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Construction of a risk screening 
and visualization system for 
pulmonary nodule in physical 
examination population based on 
feature self-recognition machine 
learning model
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Objective: To assess the effectiveness of a feature self-recognition machine 
learning model in screening for pulmonary nodule risk in a physical examination 
population and to evaluate the constructed visualization system.

Methods: We analyzed data from 4,861 individuals who underwent chest CT exams 
during their physical examinations at the Western Theater General Hospital of the 
People’s Liberation Army from January 2023 to November 2023. Among them, 
1,168 had positive CT reports for pulmonary nodules, while 3,693 had negative 
findings. We  developed a machine learning model using the XGBoost algorithm 
and employed an improved sooty tern optimization algorithm (ISTOA) for feature 
selection. The significance of the selected features was evaluated through univariate 
analysis and multivariable logistic stepwise regression analysis. A visualization system 
was created to estimate the risk of developing pulmonary nodules.

Results: Multivariable analysis identified older age, smoking or passive smoking, 
high psychological stress within the past year, occupational exposure (e.g., air 
pollution at the workplace), presence of chronic lung diseases, and elevated 
carcinoembryonic antigen levels as significant risk factors for pulmonary nodules. 
The feature self-recognition machine learning model further highlighted age, 
smoking or passive smoking, high psychological stress, occupational exposure, 
chronic lung diseases, family history of lung cancer, decreased albumin levels, 
and elevated carcinoembryonic antigen as key predictors for early pulmonary 
nodule risk, demonstrating superior performance.

Conclusion: The feature self-recognition machine learning model effectively 
aids in the early prediction and clinical identification of pulmonary nodule risk, 
facilitating timely intervention and improving patient prognosis.
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1 Introduction

The widespread implementation of lung cancer screening programs 
has markedly increased the detection rates of pulmonary nodules. 
These nodules, characterized as focal, round-shaped, solid or subsolid 
lung opacities not exceeding 3 cm in diameter on imaging, can evolve 
into malignant tumors if not diagnosed and managed promptly. This 
progression significantly deteriorates the quality of life for affected 
individuals (1, 2). Lung cancer remains the most prevalent and 
deadliest of all malignant tumors, with most patients presenting at 
advanced stages, resulting in low five-year survival rates and poor 
prognoses (3, 4). Consequently, the effective management of pulmonary 
nodules is crucial in the prevention and control of lung tumors.

The clinical manifestations of pulmonary nodules are non-specific, 
complicating the diagnostic process and increasing the likelihood of 
misdiagnosis. Traditionally, the assessment of these nodules for 
benign or malignant characteristics involves the analysis of chest CT 
images or the employment of invasive techniques such as surgery or 
biopsy to obtain a definitive lesion characterization (5, 6). However, 
recent advancements in artificial intelligence (AI) have facilitated the 
extraction of feature information and the development of predictive 
models. These innovations are proving instrumental in aiding 
physicians to diagnose suspicious pulmonary nodules non-invasively. 
Such technological progress not only enhances the potential for early 
disease detection and prognosis but also significantly improves the 
diagnostic accuracy of pulmonary nodules (7, 8). For instance, studies 
have demonstrated that deep learning models are capable of learning 
subtle image features from complex imaging data, features that are 
often elusive to traditional methods (2, 9). These advancements have 
not only improved the accuracy in distinguishing benign from 
malignant pulmonary nodules but have also shortened the diagnostic 
process, providing quicker decision support for patient treatment (10, 
11). Furthermore, recent research has explored how improvements in 
algorithms and model structures can enhance the generalizability and 
interpretability of diagnostic systems, making their application in 
clinical practice more widespread and effective (12). These findings 
not only confirm the potential of artificial intelligence technology in 
non-invasive diagnostics but also highlight future research directions, 
specifically how to better integrate these advanced technologies into 
routine clinical diagnostic processes to improve early disease detection 
and treatment outcomes (13). The aim of this study is to analyze the 
value of pulmonary nodules risk screening in physical examination 
population and the effect of visualization system construction based 
on feature self-recognition machine learning mode.

2 Methods and materials

2.1 Study population

A total of 4,861 individuals who underwent chest CT examinations 
as part of their physical examinations at the Western Theater General 
Hospital of the People’s Liberation Army from January 2023 to 
November 2023 were included in this study, access to the study data 
began on January 1, 2024. Among them, 1,168 patients had positive 
CT reports for pulmonary nodules, while 3,693 patients had negative 
findings. Inclusion criteria were as follows: (1) Normal mental status, 
clear cognition, and able to cooperate with inquiries; (2) Complete 

clinical data. Exclusion criteria were as follows: (1) Presence of severe 
diseases such as cardiovascular, liver, or kidney disorders; (2) History 
of previous tumors; (3) Pregnant or breastfeeding women.

This study was conducted retrospectively, informed consent was 
waived, and this study was approved by the Ethics Committee of the 
Western Theater General Hospital of the People’s Liberation Army 
(Approval No.: 2022ky105-3). All data were anonymized.

2.2 Data collection

General information and laboratory test results of the study 
participants were obtained from the Health Management System of the 
Western Theater General Hospital of the People’s Liberation Army, 
comprising a total of 33 features. The general information included 
gender, age, smoking history, alcohol consumption history, place of 
residence, education level, chronic lung diseases, family history of lung 
cancer, regular exercise, body mass index, presence of high psychological 
stress within the past year, and presence of depressive symptoms within 
the past year. The laboratory test results included carcinoembryonic 
antigen, thyroid-stimulating hormone, white blood cell count, 
lymphocyte count, platelet count, hemoglobin, eosinophil count, 
basophil count, albumin, globulin, albumin-globulin ratio, alanine 
aminotransferase, aspartate aminotransferase, indirect bilirubin, high-
density lipoprotein, low-density lipoprotein, triglycerides, fasting blood 
glucose, creatinine, blood urea nitrogen, and uric acid.

2.3 Feature self-recognition machine 
learning model

In this study, we proposed a feature self-recognition machine learning 
model (FSRML) that does not require preliminary feature selection before 
running. All 33 features studied were included in the model training. The 
FSRML utilizes the powerful global optimization capability of swarm 
intelligence algorithms to automatically perform feature selection. The 
schematic diagram of the model is shown in Figure 1.

Caption: Firstly, swarm intelligence algorithms initialize the 
generation of chaotic population random sequences. Each chaotic 
sequence can be filtered using binary encoding (0 represents feature 
deletion, 1 represents feature retention). The filtered features are then 
fed into the machine learning model, and the predictive accuracy is 
calculated as the objective function. Through the iteration of the 
swarm intelligence algorithm’s population, the feature selection and 
model construction results are gradually optimized.

To better guide the feature optimization task mentioned above, 
this study improves upon the sooty tern optimization algorithm 
(STOA) (14) by incorporating three enhancement strategies: Bernoulli 
chaotic mapping (15), Cauchy mutation perturbation (16), and 
longitudinal-lateral crossover mutation (17). These improvements 
lead to the development of a hybrid chaotic sooty tern optimization 
algorithm that combines longitudinal-lateral crossover and Cauchy 
mutation. It is referred to as the improved sooty tern optimization 
algorithm (ISTOA). The specific improvement strategies are as follows:

(1) Bernoulli chaotic mapping
Swarm intelligence optimization algorithms generally generate 

populations through randomization. However, when the population 
size is small, the populations generated by random arrays may lack 
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sufficient ergodicity, potentially causing the optimization results to fall 
into local optima. Chaotic sequences, characterized by strong 
ergodicity, unpredictability, and sensitivity to initial values, are better 
suited for the task of initializing populations. Bernoulli mapping is a 
typical example of chaotic mapping, and its expression is as follows:
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In the above expression, we set the value to 0.4. First, a random 
number x0 between 0 and 1 is generated. Then, the chaotic sequence 
is produced according to the aforementioned formula.

(2) Cauchy mutation disturbance
Based on the original STOA, we  set a certain probability to 

perform a position update using Cauchy mutation disturbance. This 
enhances the algorithm’s ability to escape local optima. The formula 
for the Cauchy probability density function is as follows:
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Incorporating this into the STOA position update formula, 
we have:

 ( )0,1newbest best bestX X X Cauchy= + ×

where Cauchy() represents the Cauchy probability density 
function, Xnewbest is the position after mutation, and Xbest is the best 
position before mutation.

2.4 Software system development

A visualization prediction system was built based on the 
constructed predictive model. This system was developed using 
MATLAB R2022a and designed using the APP Designer functionality, 
resulting in an initial *.mlapp file. Subsequently, the *.mlapp file was 
compiled into an executable *.exe file that can run independently 
without the need for the MATLAB environment. As long as the 
computer has MATLAB Runtime installed, the software can be run, 
effectively reducing the software’s runtime environment requirements 
and improving its portability.

2.5 Statistical analysis

The predictive model construction was performed using MATLAB 
2022a, and data analysis was conducted using SPSS 26.0 software. A 
significance level of p < 0.05 was used to indicate statistically significant 
differences. Count data were presented as [n (%)] and compared using 
the chi-square test, while normally distributed continuous data were 
expressed as (mean ± standard deviation) and compared using 
the t-test.

3 Results

3.1 Performance testing of ISTOA 
optimization

To comprehensively evaluate the performance and efficiency of 
various algorithms, this study utilized 23 standard benchmark 
functions to assess the performance of each algorithm, the specific 23 
functions are shown in Supplementary File 1. The results demonstrated 
that ISTOA exhibited significantly faster convergence speed and 

FIGURE 1

 Schematic diagram of the FSRML model. Firstly, swarm intelligence algorithms initialize the generation of chaotic population random sequences. Each 
chaotic sequence can be filtered using binary encoding (0 represents feature deletion, 1 represents feature retention). The filtered features are then fed 
into the machine learning model, and the predictive accuracy is calculated as the objective function. Through the iteration of the swarm intelligence 
algorithm’s population, the feature selection and model construction results are gradually optimized.
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superior global optimization capability compared to other algorithms. 
Please refer to Figure  2a for detailed findings. Thus, the ISTOA 
algorithm showed clear advantages in optimization, making it suitable 
as the guiding algorithm for feature automatic selection in this study.

3.2 Lung nodule prediction model 
construction

3.2.1 Model construction overview
Randomly selecting 80% of the dataset as the training set (3,889 

cases), we chose several base models including logistic regression 
(LR), decision tree (DT), k-nearest neighbors algorithm (KNN), 
backpropagation neural network (BP), support vector machine 

(SVM), random forest (RF), and XGBoost. All these models were 
integrated with ISTOA for automatic feature selection, thus 
constructing the FSRML model. Five-fold cross-validation was 
performed for all models. Comparing the validation results of the five-
fold cross-validation, it was evident that XGBoost exhibited significant 
advantages (Table 1; Figures 2b,c).

3.2.2 Machine learning model performance 
testing

After constructing the models, the remaining 20% of the samples 
(972 cases) were selected as the test set to evaluate the predictive 
performance of each model on external data. The results showed that 
using XGBoost as the base model for FSRML yielded significant 
improvements in predictive performance (Table 2; Figures 3, 4).

FIGURE 2 (Continued)
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3.2.3 Compared with other automatic machine 
learning methods

The FSRML we developed was compared with other AutoML 
models, and the results showed that the FSRML model constructed in 
this study had the best prediction performance on the test set (Table 3; 
Figures 5, 6).

3.3 Feature validation through 
model-automated selection

The features selected automatically by the FSRML model include 
age, smoking or frequent passive smoking, significant psychological 
stress in the past year, occupational exposure (presence of air pollution 
in the work environment), presence of chronic lung disease, family 

history of lung cancer, elevated levels of albumin, and elevated levels 
of carcinoembryonic antigen. The value of these selected features was 
assessed through univariate analysis and multivariate logistic stepwise 
regression analysis.

3.3.1 Univariate analysis for feature selection
The results of the univariate analysis showed that in patients with 

positive lung nodules, the proportions of age, smoking or frequent 
passive smoking, significant psychological stress in the past year, 
occupational exposure (presence of air pollution in the work 
environment), presence of chronic lung disease, family history of lung 
cancer, and elevated levels of carcinoembryonic antigen were higher 
compared to patients with negative lung nodules. Additionally, the 
level of albumin was lower in patients with positive lung nodules. 
These differences were statistically significant (p < 0.05) (Table 4).

FIGURE 2 (Continued)
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FIGURE 2

Performance analysis of ISTOA on 23 standard benchmark functions. The 3D surface plots in the figure depict the two-dimensional search space for 
each benchmark function. The convergence curves illustrate the convergence trends of the first solution dimension for each benchmark function, with 
a comparison between STOA (blue curve) and the improved ISTOA (red curve).

TABLE 1 Cross-validation results of FSRML model training (validation set).

Basic model PRE SEN SPE ACC F1 ROC-AUC PR-AUC

LR 0.4016 0.0525 0.9753 0.7537 0.0928 0.6866 0.3681

DT 0.5602 0.4979 0.8765 0.7855 0.5272 0.7801 0.5379

KNN 0.5519 0.6660 0.8291 0.7899 0.6036 0.8480 0.6187

BP 0.6779 0.7548 0.8866 0.8550 0.7143 0.8852 0.7247

SVM 0.6131 0.4497 0.9103 0.7997 0.5188 0.8118 0.5504

RF 0.8893 0.6970 0.9726 0.9064 0.7815 0.9323 0.8726

XGBoost 0.9410 0.6831 0.9865 0.9136 0.7916 0.9496 0.9028
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3.3.2 Multivariate analysis for feature selection
The results of the multivariate analysis showed that advanced 

age, smoking or frequent passive smoking, significant psychological 
stress in the past year, occupational exposure (presence of air 
pollution in the work environment), presence of chronic lung 
disease, and elevated levels of carcinoembryonic antigen were 
identified as risk factors for predicting the occurrence of lung 
nodules (Table 5).

3.4 Development of visualization system

In clinical practice, the changes in various features related to lung 
nodules can be complex and difficult to visually interpret, making it 
challenging to determine whether a patient is at risk of developing 
lung nodules. Existing artificial intelligence methods also face the 
challenge of high implementation barriers, requiring clinicians to 
possess advanced coding skills and extensive literature review, which 
hinders widespread adoption in hospitals. To address this issue, this 
study innovatively developed a practical visualization system called “A 
Risk Prediction System for Pulmonary Nodules in Physical 
Examination Population.” This system offers intuitive, convenient, and 
practical advantages.

Users can input patients’ basic information in the “Basic 
Information Input” section and then click the “Prediction” button. The 
predicted results will be displayed in the “Prediction Result Output” 
section, providing users with easy access to the prediction outcomes 
(Figures 7, 8).

4 Discussion

In recent years, with changes in people’s lifestyles and the 
influence of environmental factors, the incidence of lung nodules, 
as one of the early signs of lung cancer, has been increasing year 
by year (18). Currently, the diagnostic techniques for lung 
nodules mainly include CT scanning, needle biopsy, or 
pathological examination after surgery. CT scans rely on 
comprehensive analysis by physicians of lesion location, size, 
density, shape, and other information to make a qualitative 
diagnosis. However, different pathological subtypes of lung 
nodules often exhibit similar imaging features, and the diagnosis 
of the same lesion may be influenced by subjective differences 
among different diagnosticians, making it difficult to accurately 
diagnose early-stage lung cancer (19, 20). Pathological 

FIGURE 3

ROC curve of validation set.

FIGURE 4

PR curves of validation set.

TABLE 2 FSRML model performance comparison results (test set).

Basic model PRE SEN SPE ACC F1 ROC-AUC PR-AUC

LR 0.3030 0.0427 0.9688 0.7459 0.0749 0.6706 0.3614

DT 0.5490 0.5983 0.8442 0.7850 0.5726 0.7973 0.5231

KNN 0.6547 0.6239 0.8957 0.8302 0.6389 0.8647 0.6460

BP 0.7017 0.7137 0.9038 0.8580 0.7076 0.8969 0.6757

SVM 0.6575 0.4103 0.9322 0.8066 0.5053 0.8060 0.5710

RF 0.9483 0.7051 0.9878 0.9198 0.8088 0.9407 0.8958

XGBoost 0.9148 0.6880 0.9797 0.9095 0.7854 0.9522 0.9077

https://doi.org/10.3389/fmed.2024.1424750
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Tian et al. 10.3389/fmed.2024.1424750

Frontiers in Medicine 08 frontiersin.org

examination is considered the gold standard for diagnosing 
lesions, but it does not provide a comprehensive assessment of 
the entire lesion. Therefore, different pathological results can also 
occur depending on the site of sample collection (21). Positron 
Emission Tomography/Computed Tomography (PET/CT)，the 
significant role in the evaluation and management of pulmonary 
nodules. PET/CT is instrumental in distinguishing between 
benign and malignant nodules, enhancing the diagnostic 
accuracy beyond what is achievable with CT alone. This imaging 
modality integrates metabolic and anatomic information, 
providing a more comprehensive assessment of nodule activity. 
Studies have shown that PET/CT can significantly improve the 
sensitivity and specificity of lung cancer detection, especially in 
nodules that are indeterminate in size and appearance (22). 
However, the high cost of PET/CT makes it difficult to promote 
it in clinical practice.

Machine learning is an interdisciplinary field that combines 
statistics, various domains of knowledge, and computer technology 
to process large volumes of data. It is a subfield of artificial 
intelligence. By utilizing machine learning algorithms, researchers 
can extract the necessary feature variables from massive datasets, 
thereby enhancing learning efficiency (23, 24). Machine learning 
has been widely applied in the medical field. In this study, a machine 
learning model based on XGBoost was developed for feature 

recognition. This model automates the preliminary work of machine 
learning, including data preparation, encoding, feature selection/
extraction, and engineering environment. During the model 
generation process, it involves algorithm selection, optimization, 
iteration, and validation (25, 26). Additionally, this study utilized 
the ISTOA for optimizing the performance of machine learning. 
This algorithm builds upon the decision tree algorithm and 
continuously improves precision through accumulation (27). An 
essential aspect of implementing data-driven models in medicine is 
ensuring the feasibility and integration of these processes within 
healthcare service providers. The successful deployment of our 
feature self-recognition machine learning model for pulmonary 
nodule risk screening hinges not only on its predictive accuracy but 
also on its practical application in clinical settings. According to 
recent studies, it is crucial to consider factors such as interoperability 
with existing healthcare systems, ease of use for clinical staff, and 
the ability to handle large-scale data efficiently. Our model has been 
designed with these considerations in mind, featuring an intuitive 
visualization system that can seamlessly integrate with electronic 
health records (EHR) and other hospital information systems 
(HIS). Additionally, the model’s reliance on routinely collected 
clinical data ensures that its implementation does not require 
significant changes to current workflows, thereby facilitating its 
adoption in real-world healthcare environments. Future work will 

TABLE 3 Comparison of FSRML and other AutoML prediction performance.

Model PRE SEN SPE ACC F1 ROC-AUC PR-AUC

TPE-GP 0.7778 0.0598 0.9946 0.7695 0.1111 0.7112 0.4535

TPOT 0.9412 0.2735 0.9946 0.8210 0.4238 0.9242 0.8220

AutoSklearn 0.3529 0.0256 0.9851 0.7541 0.0478 0.6865 0.3637

AutoGluon 0.6329 0.6410 0.8821 0.8241 0.6369 0.8431 0.6755

FSRML 0.9148 0.6880 0.9797 0.9095 0.7854 0.9522 0.9077

FIGURE 5

ROC curve of test set.

FIGURE 6

PR curve of test set.
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focus on pilot testing the system in various healthcare settings to 
further validate its feasibility and gather feedback for 
continuous improvement.

In this study, both univariate analysis and multivariate logistic 
regression models were used to identify six influencing factors: 
advanced age, smoking or frequent passive smoking, significant 
psychological stress in the past year, occupational exposure (presence 
of air pollution in the work environment), presence of chronic lung 
disease, and elevated levels of carcinoembryonic antigen. On the other 
hand, the feature recognition machine learning model identified eight 
features, including age, smoking or frequent passive smoking, 
significant psychological stress in the past year, occupational exposure 
(presence of air pollution in the work environment), presence of 
chronic lung disease, family history of lung cancer, decreased levels of 

albumin, and elevated levels of carcinoembryonic antigen. These 
features can be used for early diagnosis and prediction of the risk of 
developing lung nodules. This is because in the regression models, 
there is a high degree of linear correlation among the independent 
variables, which leads to inaccurate, unstable, and even unreliable 
estimates of the regression coefficients. This affects the predictive 
ability of the models and indicates that machine learning outperforms 
traditional multivariate analysis.

An analysis of the aforementioned risk factors reveals that both 
men and women have an increased incidence of lung nodules with age. 
This is because as the body ages, the immune system weakens, cell self-
repair capabilities decline, and various carcinogenic factors stimulate 
the development of multiple diseases, promoting tumor growth (28, 
29). Smoking intensity and duration are positively correlated with the 

TABLE 4 Results of univariate analysis of model selection feature.

Feature Negative 
(n = 3,693)

Positive 
(n = 1,168)

t/χ2 value p-value

Age(year) 33.87 ± 8.43 43.32 ± 9.16 32.691 <0.001

Smoking or frequent passive smoking 320.600 <0.001

Yes 1,469(39.78) 815(69.78)

No 2,224(60.22) 353(30.22)

Significant psychological stress in the past year 29.163 <0.001

Yes 775(20.99) 327(28.66)

No 2,918(79.01) 814(71.34)

Occupational exposure (presence of air pollution in the work environment) 209.891 <0.001

Yes 443(12.0) 350(29.97)

No 3,250(88.0) 818(70.03)

Presence of chronic lung disease 41.936 <0.001

Yes 187(5.06) 121(10.36)

No 3,506(94.94) 1,047(89.64)

Family history of lung cancer 136.618 <0.001

Yes 517(14.0) 338(28.94)

No 3,176(86.0) 830(71.06)

Albumin (g/L) 49.14 ± 11.23 44.92 ± 9.33 11.635 <0.001

Elevated levels of carcinoembryonic antigen 40.807 <0.001

Yes 61(1.65) 58(4.97)

No 3,632(98.35) 1,110(95.03)

TABLE 5 Results of multivariate logistic regression stepwise regression analysis.

Feature β SE Wald P EXP(B) 95% CI for EXP(B)

Lower Upper

Age (year) 1.536 0.636 5.833 0.019 4.646 3.399 5.893

Smoking or frequent passive smoking 1.231 0.311 15.667 <0.001 3.425 2.815 4.034

Significant psychological stress in the past year 0.515 0.134 14.771 <0.001 1.674 1.411 1.936

Presence of chronic lung disease 0.742 0.237 9.802 0.003 2.100 1.636 2.565

Elevated levels of carcinoembryonic antigen 1.011 0.352 8.249 0.006 2.748 2.058 3.438

Occupational exposure (presence of air pollution in 

the work environment)

1.067 0.491 4.722 0.034 2.907 1.944 3.869
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incidence of lung nodules. This is due to the presence of dozens of 
carcinogens in tobacco, which can cause genetic mutations and 
promote chronic tumor growth. Passive smokers unknowingly inhale 
smoke, leading to lung function impairment (30, 31). Smoking also 
causes constriction of small blood vessels in the lungs and thickening 
of vessel walls, resulting in elevated levels of carcinoembryonic antigen 
(32). Air pollution and smoking have a synergistic effect on the 
occurrence and development of lung cancer, continuously increasing 
the incidence of lung nodules. Previous studies have shown that 
exposure to kitchen fumes and occupational exposure increase the risk 

of developing lung nodules. This is because kitchen fumes mainly 
contain carcinogens such as benzopyrene, volatile nitrosamines, and 
heterocyclic amine compounds, which exert cytotoxic effects on lung 
tissue and damage the respiratory system. Occupational exposure to 
substances like aluminum, arsenic, asbestos, coke, and coal gas has 
carcinogenic effects on the lungs (33, 34). Most lung nodules are caused 
by lung inflammation, and underlying lung diseases such as 
pneumonia, emphysema, chronic bronchitis, chronic obstructive 
pulmonary disease (COPD), and asthma are all inflammatory 
conditions that can recur and increase the incidence of lung nodules 
(35, 36). A positive family history of lung cancer and a history of lung 
disease are positively associated with the development of lung nodules, 
increasing the risk of their occurrence (37). Reasons for low albumin 
levels include inadequate intake, excessive consumption, excessive 
elimination, and insufficient synthesis. In patients with lung nodules, 
low albumin levels can be  caused by malnutrition, impaired liver 
function, tumor metastasis, digestive tract tumors, liver tumors, and 
other factors (38, 39).

Compared to traditional statistical models such as logistic 
regression, the feature recognition machine learning model improves 
model accuracy. Additionally, the use of the ISTOA significantly 
reduces the barrier to entry for artificial intelligence technology. 
Healthcare professionals can utilize this tool to screen individuals 
undergoing medical examinations for their risk of developing lung 
nodules and implement targeted intervention measures. For example, 
they can promote a balanced diet, encourage physical exercise, foster 
healthy lifestyle habits, and establish regulations to restrict smoking 
(40, 41).

5 Conclusion

The application of feature recognition machine learning models 
can help clinicians identify characteristics of lung nodule patients, 
thereby enabling early prediction of disease occurrence, assisting in 
the development of treatment plans, and improving prognosis. 
However, this study also has certain limitations. Firstly, it is a 
retrospective and single-center study, which may introduce selection 
bias and affect the accuracy of the research findings. To further 
validate the results, more multicenter sample data is needed. 
Additionally, CT imaging plays a crucial role in the diagnosis of lung 
nodules in clinical practice. However, this study did not include CT 
imaging radiomics features, indicating the need for further analysis in 
future studies.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by the Ethics 
Committee of the Western Theater General Hospital of the People’s 
Liberation Army. The studies were conducted in accordance with the 

FIGURE 7

Low risk of pulmonary nodules.

FIGURE 8

High risk of pulmonary nodules.

https://doi.org/10.3389/fmed.2024.1424750
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Tian et al. 10.3389/fmed.2024.1424750

Frontiers in Medicine 11 frontiersin.org

local legislation and institutional requirements. The ethics committee/
institutional review board waived the requirement of written informed 
consent for participation from the participants or the participants’ 
legal guardians/next of kin because this study was conducted 
retrospectively, informed consent was waived.

Author contributions

KH: Conceptualization, Methodology, Project administration, 
Resources, Writing – review & editing. FT: Data curation, 
Investigation, Resources, Writing – original draft. YL: Data curation, 
Investigation, Writing – review & editing. LW: Investigation, Writing 
– review & editing. FF: Formal analysis, Methodology, Software, 
Visualization, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for 
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and 
do not necessarily represent those of their affiliated organizations, or those 
of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, 
is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmed.2024.1424750/
full#supplementary-material

References
 1. Godoy MCB, Odisio EGLC, Truong MT, de Groot PM, Shroff GS, Erasmus JJ. 

Pulmonary nodule Management in Lung Cancer Screening: a pictorial review of lung-
RADS version 1.0. Radiol Clin North Am. (2018) 56:353–63. doi: 10.1016/j.
rcl.2018.01.003

 2. De Margerie-Mellon C, Chassagnon G. Artificial intelligence: a critical review of 
applications for lung nodule and lung cancer. Diagn Interv Imaging. (2023) 104:11–7. 
doi: 10.1016/j.diii.2022.11.007

 3. Wu Z, Wang F, Cao W, Qin C, Dong X, Yang Z, et al. Lung cancer risk prediction 
models based on pulmonary nodules: a systematic review. Thorac Cancer. (2022) 
13:664–77. doi: 10.1111/1759-7714.14333

 4. Zheng F, Lavin J, Sprafka JM. Patient out-of-pocket costs for suspicious pulmonary 
nodule biopsy in lung cancer patients. J Med Econ. (2021) 24:1173–7. doi: 
10.1080/13696998.2021.1988282

 5. Zhang Y, Jiang B, Zhang L, Greuter MJW, de Bock GH, Zhang H, et al. Lung nodule 
detectability of artificial intelligence-assisted CT image Reading in lung Cancer 
screening. Curr Med Imaging. (2022) 18:327–34. doi: 10.217
4/1573405617666210806125953

 6. Ghossein J, Gingras S, Zeng W. Differentiating primary from secondary lung cancer 
with FDG PET/CT and extra-pulmonary tumor grade. J Med Imaging Radiat Sci. (2023) 
54:451–6. doi: 10.1016/j.jmir.2023.05.045

 7. Li W, Yu S, Yang R, Tian Y, Zhu T, Liu H, et al. Machine learning model of 
ResNet50-ensemble voting for malignant-benign small pulmonary nodule classification 
on computed tomography images. Cancers (Basel). (2023) 15:5417. doi: 10.3390/
cancers15225417

 8. Liu M, Zhou Z, Liu F, Wang M, Wang Y, Gao M, et al. CT and CEA-based machine 
learning model for predicting malignant pulmonary nodules. Cancer Sci. (2022) 
113:4363–73. doi: 10.1111/cas.15561

 9. Pei Q, Luo Y, Chen Y, Li J, Xie D, Ye T. Artificial intelligence in clinical applications 
for lung cancer: diagnosis, treatment and prognosis. Clin Chem Lab Med. (2022) 
60:1974–83. doi: 10.1515/cclm-2022-0291

 10. Chassagnon G, de Margerie-Mellon C, Vakalopoulou M, Marini R, Hoang-Thi TN, 
Revel MP, et al. Artificial intelligence in lung cancer: current applications and 
perspectives. Jpn J Radiol. (2023) 41:235–44. doi: 10.1007/s11604-022-01359-x

 11. Goncalves S, Fong PC, Blokhina M. Artificial intelligence for early diagnosis of 
lung cancer through incidental nodule detection in low- and middle-income countries-
acceleration during the COVID-19 pandemic but here to stay. Am J Cancer Res. (2022) 
12:1–16.

 12. Viswanathan VS, Toro P, Corredor G, Mukhopadhyay S, Madabhushi A. The state 
of the art for artificial intelligence in lung digital pathology. J Pathol. (2022) 257:413–29. 
doi: 10.1002/path.5966

 13. Zhang K, Chen K. Artificial intelligence: opportunities in lung cancer. Curr Opin 
Oncol. (2022) 34:44–53. doi: 10.1097/CCO.0000000000000796

 14. Xia Q, Ding Y, Zhang R, Zhang H, Li S, Li X. Optimal performance and application 
for seagull optimization algorithm using a hybrid strategy. Entropy. (2022) 24:973. doi: 
10.3390/e24070973

 15. Yang C, Pan P, Ding Q. Image encryption scheme based on mixed chaotic 
Bernoulli measurement matrix block compressive sensing. Entropy. (2022) 24:273. doi: 
10.3390/e24020273

 16. Araújo MO, Marinho LS, Felinto D. Observation of nonclassical correlations in 
biphotons generated from an ensemble of pure two-level atoms. Phys Rev Lett. (2022) 
128:83601. doi: 10.1103/PhysRevLett.128.083601

 17. Zhi Z, Bian Z, Chen Y, Zhang X, Wu Y, Wu H. Horizontal and vertical comparison 
of microbial community structures in a low permeability reservoir at the local scale. 
Microorganisms. (2023) 11:2862. doi: 10.3390/microorganisms11122862

 18. Senent-Valero M, Librero J, Pastor-Valero M. Solitary pulmonary nodule 
malignancy predictive models applicable to routine clinical practice: a systematic review. 
Syst Rev. (2021) 10:308. doi: 10.1186/s13643-021-01856-6

 19. Silva M, Milanese G, Sestini S, Sabia F, Jacobs C, van Ginneken B, et al. Lung 
cancer screening by nodule volume in lung-RADS v1.1: negative baseline CT yields 
potential for increased screening interval. Eur Radiol. (2021) 31:1956–68. doi: 10.1007/
s00330-020-07275-w

 20. Ha T, Kim W, Cha J, Lee YH, Seo HS, Park SY, et al. Differentiating pulmonary 
metastasis from benign lung nodules in thyroid cancer patients using dual-energy CT 
parameters. Eur Radiol. (2022) 32:1902–11. doi: 10.1007/s00330-021-08278-x

 21. Wang Y, Huang Q, Li J. Analysis of clinical and pathological features of malignant 
pulmonary nodules. Altern Ther Health Med. (2023) 29:188–93.

 22. Evangelista L, Cuocolo A, Pace L, Mansi L, del Vecchio S, Miletto P, et al. 
Performance of FDG-PET/CT in solitary pulmonary nodule based on pre-test likelihood 
of malignancy: results from the ITALIAN retrospective multicenter trial. Eur J Nucl Med 
Mol Imaging. (2018) 45:1898–907. doi: 10.1007/s00259-018-4016-1

 23. Zhang Y, Feng W, Wu Z, Li W, Tao L, Liu X, et al. Deep-learning model of ResNet 
combined with CBAM for malignant-benign pulmonary nodules classification on 
computed tomography images. Medicina. (2023) 59:1088. doi: 10.3390/
medicina59061088

 24. Chen Y, Hou X, Yang Y, Ge Q, Zhou Y, Nie S. A novel deep learning model based 
on multi-scale and multi-view for detection of pulmonary nodules. J Digit Imaging. 
(2023) 36:688–99. doi: 10.1007/s10278-022-00749-x

 25. Huang W, Zhang H, Ge Y, Duan S, Ma Y, Wang X, et al. Radiomics-based machine 
learning methods for volume doubling time prediction of pulmonary ground-glass 
nodules with baseline chest computed tomography. J Thorac Imaging. (2023) 38:304–14. 
doi: 10.1097/RTI.0000000000000725

 26. Qi J, Hong B, Tao R, Sun R, Zhang H, Zhang X, et al. Prediction model for 
malignant pulmonary nodules based on cfMeDIP-seq and machine learning. Cancer Sci. 
(2021) 112:3918–23. doi: 10.1111/cas.15052

https://doi.org/10.3389/fmed.2024.1424750
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmed.2024.1424750/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmed.2024.1424750/full#supplementary-material
https://doi.org/10.1016/j.rcl.2018.01.003
https://doi.org/10.1016/j.rcl.2018.01.003
https://doi.org/10.1016/j.diii.2022.11.007
https://doi.org/10.1111/1759-7714.14333
https://doi.org/10.1080/13696998.2021.1988282
https://doi.org/10.2174/1573405617666210806125953
https://doi.org/10.2174/1573405617666210806125953
https://doi.org/10.1016/j.jmir.2023.05.045
https://doi.org/10.3390/cancers15225417
https://doi.org/10.3390/cancers15225417
https://doi.org/10.1111/cas.15561
https://doi.org/10.1515/cclm-2022-0291
https://doi.org/10.1007/s11604-022-01359-x
https://doi.org/10.1002/path.5966
https://doi.org/10.1097/CCO.0000000000000796
https://doi.org/10.3390/e24070973
https://doi.org/10.3390/e24020273
https://doi.org/10.1103/PhysRevLett.128.083601
https://doi.org/10.3390/microorganisms11122862
https://doi.org/10.1186/s13643-021-01856-6
https://doi.org/10.1007/s00330-020-07275-w
https://doi.org/10.1007/s00330-020-07275-w
https://doi.org/10.1007/s00330-021-08278-x
https://doi.org/10.1007/s00259-018-4016-1
https://doi.org/10.3390/medicina59061088
https://doi.org/10.3390/medicina59061088
https://doi.org/10.1007/s10278-022-00749-x
https://doi.org/10.1097/RTI.0000000000000725
https://doi.org/10.1111/cas.15052


Tian et al. 10.3389/fmed.2024.1424750

Frontiers in Medicine 12 frontiersin.org

 27. Lin RY, Zheng YN, Lv FJ, Fu BJ, Li WJ, Liang ZR, et al. A combined non-enhanced 
CT radiomics and clinical variable machine learning model for differentiating benign 
and malignant sub-centimeter pulmonary solid nodules. Med Phys. (2023) 50:2835–43. 
doi: 10.1002/mp.16316

 28. Xu L, Su Z, Xie B. Diagnostic value of conventional tumor markers in young patients 
with pulmonary nodules. J Clin Lab Anal. (2021) 35:23912. doi: 10.1002/jcla.23912

 29. Huang C, Sun Y, Wu Q, Ma C, Jiao P, Wang Y, et al. Simultaneous bilateral pulmonary 
resection via single-utility port VATS for multiple pulmonary nodules: a single-center 
experience of 16 cases. Thorac Cancer. (2021) 12:525–33. doi: 10.1111/1759-7714.13791

 30. Gendarme S, Chouaid C. Monitoring subsolid pulmonary nodules in high-risk 
patients is even more cost-effective when combined with a stop-smoking program. J 
Thorac Oncol. (2020) 15:1268–70. doi: 10.1016/j.jtho.2020.04.023

 31. Trejo Gallego C, Bueno J, Cruces E, Stelow EB, Mancheño N, Flors L. Pulmonary 
histiocytosis: beyond Langerhans cell histiocytosis related to smoking. Radiologia. 
(2019) 61:215–24. doi: 10.1016/j.rxeng.2019.03.004

 32. Huang CS, Chen CY, Huang LK, Wang WS, Yang SH. Prognostic value of 
postoperative serum carcinoembryonic antigen levels in colorectal cancer patients who 
smoke. PLoS One. (2020) 15:233687. doi: 10.1371/journal.pone.0233687

 33. Hirano T, Numakura T, Moriyama H, Saito R, Shishikura Y, Shiihara J, et al. The 
first case of multiple pulmonary granulomas with amyloid deposition in a dental 
technician; a rare manifestation as an occupational lung disease. BMC Pulm Med. (2018) 
18:77. doi: 10.1186/s12890-018-0654-0

 34. Hung SC, Wang YT, Tseng MH. An interpretable three-dimensional artificial 
intelligence model for computer-aided diagnosis of lung nodules in computed 
tomography images. Cancers. (2023) 15:4655. doi: 10.3390/cancers15184655

 35. Namireddy MK, Consul N, Sher AC. FDG-avid pulmonary nodules and 
tracheobronchial mural inflammation in IgG4-related disease. Clin Nucl Med. (2021) 
46:e125–6. doi: 10.1097/RLU.0000000000003358

 36. Liao J, Guan H, Yu M, Zhou P, Han Y, Peng X, et al. Pulmonary granulomatous 
inflammation after ceritinib treatment in advanced ALK-rearranged pulmonary 
adenocarcinoma. Investig New Drugs. (2022) 40:1141–5. doi: 10.1007/
s10637-022-01270-2

 37. Uthoff JM, Mott SL, Larson J, Neslund-Dudas CM, Schwartz AG, Sieren JC. 
Computed tomography features of lung structure have utility for differentiating 
malignant and benign pulmonary nodules. Chronic Obstr Pulm Dis. (2022) 9:154–64. 
doi: 10.15326/jcopdf.2021.0271

 38. Wei Q, Fang W, Chen X, Yuan Z, du Y, Chang Y, et al. Establishment and validation 
of a mathematical diagnosis model to distinguish benign pulmonary nodules from early 
non-small cell lung cancer in Chinese people. Transl Lung Cancer Res. (2020) 9:1843–52. 
doi: 10.21037/tlcr-20-460

 39. Dailey WA, Frey GT, McKinney JM, Paz-Fumagalli R, Sella DM, Toskich BB, et al. 
Percutaneous computed tomography-guided radiotracer-assisted localization of difficult 
pulmonary nodules in Uniportal video-assisted thoracic surgery. J Laparoendosc Adv 
Surg Tech A. (2018) 28:1451–7. doi: 10.1089/lap.2018.0248

 40. Kao MW. Intracorporeal direct measurement for localizing peripheral pulmonary 
nodules during thoracoscopy. J Thorac Dis. (2019) 11:4119–26. doi: 10.21037/
jtd.2019.10.06

 41. Kim H, Goo JM, Park CM. A simple prediction model using size measures for 
discrimination of invasive adenocarcinomas among incidental pulmonary subsolid nodules 
considered for resection. Eur Radiol. (2019) 29:1674–83. doi: 10.1007/s00330-018-5739-x

https://doi.org/10.3389/fmed.2024.1424750
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1002/mp.16316
https://doi.org/10.1002/jcla.23912
https://doi.org/10.1111/1759-7714.13791
https://doi.org/10.1016/j.jtho.2020.04.023
https://doi.org/10.1016/j.rxeng.2019.03.004
https://doi.org/10.1371/journal.pone.0233687
https://doi.org/10.1186/s12890-018-0654-0
https://doi.org/10.3390/cancers15184655
https://doi.org/10.1097/RLU.0000000000003358
https://doi.org/10.1007/s10637-022-01270-2
https://doi.org/10.1007/s10637-022-01270-2
https://doi.org/10.15326/jcopdf.2021.0271
https://doi.org/10.21037/tlcr-20-460
https://doi.org/10.1089/lap.2018.0248
https://doi.org/10.21037/jtd.2019.10.06
https://doi.org/10.21037/jtd.2019.10.06
https://doi.org/10.1007/s00330-018-5739-x

	Construction of a risk screening and visualization system for pulmonary nodule in physical examination population based on feature self-recognition machine learning model
	1 Introduction
	2 Methods and materials
	2.1 Study population
	2.2 Data collection
	2.3 Feature self-recognition machine learning model
	2.4 Software system development
	2.5 Statistical analysis

	3 Results
	3.1 Performance testing of ISTOA optimization
	3.2 Lung nodule prediction model construction
	3.2.1 Model construction overview
	3.2.2 Machine learning model performance testing
	3.2.3 Compared with other automatic machine learning methods
	3.3 Feature validation through model-automated selection
	3.3.1 Univariate analysis for feature selection
	3.3.2 Multivariate analysis for feature selection
	3.4 Development of visualization system

	4 Discussion
	5 Conclusion

	References

