed model achieves 
outstanding results with an accuracy of 96.69%, sensitivity of 96.62%, 
specificity of 96.77%, precision of 96.03%, recall of 97.86%, F1-score 
of 96.85%, MCC of 96.37%, NPV of 96.25%, FPR of 3.23%, and FNR 
of 3.38%. These metrics collectively indicate the superior predictive 
capabilities of the proposed SI + AO + LSTM + QNN + HC model, 
showcasing its robust performance compared to other existing models 
across a diverse set of evaluation criteria.

4.3 Performance analysis of the adopted 
and traditional model for Dataset-2

In dataset 2, the proposed model is compared to SVM, DBN, 
RNN, DCNN, 7 classifiers, 4 ML classifiers, BiGRU, SMO + HC, 
SSA + HC, DHOA + HC, AO + HC, SI + AO + LSTM + QNN + HC, 
and others. Notably, the SI-AO-LSTM-QNN approach consistently 
outperforms the existing models, achieving higher values across 
critical metrics. Specifically, for accuracy, sensitivity, and 
precision, the proposed model attains impressive rates of 96.69, 
96.62, and 96.03%, respectively. These superior metrics are 
observed consistently across various learning percentages, with 
the highest values achieved at the 90th learning percentage. 
Figure 7 visually represents the accuracy comparison, illustrating 
that the SI-AO-LSTM-QNN model excels, achieving the highest 

TABLE 2 Transformed data levels.

Datapoint transferred Data range normalized

1 If 0–0.25

2 If 0.25–0.5

3 If 0.5–0.75

4 If 0.75–1
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FIGURE 4

Comparative analysis of the accuracy rates in predicting CVD on Dataset-1.

FIGURE 5

Comparative analysis of the sensitivity rates in predicting CVD on Dataset-1.
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accuracy among the compared models. Figure 8 showcases the 
precision performance, indicating higher values, especially at the 
80th and 90th learning percentages. Lastly, Figure 9 presents the 
sensitivity analysis, highlighting the consistently superior 

sensitivity of the proposed model across different 
training percentages.

Table 4 provides a comprehensive performance analysis for the 
prediction of CVD on Dataset 2, with a focus on the TP rate of 90%. 

FIGURE 6

Comparative analysis of the precision rates in predicting CVD on Dataset-1.

TABLE 3 Performance analysis for prediction of CVD of dataset 1 for TP  =  90%.

Metrics Accuracy Sensitivity Specificity Precision F1-
score

MCC NPV FPR FNR

SVM (33) 0.91079 0.915957 0.91079 0.91079 0.91079 0.91079 0.914113 0.08921 0.084043

DBN (34) 0.916754 0.943232 0.921099 0.923449 0.918028 0.91879 0.939337 0.078901 0.056768

RNN (29) 0.863295 0.83929 0.884078 0.864878 0.851892 0.780951 0.861998 0.115922 0.16071

DCNN (6) 0.854458 0.865934 0.852423 0.840533 0.853045 0.724256 0.876004 0.147577 0.134066

7 classifiers (4) 0.944006 0.904322 0.944193 0.94492 0.944902 0.877832 0.90148 0.055807 0.095678

4 ML classifier 

(9)

0.939135 0.938981 0.939321 0.940045 0.940026 0.928548 0.936801 0.060679 0.061019

BiGRU (25) 0.831094 0.834353 0.836954 0.803626 0.818701 0.704706 0.862893 0.163046 0.165647

SMO + HC 

(35)

0.905631 0.917888 0.891647 0.899332 0.908415 0.871494 0.913507 0.108353 0.082112

SSA + HC (30) 0.901581 0.91371 0.887748 0.895251 0.904286 0.868333 0.909493 0.112252 0.08629

DHOA + HC 

(28)

0.896831 0.908896 0.883071 0.890535 0.899522 0.863758 0.904701 0.116929 0.091104

AO + HC (7) 0.94413 0.943851 0.945169 0.948321 0.94577 0.933364 0.94166 0.054831 0.056149

LSTM (32) 0.828358 0.735632 0.961921 0.965309 0.834964 0.689585 0.7164 0.038079 0.264368

QNN (21) 0.9273 0.9461 0.9075 0.9136 0.9295 0.8740 0.9428 0.0924 0.0538

Proposed 

model

0.966922 0.966244 0.967714 0.9603 0.968473 0.963715 0.962534 0.032286 0.033756
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Various metrics, including accuracy, sensitivity, specificity, precision, 
F1-score, MCC, NPV, FPR, and FNR, are reported for a range of 
existing models, as well as the proposed model 
SI + AO + LSTM + QNN + HC. The SI + AO + LSTM + QNN + HC 
model outshines the other models consistently across all metrics, 
achieving an accuracy of 95.55%, sensitivity of 95.87%, specificity of 
94.52%, precision of 96.03%, F1-score of 96.94%, MCC of 93.09%, 
NPV of 94.67%, FPR of 5.48%, and FNR of 4.13%. These superior 
metrics signify the robust predictive capabilities of the proposed 
model, showcasing its effectiveness in comparison to a diverse set of 
existing models across a spectrum of evaluation criteria on 
Dataset-2.

4.4 Convergence analysis

Convergence analysis of the proposed SI-AO-LSTM-QNN, in 
comparison to conventional methods like SMO, SSA, DHOA, AO, 
and SI-AO, is visually presented in Figures  10, 11. The primary 
objective of the adopted methodology revolves around convergence 
analysis, with a specific focus on maximizing accuracy. The analysis 
reveals that heightened convergence is achieved with an increase in 
the iteration count. Given the inverse relationship between accuracy 
and errors, the overarching goal of this research is to attain the 
highest possible detection accuracy, thereby minimizing error rates. 
In Figure  10, which pertains to Dataset-1, the graphical 
representation illustrates superior convergence of the proposed 
work over existing counterparts, with maximal convergence evident 
at the 20th iteration. Likewise, in Figure  11, corresponding to 
Dataset-2, the presented work demonstrates robust convergence, 

surpassing other methods and reinforcing its effectiveness in 
the classification.

4.5 Statistical analysis

Tables 5, 6 provide a comparative statistical analysis of accuracy 
for the proposed SI-AO-LSTM-QNN model against traditional 
schemes on Dataset-1 and Dataset-2, respectively. The stochastic 
nature of the optimization algorithm led to five independent runs, 
and statistical measures such as mean, SD, median, worst, and best 
were recorded for accuracy. In Table 6 for Dataset-1, the proposed 
SI-AO-LSTM-QNN model showcases a superior mean 
performance of 95.23%, outperforming traditional methods. 
Notably, the method exhibits a narrow SD of 1.279, indicating 
consistency across runs. The worst-case scenario is observed at 
93.31%, and the best-case scenario attains an impressive 96.69%. 
In comparison, other traditional methods show varying 
performance levels, with SI-AO-LSTM-QNN consistently 
demonstrating higher accuracy.

4.6 Analysis on features

Tables 7, 8 provide an in-depth analysis of feature performance in 
predicting CVD for Dataset-1 and Dataset-2, respectively. In Dataset-1, 
the proposed feature exhibits superior predictive capabilities with an 
accuracy of 95.59%, outperforming scenarios without FS (94.58%) and 
optimization (94.62%). The proposed feature also excels in key metrics 
such as F1-score, precision, sensitivity, specificity, MCC, NPV, FPR, 

FIGURE 7

Comparative analysis of the accuracy rates in predicting CVD on Dataset-2.
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FIGURE 8

Comparative analysis of the precision rates in predicting CVD on Dataset-2.

FIGURE 9

Comparative analysis of the sensitivity rates in predicting CVD on Dataset-2.
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and FNR, underscoring its effectiveness in enhancing the overall 
predictive accuracy for CVD in Dataset-1. Specifically, the proposed 
feature demonstrates improved sensitivity and NPV, suggesting its 
robust ability to correctly identify positive cases and avoid 
false negatives.

Turning attention to Dataset-2 in Table 8, the proposed feature 
showcases exceptional predictive performance, achieving an accuracy 
of 96.65% compared to scenarios without FS (93.49%) and 
optimization (94.34%). The proposed feature consistently outperforms 
across various metrics, emphasizing its importance in accurate CVD 
prediction. Particularly noteworthy are the high values for precision, 
sensitivity, and F1-score, indicating the ability of the proposed feature 

to correctly classify positive cases and minimize false positives. 
Overall, both tables affirm that the inclusion of the proposed feature, 
with careful selection and optimization, significantly improves the 
predictive accuracy of CVD across different datasets.

5 Conclusion and future work

The conclusion of the paper underscores the significant 
advancements made in the prediction of CVD through the 
development and application of a Hybrid Model that integrates LSTM 

TABLE 4 Performance analysis for prediction of CVD of Dataset 2 for TP  =  90%.

Metrics Accuracy Sensitivity Specificity Precision F1-
score

MCC NPV FPR FNR

SVM (33) 0.903943 0.91079 0.884254 0.916544 0.918485 0.887562 0.898065 0.115746 0.08921

DBN (34) 0.91717 0.925456 0.89554 0.941486 0.937214 0.867554 0.885457 0.10446 0.074544

RNN (29) 0.757692 0.788 0.774623 0.820833 0.804082 0.754632 0.779862 0.225377 0.212

DCNN (6) 0.873491 0.884144 0.812193 0.875556 0.880953 0.782849 0.841727 0.187807 0.115856

7 classifiers (4) 0.907628 0.911215 0.892074 0.914643 0.9168 0.884667 0.905379 0.107926 0.088785

4 ML classifier 

(9)

0.925602 0.929508 0.912176 0.941193 0.939203 0.870667 0.910303 0.087824 0.070492

BiGRU (25) 0.788 0.844286 0.745249 0.815172 0.829474 0.780115 0.758131 0.254751 0.155714

SMO + HC 

(35)

0.918383 0.925771 0.89847 0.92913 0.931322 0.884695 0.912411 0.10153 0.074229

SSA + HC (30) 0.913569 0.920919 0.893732 0.924301 0.926481 0.880019 0.907629 0.106268 0.079081

DHOA + HC 

(28)

0.908756 0.916067 0.888993 0.919472 0.921641 0.875343 0.902847 0.111007 0.083933

AO + HC (7) 0.938558 0.943341 0.921635 0.952722 0.952239 0.888595 0.916232 0.078365 0.056659

LSTM (32) 0.8703 0.8703 0.8703 0.9306 0.8995 0.7206 0.7704 0.1296 0.1296

QNN (21) 0.9079 0.9328 0.862 0.9258 0.9293 0.7973 0.874 0.1379 0.0671

Proposed 

model

0.955479 0.958691 0.945167 0.9603 0.969417 0.930939 0.946673 0.054833 0.041309

FIGURE 10

Convergence analysis for Dataset-1.
FIGURE 11

Convergence analysis for Dataset-2.
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and QNN. This model, optimized by a novel algorithm, demonstrates 
exceptional efficacy in handling complex healthcare data, as evidenced 
by its superior performance metrics over existing models. Notably, the 
model achieves a remarkable 14.05% improvement in accuracy on 
Dataset-1 and a 20.7% enhancement on Dataset-2, with sensitivity 
metrics that outperform a broad spectrum of current models including 
SVM, DBN, RNN, DCNN, BiGRU, SMO, SSA, DHOA, and AO. These 
results not only validate the model’s capability in accurately predicting 
CVD but also highlight its potential to significantly impact future 

healthcare practices by providing more precise and reliable diagnoses. 
Looking forward, the research identifies several areas for potential 
improvement and expansion, such as refining the optimization 
algorithm, further tuning the hybrid model, broader evaluation across 
diverse datasets, exploration of real-time implementation possibilities, 
and incorporation of additional data sources. These directions aim to 
further enhance the model’s accuracy and applicability, contributing 
to the ongoing evolution of predictive healthcare models and 
ultimately, to the advancement of patient care in cardiovascular diseases.
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