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and Neittaanmäki. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Deep learning model shows
pathologist-level detection of
sentinel node metastasis of
melanoma and intra-nodal nevi
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Introduction: Nodal metastasis (NM) in sentinel node biopsies (SNB) is crucial
for melanoma staging. However, an intra-nodal nevus (INN) may often be
misclassified as NM, leading to potential misdiagnosis and incorrect staging.
There is high discordance among pathologists in assessing SNB positivity, which
may lead to false staging. Digital whole slide imaging o�ers the potential for
implementing artificial intelligence (AI) in digital pathology. In this study, we
assessed the capability of AI to detect NM and INN in SNBs.

Methods: A total of 485 hematoxylin and eosin whole slide images (WSIs),
including NM and INN from 196 SNBs, were collected and divided into training
(279 WSIs), validation (89 WSIs), and test sets (117 WSIs). A deep learning model
was trained with 5,956 manual pixel-wise annotations. The AI and three blinded
dermatopathologists assessed the test set, with immunohistochemistry serving
as the reference standard.

Results: The AI model showed excellent performance with an area under
the curve receiver operating characteristic (AUC) of 0.965 for detecting NM.
In comparison, the AUC for NM detection among dermatopathologists ranged
between 0.94 and 0.98. For the detection of INN, the AUC was lower for both AI
(0.781) and dermatopathologists (range of 0.63–0.79).

Discussion: In conclusion, the deep learning AI model showed excellent
accuracy in detecting NM, achieving dermatopathologist-level performance in
detecting both NM and INN. Importantly, the AI model showed the potential to
di�erentiate between these two entities. However, further validation iswarranted.

KEYWORDS

deep learning, artificial intelligence, digital pathology, dermatopathology, sentinel node

biopsy, nodal melanomametastasis, intra-nodal nevus deep learning, intra-nodal nevus

1 Introduction

Melanoma is one of the deadliest skin cancers, with its prognosis closely linked to

the invasion depth and presence of nodal metastasis (NM) at the time of diagnosis. The

American Joint Committee on Cancer (AJCC) staging system assesses melanoma using

three parameters: T (primary tumor), N (regional lymph nodes), andM (distal metastases).
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Sentinel lymph node biopsy (SNB), which involves the excision

and histopathological examination of the first draining lymph

node, has become an established procedure for identifying NM.

Accurate melanoma staging is crucial for evaluating prognosis

and planning appropriate treatment. The prognosis for stage III

melanoma patients is significantly worse compared to those in stage

I or II, who do not have metastatic disease.

Furthermore, the number of metastatic lymph nodes

significantly affects prognosis (1). Therefore, accurate SNB status

is a crucial part of melanoma staging. Patients with metastases

found in the SNB are classified as stage III, where adjuvant

treatments with targeted therapies (BRAF and MEK-inhibitors)

and immunotherapy are often considered (2). However, even

patients in stage IIB or IIC without verified metastatic disease

benefit from adjuvant treatments (3).

SNBs show NM in 6–24% of cases (4). However, small

metastatic cell aggregates and isolated tumor cells (≤0.2mm) can

easily be missed (5). Additionally, benign intra-nodal nevus (INN)

is found in 1–24% of SNBs, and it can co-exist with NM and may

be misclassified as such (6–8). INNs are most commonly found

in SNBs of the neck and are associated with a high number of

cutaneous nevi (9). The mutation profiles of INN and NM differ,

indicating that INNs descend from previously UV-exposed BRAF

wildtype cutaneous melanocytes rather than from primary MM

or arrested progenitor cells (10). It is important to differentiate

between NM and INN since patients with INN in SNBs have

a prognosis similar to that of patients with negative SNBs and,

therefore, do not require additional therapy (11).

There is high discordance in assessing SNB positivity, which

may lead to false staging and inadequate use of adjuvant

therapies (12). Immunohistochemistry (IHC) is used to aid the

detection of NM and to differentiate between NM and INN

(13). Thus, several tissue slides, including hematoxylin-eosin

(H&E) and IHC, are prepared for each excised lymph node.

This makes the laboratory process and interpretation of SNBs in

melanoma patients time consuming. The time-consuming process

of evaluating histopathological SNB slides, combined with an

increasing number of samples, delays diagnosis and increases costs

(14, 15). Taking into consideration the increasing workload, new

solutions are warranted.

Digital whole slide imaging enables the implementation of
artificial intelligence (AI) in digital pathology. Deep learning, in
particular, has enabled rapid advances in computational pathology

(16, 17). It has been shown that the use of deep learning
with convolutional neural networks (CNN) enables the automatic

detection of lymph node metastases in breast cancers, gastric

cancer, and colorectal cancers on H&E-stained slides (18–21). AI

has also shown potential in melanoma diagnosis (22). Interestingly,

CNN algorithms appear capable of making decisions based solely

on H&E-stained slides and even outperform pathologists (23).

CNNs are advanced mathematical models that can handle the

complexity of H&E. In contrast, traditional handcrafted algorithms,

such as thresholding for image analysis, are more simplistic and

depend on a very distinct contrast between colors (24). Thus, the

latter has predominantly been useful for IHC slides in pathology.

Furthermore, AI has been studied to predict the SNB status

from primary melanomas (25). A deep learning method in one

recently published study could identify NM in SNB sections (2).

However, studies regarding INN detection are still rare. To the

best of our knowledge, no published studies regarding automated

AI-based solutions for melanoma NM and INN morphologic

detection exist.

Our study aimed to compare the capability of AI and

dermatopathologists in detecting NM and INN in SNBs.

2 Methods

The study protocol followed the Declaration of Helsinki.

According to the Swedish Ethical Review Authority (Dnr 2022-

02165-01), the law states that our project did not require ethical

approval or informed patient consent because the material is

completely anonymized.

2.1 Dataset

We retrospectively collected 501 H&E-stained whole slide

images (WSIs), including NM and INN, from 207 SNBs diagnosed

at the Department of Pathology at Sahlgrenska University Hospital

(Gothenburg, Sweden) between 2017 and 2020. The inclusion

criteria required that both the H&E slides and IHC stainings from

the same slides be available. All the included cases were formalin

fixed and paraffin embedded. The glass slides were anonymized

manually with a case number and then digitally scanned for whole

slide imaging in 40x mode (0.23µm/pixel, 20x objective lens) using

the Nanozoomer Digital Slide Scanner S210 (NDP), Hamamatsu

Photonics K.K., Shizuoka, Japan. After scanning, 16 WSIs (from

11 SNBs) were excluded due to poor image quality. Therefore, 485

WSIs from 196 SNBs were included in the study.

The dataset was randomly divided into training, validation, and

test sets (Table 1). In cases where several slides were from the same

SNB, they were included in the same dataset to ensure that slides

from the same tumor did not end up in both the training and

test sets. The microanatomical location of the NM is shown in

Supplementary Table S1.

2.2 Reference standard

IHC slides, including stainings with SOX10 (AVI 3099G,

Ready-to-Use, Clone BC34, Mouse Monoclonal Primary Antibody,

BioCare Pacheco, CA, USA) and HMB45 (Dako FLEXMonoclonal

Mouse Anti-Human Melanosome, Clone HMB45, Ready-to-Use,

Dako Omnis, Agilent, CA, USA), were collected for all 494

corresponding H&E slides. Along with cell morphology, these

served as the reference standard for detecting NM (SOX10+,

HMB45+) and INN (SOX10+, HMB45-). The cell morphology

supporting NM diagnosis included larger cell size, a higher

nuclear-to-cytoplasmic ratio, more prominent nucleoli, andmitotic

figures. In the cases of INN, the cells are typically smaller

than NMs and uniform, with limited cytoplasm and minimal

cytoplasmic melanin. The nuclei of INN are unremarkable, lacking

prominent nucleoli and mitotic figures (26). An experienced

dermatopathologist reassessed all the slides for the study.
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TABLE 1 The number of cases and whole slide images included in the

training, validation, and test sets.

Cases WSIs

Training set 125 279

NM 25 66

INN 14 60

NM+INN 5 12

Tumor-free 48 141

Validation set 47 89

NM 17 20

INN 9 9

NM+INN 1 2

Tumor-free 20 58

Test set 61 117

NM 15 27

INN 6 9

NM+INN 0 0

Tumor-free 40 81

Total 196 485

WSIs, whole slide images; NM, nodal metastasis; INN, intra-nodal nevus.

2.3 Annotations

The training set consisted of 279 WSIs, including 66 with

NM, 60 with INN, 12 with both NM and INN, and 141 with

tumor-free lymph nodes. Annotations were performed only on

training set WSIs, while the validation set and test set WSIs

remained unannotated. The annotations were performed manually

by an experienced dermatopathologist with the help of IHC using

corresponding serial slides (HE, SOX10, HMB45, HE). In total,

5,956 training regions were used. The annotations were made in

two “layers”: first, teaching the AImodel to recognize the tissue and,

afterward, to recognize the tumor regions within the tissue.

The different annotated layers within the training regions were

named a “tissue layer,” with annotations representing the overall

tissue areas on the slides, and a “tumor layer,” with annotations for

areas with NM, INN, and background (lymphatic and connective

tissue) (Figure 1). The total annotated areas were 213.01 mm2

for the tissue layer (approximately one annotation per slide) and

1,950.85 mm2 for the tumor layer (mean of seven annotations

per slide). In total, 18.65 mm2 of the area was annotated as NM,

and 0.56 mm2 was used for INN. The goal was to include as

many heterogeneous areas as possible. Isolated tumor cells, when

found, were also annotated in the tumor layer. Tissue artifacts were

annotated as background.

2.4 Training the AI model

The AI model was generated using Aiforia Create (Aiforia

Create Version 5.3, Aiforia Technologies Plc, Helsinki, Finland),

a commercial image management and analysis cloud platform

that facilitates the development of a machine learning model with

CNN and supervised learning. The deep CNNs were trained using

a supervised method, where pixel-level segments provided the

annotations. The trained CNNs performed semantic segmentation

at the pixel level, predicting each pixel to belong to either the

foreground or background class. Segmentation-based outcome

prediction was performed using semantic segmentation with

defined complexity.

An expert pathologist provided fully supervised pixel-level

input using IHC. The CNN used is based on U-net architecture.

The created AI model used a parent–child architecture with two

layers: the tissue layer as the “parent layer” and the tumor layer as

the “child layer”. These layers were independent neural networks

arranged hierarchically, with the child clipped by pixels to wherever

the parent (i.e., tissue) was detected. The tissue layer was trained to

identify high-quality tissue areas (tissue layer) and exclude tissue

artifacts, while the tumor layer was trained to detect NM and INN

according to the annotations. This configuration resulted in one

combined AI model that first performs quality control on tissue

architecture, followed by tumor detection within the high-quality

tissue area in one analysis run, instead of two independent analyses.

Aiforia Classic Default Neural Networks were used both for tissue

and tumor layers.

A total of eight training sessions were conducted to create the

final AI model. After each training session, additional annotations

were made in the training set WSIs. Depending on the layer

complexity, the trainings were terminated prematurely if the

learning curve was not steep enough. This could be directly

observed by the training loss function. A lower error percentage

could be expected if the training loss was minimal after all the

training rounds were completed, which is generally defined by a

non-significant increase in the training curve.

The final training was performed for 20,000 iterations, with

5,900 iterations (training loss: 0.0009) for the tissue layer and 13,320

iterations (training loss: 0.0089) for the tumor layer. In total, 5,956

training regions were used, and verifications yielded an error of

0.04% for the tissue layer (F1 Score: 99.98%) and 0.06% for the

tumor layer (F1 Score: 97.04%).

Patches used in training and inference were extracted from

the image pyramid at a level dependent on the field of view

(region layer) or object size (object layer). The inference results

were combined across patches and projected to other zoom levels,

including the highest zoom level (i.e., slide level) for results.

Morphometric analysis was enabled for the AI model before the

image analysis run. Image analysis was conducted in the Aiforia

Hub for WSIs in multiple batches.

Data were visually monitored, and pixel-level segmentation
outcomes were generated using Microsoft Excel. Image-level data
were visualized on the user interphase under pixel information.

The patch-level information was extrapolated to slide level with
the help of aggregated pixel-level segmentation outcomes. For all

the islands of semantic segments, the field of view, as deemed

best by the domain expert depending on the feature of interest,

was benchmarked to convert to a slide-level outcome. Every

outcome was accompanied by a confidence outcome that directly

represented or reflected the input user’s confidence levels during the

training process. A class confidence of 80% was set as a minimum
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FIGURE 1

Training the deep learning artificial intelligence model. The areas marked in black correspond to training regions, and the areas marked with colors
correspond to di�erent annotated layers within the training regions: (a) tissue annotation (yellow). The white unannotated region in tissue annotation
was trained not to be detected by the AI model, (b) areas with background tissue marked as “empty” training regions, (c) nodal melanoma metastasis
annotation (red), and (d) intranodal nevus annotation (blue). Furthermore, the unannotated empty areas within the training regions in (c, d) were
included in the training as background.

threshold for areas of NM and INN. The detailed training and

image augmentation parameters of the CNN models are shown in

Supplementary Table S2.

2.5 Validating and testing the AI model

The performance of the AI model was validated on an

unannotated set of WSIs using pixel-wise validation, which

is explained in detail in the Supplementary material. After

validation, the AI model was further trained to enhance

its performance before running the test set analysis on a

separate test set.

The algorithm’s performance was compared against that of

three individual dermatopathologists and the reference standard.

The test set included 117 WSIs, comprising 27 with NM, 9 with

NN, and 81 tumor-free lymph nodes. Three dermatopathologists,

blinded to the AI results, each other’s assessments, and the original

pathology reports, independently evaluated the test setWSIs for the

presence of NM, INN, or both. Using WSIs, dermatopathologists

used variable digital magnification to evaluate the slides. They

had access only to the H&E slides and no IHC slides. No time

constraints were applied. The results were reported on a slide level

(no tumor, NM, INN, or both) without marking the tumor regions.

Additionally, for each slide, the dermatopathologists reported their

confidence level on a 5-level scale (1= very certain, 2=moderately

certain, 3 = average certainty, 4 = moderately uncertain, 5 =

very uncertain).

2.6 Statistical analysis

No prior in-house data regarding the performance of an AI

algorithm for this task were available. Therefore, no power analysis

was conducted to predetermine an appropriate sample size. Instead,

we aimed for a sample size similar to that used in a previous

study for detecting breast cancer metastases (15). All data were

analyzed using R version 3.5.3 (https://www.r-project.org/) with

the assistance of a trained statistician.

Receiver operating characteristic (ROC) curves were created

using the AI model with multiple gain settings. The gain setting

controls the CNN’s sensitivity to predict pixels belonging to a

feature class. As the gain increases, the CNN becomes more

sensitive, classifying more pixels into the designated feature class.

These gain settings are specific to individual CNNs. In the ROC

analysis, the gain setting was systematically adjusted to titrate

the sensitivity of the AI model as a function of specificity. The

gains ranged from 0.001 to 10 for both classes (INN and NM)

and were incremented accordingly. Independent ROC curves were

generated for the AI model with varying gain settings and plotted

for visualization, with sensitivity on the Y axis and 1-specificity

(false positive rate) on the X axis.

In addition, confusion matrices were generated to compare

the AI model’s performance with that of the dermatopathologists,

calculating sensitivity, specificity, accuracy, and the respective P-

value for each individual (using the exact binomial test, McNemar’s

test) (27). The 5-level pathologist confidence scale (1 being very

certain and 5 being very uncertain of the asked diagnosis) was
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FIGURE 2

The ROCs/AUCs of the AI and dermatopathologists vs. the ground truth for detecting (A) melanoma metastases and (B) intra-nodal nevi. “Path 1–3”
represents the human dermatopathologists, and “AI” represents the algorithm.

FIGURE 3

The confusion matrices for (A–C) melanoma nodal metastasis detection, (D–F) intranodal nevus detection for the three dermatopathologists, (G)
melanoma nodal metastasis detection, and (H) intranodal nevus detection for the AI model.
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FIGURE 4

(a) The true positive results from the AI model correctly detect the melanoma metastasis in lymph node parenchyma and (b) in a lymph node
capsule, as shown on H&E slides. This is confirmed by the immunohistochemistry staining serving as a reference standard. Corresponding areas
stained positive for (c, d) SOX10 and (e, f) HMB45, respectively, confirming the diagnosis of melanoma metastasis (true positive).

then used to obtain ROC curves. This scale was converted into a

10-grade scale from 0 to 1, with 0 indicating high certainty that

the diagnosis is incorrect and 1 indicating high certainty that the

diagnosis is correct.

A false-negative result was defined as either failing to identify

the tumor or incorrectly labeling the tumor type. Therefore, a

false-negative interpretation of a slide with NM included the

results “INN” and “normal lymph node.” Similarly, a false-negative

interpretation of an INN slide included the results “NM” and

“normal lymph node.” Notably, no slides in the test set included

both INN and NM on the same slide. Conversely, a false positive

result was defined as either incorrectly labeling the tumor type or

identifying healthy background tissue as a tumor.

3 Results

The AI model showed excellent performance with an area

under the ROC (AUC) of 0.97 (95% CI: 0.94–0.98) for detecting

NM, compared to the ground truth. For comparison, the AUC for

individual dermatopathologists in NM detection ranged between

0.94 (95% CI: 0.88–1.00) and 0.98 (95% CI: 0.95–1.00). The AUC

values for the AI and the individual dermatopathologists versus the

ground truth are shown in Figure 2.

For the detection of INN, AUC was lower for both AI [0.78

(95%CI: 0.70-0.85)] and the dermatopathologists [range: 0.63 (95%

CI: 0.42–0.83)−0.79 (95% CI: 0.61–0.97)].

The sensitivity for predicting NM was 89% (95% CI: 71–98%),

93% (95% CI: 76–99%), and 96% (95% CI: 81–100%) for the

dermatopathologists compared to the AI’s sensitivity of 89% (95%

CI: 71–98%) (p = 1, p = 1, p = 0.63, respectively). The specificity

was 98% (95% CI: 92–100%), 100% (95% CI: 96–100%), and

100% (95% CI: 96–100%) for the dermatopathologists compared

to 94% (95% CI: 88–98%) for the AI (p = 0.45, p = 0.063, p

= 0.063, respectively). Youden’s index for predicting NM for the

dermatopathologists was 0.89 (95% CI: 0.71–0.98), 0.93 (95% CI:

0.76–0.99), and 0.94 (95% CI: 0.79–0.98), compared to the AI’s

index of 0.83 (95% CI: 0.65–0.92).

The sensitivity for predicting INN was 33% (95% CI: 8–70%),

56% (95% CI: 21–86%), and 67% (95% CI: 30–93%) for the

dermatopathologists compared to the AI’s sensitivity of 78% (95%

CI: 40-97%) (p = 0.008, p = 0.31, p = 0.73, respectively). The

specificity was 97% (95% CI: 92–99%), 98% (95% CI: 94–99%),

and 99% (95%CI: 95–100%) for the dermatopathologists compared
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FIGURE 5

True positive results from the AI in detecting intracapsular nodal nevi on (a, b) H&E-slides, (c, d) the corresponding positive area stained for SOX10,
and (e, f) the negative area on HMB45.

to 63% (95% CI:53–72% for the AI (p < 0.001, p < 0.001, p <

0.001, respectively). Youden’s index for predicting INN for the

dermatopathologists was 0.31 (95% CI: 0.047–0.67), 0.55 (95% CI:

0.20–0.85), and 0.65 (95% CI: 0.28–0.91), compared to the AI’s

index of 0.41 (95% CI: 0.064–0.71).

The AI model outperformed one of the dermatopathologists

and performed on par with the other two in detecting

INN, although its specificity was lower than for all three

dermatopathologists. The confusion matrices for NM and INN

detection by the three dermatopathologists and the AI model are

shown in Figure 3.

Figures 4, 5 show examples of true positive NM and INN

predictions, respectively. Supplementary Figure S1 shows true

positive AI predictions for NM and INN that were missed

by dermatopathologists.

False positive and false negative predictions are shown in

Figure 6, Supplementary Figure S2.

Among the three dermatopathologists, a mean of 2.8% (95%

CI: 1.4%−5.2%) of all slides was associated with a moderate or very

uncertain confidence level.

From the reference standard IHC slides of the test set,

the largest NM diameter per slide ranged from 0.1mm to

21.8mm, with a median diameter of 0.7mm. The INN diameter

ranged from 0.1mm to 2.0mm, with a median diameter

of 0.3 mm.

4 Discussion

The accurate assessment of SNBs is crucial for the prognostic

assessment and treatment of melanoma patients. The deep learning

AI model showed excellent dermatopathologist-level performance

in detecting NM and showed potential in detecting INN.

To the best of our knowledge, no previously published studies

have addressed AI detection of both NM and INN. In a recently

published study by Jansen et al., a deep-learning algorithm detected

NM in SNBs with AUCs of 0.9630 and 0.9856 on two test cohorts

from different laboratories (28). The model was trained with 542

WSIs and tested with 151 WSIs. A notable strength of the study

was the collection of material from different centers and the use

of various scanners, highlighting the approach’s generalization

capability. Additionally, the algorithm automatically measured

metastasis size, a relevant feature that is lacking in our approach.

Interestingly, the annotations were made with AI assistance and

adjusted by a pathologist. The study solely focused on detecting

NM and did not account for confounding factors such as INN.

Unlike our study, the setup did not include a direct performance

comparison between pathologists and the AI model.

Another previous study by Bejnordi et al. assessed AI in

evaluating SNBs in breast cancer patients and showed high

accuracy for AI in detecting micrometastases, surpassing a group

of 11 pathologists. The study used data sets of 270 WSIs in the
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FIGURE 6

(a) False positive results from the AI detecting melanoma metastasis in a germinal center of the lymph node on an H&E slide and the corresponding
area stained negative for (b) SOX10 and (c) HMB45; (d) false negative melanoma metastasis detection on an H&E slide where a small cluster of
melanoma cells was interpreted as background tissue and the corresponding area stained positive for (e) SOX10 and (f) HMB45; (g) false positive
results from the AI detecting intranodal nevus on blood vessels on an H&E slide and the corresponding area stained negative for (h) SOX10 and (i)

HMB45 and, lastly, (j) false negative nevus detection on an H&E slide and the corresponding area stained positive for (k) SOX10 and (l) negative for
HMB45.

training set and 129 in the test set. Unlike our approach, Bejnordi

et al. used a competition to identify the most accurate algorithm.

The performance of the algorithms varied significantly in terms of

AUC, ranging from 0.556 to 0.994, compared to our AUC of 0.961

for NM detection (18).

In our study, the performance of the AI model for detecting

NM was excellent. However, the AI model did not surpass

the performance of the three dermatopathologists (18). The

accuracy of the individual dermatopathologists in detecting

even very small NM aggregates without IHC was impressive.

These pathologists were trained dermatopathologists who assessed

melanoma SNBs daily and were familiar with digital diagnostics.

However, their performance might have been lower under routine

diagnostic conditions due to the time pressure. The study

by Bejnordi et al. (18) demonstrated the negative effect of

time constraints.

Furthermore, the AImodel showed the potential to differentiate

between NM and INN. However, the performance for INN

detection was generally lower than that for NM. This discrepancy

can be explained by the fact that the dataset included fewer INN

cases compared to NM, and the INNs were often significantly

smaller, resulting in fewer annotated INN regions compared to

the NM regions. Moreover, INN cells have small, uniform nuclei

without atypia, making them resemble surrounding cells, such

as inflammatory cells and fibroblasts, thus posing a detection

challenge compared to the atypically large NM cells.
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We believe that increasing the sample size would improve

the model’s performance. Some INN are small, spindle-shaped,

and sometimes loosely admixed in the capsule, making them

easily overlooked even by experienced pathologists (8), as

shown in our study. The AI model showed promise in

identifying INN. However, false positives were also observed,

reducing specificity (Figure 6, Supplementary Figure S2). We

believe that further training could help the algorithm overcome

this challenge.

We used IHC as a reference standard, along with cell

morphology. Commonly used IHC stainings, such as S100, SOX10,

and Melan A, cannot distinguish INN from NM (6). HMB45

staining is often negative in INN but positive in NM (8), making it

useful when combined with another melanocytic marker (SOX10,

S100) (29). However, the loss of HMB45 expression can occur

in nodal melanoma metastases (30). In our study, all NM cases

showed positivity for HMB45. Other IHC stainings that help

distinguish NM from INN include PRAME, p16, and Ki67 (8,

31, 32). We used a routine staining protocol at our laboratory

for MM SNBs, consisting of consecutive slides of H&E, SOX10,

HMB45, and H&E. The material was retrospectively collected

from the archives, and no extra staining was performed for

the study.

The need for several IHC stains makes interpreting melanoma

SNBs time-consuming. Despite the use of IHC, the architectural

and cytologic morphology remains crucial for interpreting NM

(33). The AI model could learn the morphological differences

between NM and INN without IHC. INNs are often located in the

capsule of the lymph nodes, while NMs are more often found in

the parenchyma. Our study included NMs with various locations,

including capsular foci (Supplementary Table S2). Interestingly,

the algorithm could differentiate NM and INN in similar

locations (Supplementary Figure 4). This supports the fact that

the network can detect tumor cells regardless of the appearance

of the surrounding cells or tissue. Moreover, the AI model

learned to differentiate melanocytes from the surrounding

pigmented macrophages.

The TNM staging system for melanoma does not include a

lower threshold for the metastasis size determined in an SNB. It

has been shown that melanoma patients with isolated tumor cells

found in SNBs have a significantly higher risk of melanoma-specific

death than those with tumor-negative SNBs (5). Interestingly, the

AI model could detect even small tumor foci missed by pathologists

(Supplementary Figure S1).

The method used to train the AI model was supervised deep

learning, which requires extensive annotations. In our study, nearly

6,000 pixel-wise annotations were provided. To mitigate this labor-

intensive process, new methods such as transfer learning and

weakly supervised learning have been proposed (34, 35). One

interesting method of reducing the annotation workload is the

use of automated computer-assisted annotations generated by AI

(28, 36).

The main strength of our study is that we included INN as

a common confounding factor in the training and did not solely

focus on NM. Another strength is that the dermatopathologists

and the AI model assessed the same H&E-stained WSIs. We used

IHC as the reference standard instead of only comparing the AI

model’s performance to the pathologist’s assessment or previous

pathology reports.

The sample size of the study can be observed as relatively small.

However, the sample size was comparable to previously mentioned

AI studies with a similar setup (18). The dataset was imbalanced,

which could be explained by the retrospective data collection and

the fact that INN is a rarer finding than NM in melanoma SNBs.

This may have affected the accuracy of the model, especially in

detecting INN. We collected all the cases found in the archives

within the studied period. After scanning, a small number of cases

were excluded due to issues with digitization, resulting in problems

with image quality and focus partly due to tissue artifacts.

Moreover, some regions in the included cases showed minor

artifacts (such as tissue folds and small blurry areas). Even though

the AImodel was trained to disregard areas with artifacts, thesemay

have affected the performance if they were located in critical areas

of the small tumor foci. Some slides were rescanned to address some

of these issues, which resolved some but not all of them. Due to

the limited number of cases, not all slides with minor artifacts were

excluded.With increased scanning experience, issues such as blurry

images could be better avoided.

The reference standard was based on a single pathologist’s

interpretation of IHC and H&E slides. A consensus of several

pathologist interpretations would havemade the reference standard

more reliable. Another limitation is that we only usedmaterial from

one pathology unit and did not validate the algorithm with external

material from other laboratories. External validation would better

evaluate the overall usability of the AI model. We aim to validate

the performance in a larger study set up with more samples

from multiple laboratories. However, this was not possible in this

initial study.

A further limitation in our study setup was that the tumor

foci in the test set were not annotated by the pathologists due to

the time-consuming process and could not be compared to the AI

result. This annotation was performed during the validation phase

of the study to assess the potential of the AI algorithm and the need

for further training. The performance of the early AI model was

promising, but the training continued to increase specificity.

In the test phase, we chose a slide-level interpretation (no

tumor, NM, INN, or both) performed by the AI and the

dermatopathologists to obtain a more reliable picture of the

performance of the model in a real-life setting (assessing the whole

slides instead of small, selected regions). Similar approaches (e.g.,

tumor or no tumor) have been used in other SNB studies (19, 20).

There is evidence that AI-assisted diagnostics can improve the

quality, efficiency, and consistency of cancer detection and grading

(37). The benefits of using our approach in a real-life setting include

saving time and resources. The automated WSI analysis is fast

(completed in seconds) and can be performed on H&E slides.

Additionally, the AI model could reduce the need for IHC and help

pathologists detect the smallest tumor foci that might otherwise

be missed.

In the modern digitalized pathologist workflow, the model

could pre-screen WSIs and highlight slides/sections of interest

for the pathologist. A pre-screening algorithm could prioritize

pathology cases, allowing positive SNBs to be analyzed first.

However, further validation using larger datasets and material from
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different laboratories scanned with various scanners is warranted

before implementing the approach in real-life settings.

To conclude, the deep learning AI model showed excellent

dermatopathologist-level accuracy in detecting NM and showed

potential in differentiating NM from INN based on routine H&E-

stained WSIs. Further validation of the method is warranted.
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