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Background and hypothesis: A static predictive model relying solely on 
baseline clinicopathological data cannot capture the heterogeneity in predictor 
trajectories observed in the progression of chronic kidney disease (CKD). To 
address this, we developed and validated a dynamic survival prediction model 
using longitudinal clinicopathological data to predict end-stage kidney disease 
(ESKD), with death as a competing risk.

Methods: We trained a sequence of random survival forests using a landmarking 
approach and optimized the model with a pre-specified prediction horizon of 
5 years. The predicted cumulative incidence function (CIF) values were used to 
generate a personalized dynamic prediction plot.

Results: The model was developed using baseline demographics and 13 
longitudinal clinicopathological variables from 4,950 patients. Variable 
importance analysis for ESKD and death informed the creation of a sequence of 
reduced models that utilized six key variables: age, serum albumin, bicarbonate, 
chloride, eGFR, and hemoglobin. The models demonstrated robust predictive 
performance, with a median concordance index of 84.84% for ESKD and 84.1% 
for death. The median integrated Brier scores were 0.03 for ESKD and 0.038 
for death across all landmark times. External validation with 8,729 patients 
confirmed these results.

Conclusion: We successfully developed and validated a dynamic survival 
prediction model using common longitudinal clinicopathological data. This 
model predicts ESKD with death as a competing risk and aims to assist clinicians 
in dialysis planning for patients with CKD.
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Introduction

Chronic kidney disease (CKD) is a global health challenge, with 
a reported prevalence of 13.4% (1), and is associated with significant 
mortality (2) and morbidity (3). As patients approach end-stage 
kidney disease (ESKD), clinicians and patients face complex decisions 
regarding the optimal timing for permanent dialysis access formation 
and evaluating transplantation suitability. These decisions are further 
complicated by the highly variable and often unpredictable rate of 
CKD progression. Therefore, an accurate model to predict ESKD 
is vital.

The Kidney Failure Risk Equation (KFRE) (4) is widely recognized 
as the gold-standard predictive model for ESKD. It is based on a 
Cox-proportional hazard model that uses a combination of baseline 
clinicopathological predictors. Similar to KFRE, other studies have 
explored various machine learning models and neural networks that 
rely on baseline patient characteristics and clinicopathological data as 
predictors (5–9).

However, these static predictive models have notable 
limitations. They often fail to account for the variability and 
non-linear relationships between predictors and ESKD over an 
extended follow-up period, which is critical given the chronic 
nature of the disease. Additionally, they may miss valuable 
prognostic information derived from changes in these variables 
over time. For example, the estimated glomerular filtration rate 
(eGFR) has been demonstrated to exhibit highly variable 
trajectories among patients with CKD (10). Despite this variability, 
time-varying eGFR remains a critical predictor of ESKD and 
all-cause mortality (11, 12). Consequently, static predictive models 
are primarily applicable to new patients at baseline rather than to 
those being monitored during follow-up (13).

To incorporate time-varying covariates, Chuah et al. and Wang et 
al. featurised time-series data into features to predict ESKD as a binary 
classification problem (14, 15). While this approach demonstrated 
superior predictive performance, using binary classification to address 
a time-to-event problem introduces certain limitations.

First, this method potentially sacrifices the interpretability and 
flexibility of modeling event probabilities as a function of time. 
Additionally, it does not account for patients lost to follow-up or 
censored, nor does it consider the impact of competing events such as 
death. In populations with CKD, which are often characterized by 
older age and chronic comorbidities, failing to account for death can 
result in inaccurate ESKD risk predictions (16).

Several publications have introduced dynamic prediction models 
to address the limitations of static approaches (13, 17–20). In statistical 
literature, a clinical predictive model capable of processing 
longitudinal data to update predictions over time is referred to as a 
dynamic prediction model. Not only would this methodology mimic 
a nephrologist’s approach to patient evaluation, but the methodology 
has also been shown to improve model fit and performance (19).

There are two primary methods for dynamic prediction: joint 
models (21, 22) and landmarking (23–25). Joint models generate 
predictions by linking a Cox proportional hazard model with linear 
mixed models to account for time-varying covariate trajectories. 
However, correctly specifying a joint statistical model for all covariate 
trajectories may be  challenging or unstable, and incorporating 
additional time-varying covariates may be computationally expensive 
(26–28).

In contrast, the landmarking approach is more straightforward 
and better equipped to handle multiple time-varying covariates. Picket 
et  al. proposed combining random survival forests with the 
landmarking approach, effectively bypassing the limitation of Cox 
models, including the proportional hazards assumption (29). 
Simulation studies demonstrated the superior performance of this 
approach over joint models and Cox-based landmarking in capturing 
complex relationships between survival outcomes and 
longitudinal covariates.

Our study builds on this technique, extending it to analyze 
multiple longitudinal clinicopathological data points to predict ESKD 
while accounting for death as a competing event. The model has been 
externally validated and offers the potential for clinical decision 
support in real-world settings.

Methods

Study population

This observational, time-to-event study included all adult patients 
aged over 17 years (N = 10,198) who attended a single tertiary 
nephrology unit at the Canberra Hospital, a university hospital in 
Australia. Clinicopathological data, encompassing both inpatient and 
outpatient data, along with patient demographics, were extracted 
from an internal database covering the period from 1st September 
1996 to 14th January 2022 (Supplementary Table 1). Patients with 
pre-existing ESKD (defined as those undergoing chronic dialysis or 
with a history of kidney transplantation) were excluded from 
the analysis.

For external validation, a cohort of patients aged ≥18 years 
(N = 8,729) was obtained from a Western Australian pathology 
provider, spanning data from 1st January 2006 to 21st April 2022. This 
external cohort was prepared using the same exclusion criteria and 
filtering methodology as the internal cohort (see Results). The study 
was conducted in accordance with the Declaration of Helsinki and 
was approved by the ACT Health Research Ethics and Governance 
Office (ETHLR.18.040). Patient consent was waived per the National 
Statement on Ethical Conduct in Human Research (2007, Chapter 2.3).

Events and censoring definition

The primary event of the study was ESKD, with death from all 
causes considered a competing event. ESKD was defined as a sustained 
eGFR value less than or equal to 15 mL/min/1.73m2 or the 
commencement of chronic dialysis or kidney transplantation. 
Specifically, this required evidence of persistent eGFR <15 mL/
min/1.73m2 without subsequent recovery (eGFR >17 mL/min/1.73m2) 
during the follow-up period or the commencement of dialysis, 
including peritoneal dialysis, hemodialysis, hemodiafiltration, or 
nocturnal hemodialysis.

The first recorded eGFR value marked the start of the observation 
period (designated as time 0). Age at presentation was defined as the 
patient’s age at time 0. Observed time was measured from time 0 to 
the earliest event (ESKD or death) or to censoring. For patients who 
did not experience an event, the follow-up duration was censored at 
the data extraction date.

https://doi.org/10.3389/fmed.2024.1428073
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Christiadi et al. 10.3389/fmed.2024.1428073

Frontiers in Medicine 03 frontiersin.org

Statistical analysis

The normality of continuous data was assessed using the 
Shapiro–Wilk test. For normally distributed data, differences 
between groups were evaluated using analysis of variance 
(ANOVA) and summarized as mean ± standard deviation (SD). 
For non-parametric data, the Kruskal-Wallis test was used to assess 
group differences, and results were summarized as 
median ± interquartile range (IQR). Pairwise comparisons 
between two groups were conducted using either the t-test or the 
Mann–Whitney U test, depending on the normality of the data. 
Values of p < 0.05 were considered significant, and all tests were 
two-tailed.

Dataset imputation

Within the internal cohort, only eGFR and demographic data 
were complete at baseline (time 0), while all other clinicopathological 
predictors had a median missing value rate of 18% 
(Supplementary Table 2). During model training and performance 
analysis, missing baseline values in the training set (time 0) were 
imputed using the R package “mice” (version 3.14.0) with the 
“defaultMethod” set to predictive mean matching. After imputing 
missing baseline values, missing values for each variable at subsequent 
time points were filled out using the most recent entry.

For the test dataset, missing values were filled exclusively using the 
most recent entry. No additional imputation was performed to 
preserve the reliability of the prediction performance and to reflect 
clinical practice, where clinicians often rely on prior available data 
when results are unavailable.

For the external dataset, data cleaning was conducted to address 
errors and inconsistencies in patient demographic data (e.g., birth 
dates and sex). Due to the high rate of missing test values 
(Supplementary Table  2), serum glucose was imputed using a 
combination of previous and future data entries. In contrast, all other 
clinicopathological test values were filled exclusively using the last 
available observation for each patient.

Dataset splitting

We evaluated performance using a 5-fold event-stratified cross-
validation approach. The dataset was divided into training and test sets 
for each fold in an 80:20 ratio. The training set was used to train the 
model, while model performance was evaluated on the corresponding 
test set.

Model development

As proposed by Van Houwelingen, the landmarking method 
applies a survival model to patients who are still at risk at the time of 
interest, a pre-specified landmark time (23, 24). In this method, the 
survival model is fitted as a function of predictors measured up to the 
landmark time. By selecting a series of landmark time points, the 
method produces a sequence of survival predictions focused on events 
occurring in the medically relevant timeframe, known as the 

prediction horizon. A detailed explanation of this approach is 
provided in the Supplementary material.

We implemented the landmarking approach with pre-specified 
landmark times at 0.5, 1, 1.5, 2, 2.5, and 3 years, with a prediction 
horizon of 5 years. These landmark times were chosen because stable 
chronic kidney disease patients are typically reviewed in the clinic every 
6 months. Following the recommendation of the landmarking method’s 
originator, administrative censoring was applied to individuals who had 
not experienced an event by the end of each landmark prediction horizon.

Instead of the Cox-proportional hazard model, we used a random 
survival forests. The random survival forests is a non-parametric, 
ensemble, tree-based method (30). The algorithm trains multiple 
survival trees to analyze right-censored survival data.

The model uses a weighted log-rank splitting rule based on Gray’s 
test (31) and calculates the cumulative incidence function (CIF) to 
ensure accurate risk prediction in the presence of competing risks 
(16). Additional advantages of the model include its ability to model 
non-linear effects and interactions among high-dimensional 
predictors and its robustness in vases where the proportional hazard 
assumption is violated (29, 32, 33).

We implemented the built-in function in the R package 
“randomForestSRC” to tune the random survival forests model. The 
tuning process was performed to find the optimal “mtry,” the number 
of predictors that should be included as candidates for splitting, and 
“nodesize,” which represents the number of unique cases in each 
terminal node, determined based on the out-of-bag prediction error 
rate. We used the default parameters for “mtryStart,” which equals the 
number of predictors divided by 2, and “nodesizeTry” of (1, 2, 3, 4, 5, 
6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 
95, 100). Then, we used the optimal “mtry” and “nodesize” based on 
the out-of-bag error. We set the number of trees at 1,000.

We used baseline data—including gender, diagnosis of 
glomerulonephritis or vasculitis, and initial age at presentation—and 
longitudinal, time-varying clinicopathological data as predictors. The 
diagnoses of glomerulonephritis or vasculitis were verified through 
kidney biopsy. All other diagnoses were inputted as missing values. 
We  then compared the performance of the standard landmark 
approach, consisting of adjusting the survival model on the last 
observed value of the biomarkers before each landmark time (LOCF) 
or based on the predicted value at the beginning of each landmark time 
obtained from the linear mixed model (34, 35). The linear mixed model 
is the standard approach in analyzing repeated measures and dependent 
data of longitudinal biomarkers. We modeled the predicted longitudinal 
clinicopathological data values using baseline measurements and the 
timing of these measurements, applying either an unconditional growth 
model (LME) or an unconditional quadratic growth model (LMEpoly).

The details of the R package version and the codes used in the 
analysis are posted at https://github.com/daniel-christiadi/dynamic_
prediction_ESKD.git.

The trained models can be downloaded from https://drive.google.
com/drive/folders/1yj7McUimsEsYxZjuMG26-oELjY3oMFmf?usp= 
sharing.

Model performance

Model performance analysis in the internal cohort was performed 
on the test dataset obtained using a 5-fold cross-validation approach 
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and measured on each pre-specified landmark time described above. 
Model discrimination was reported as the concordance index 
(C-index), which measures the ratio of subjects with the worse 
predicted outcome that fail earlier than other subjects in a randomly 
selected pair of subjects to the number of all available subject pairs 
(32). A higher concordance index indicates superior model 
discrimination, with a concordance index of 50% representing a 
random prediction.

The parsimonious model (Top 5) performance was also analyzed 
using the area under the time-dependent ROC curve (td-AUC) (36). 
The predicted value of the random survival forests for each landmark 
was assessed at the pre-specified prediction horizon. Similar to the 
concordance index, a higher td-AUC indicates superior 
model discrimination.

Model discrimination and calibration were assessed using the 
integrated Brier score (iBS) (37), calculated from the start of each 
landmark time to the prediction horizon. Unlike the C-index, lower 
iBS values indicate better model performance, with an iBS below 0.25 
considered indicative of a useful model.

Performance on the external validation cohort was performed 
using models trained on the entire internal dataset, which was then 
evaluated on all external datasets. Due to the lack of death data in the 
external cohort, we could only report the external ESKD error rate.

To calculate the performance of our model against the 8-variable 
KFRE, we filtered the internal dataset. Only patients who had three or 
more serum measurements of albumin, bicarbonate, chloride, eGFR, 
hemoglobin, phosphate, calcium, and urine albumin-creatinine ratio, 
which are the combined variables used by our models and the 8-variable 
KFRE. Then, the dataset was manipulated to have death-censored 
outcomes to accommodate KFRE. To allow a fairer comparison, 
we input the value of the covariates at the last landmark time into the 
KFRE formula (38) to predict ESKD at 2 and 5 years from the last 
landmark time, which were the same times of interest for our model.

All analyses were performed using R 4.3.1 (39).

Dynamic prediction plot

As the output of the trained model, we  created a dynamic 
prediction plot. The predicted CIF values from each model for the 
events of interest were aggregated by each time point (from year three 
to year eight) using the arithmetic mean to draw the CIF curves. 
Higher percentages indicate a greater likelihood of the event 
occurring. To create the dynamic prediction plot, readers are 
recommended to follow the steps described at https://github.com/
daniel-christiadi/dynamic_prediction_ESKD.git.

Sensitivity analysis

We performed two sensitivity analyses. First, we created a dataset 
(named “sens”) with a different censoring definition. Instead of using 
the definition mentioned previously, for patients with no ESKD or 
death event, we  censored the subjects on the last recorded 
clinicopathological test date. Furthermore, we incorporate only the 
tests within the previous 10 years from events or the final 
clinicopathological tests (the alternative censoring definition). The 
date of the earliest eGFR within the 10 years became time 0, and the 
initial age at presentation was calculated from this time point.

Additionally, we created another dataset with an additional three 
or more urine albumin/creatinine ratio (uACR) filter criteria (named 
“acr3”). To reduce the missing value, we converted the urine protein/
creatinine ratio to uACR according to the published formula (40).

Results

Dataset creation and baseline 
characteristics

Of the 10,198 patients, 15 of them were excluded due to 
incomplete baseline demographic information (absence of gender and 
birth year). Another 495 patients were removed due to pre-existing 
ESKD, and two patients were excluded due to incorrect dates (the 
initial clinicopathology test occurred after the documented death 
date), leaving 9,686 patients with 4,458,014 individual 
clinicopathological values for further analysis.

Some patients exhibited skewed test frequencies, likely due to 
recurrent hospitalisations, prolonged stays, or frequent clinic visits 
(Supplementary Figure 1A). Therefore, we aggregated (resampled) the 
daily test results into mean monthly values to prevent this cohort from 
skewing the results (Supplementary Figure 1B). Due to the uneven 
data density of the available clinicopathological tests and to ensure 
longitudinal data availability, we filtered patients on three or more of 
the following criteria: hemoglobin, total white cell count, platelet 
count, CKD-EPI-based eGFR, and serum measurement of sodium, 
potassium, chloride, bicarbonate, calcium, phosphate, albumin, 
alkaline phosphates, and glucose, leaving 4,950 patients 
(Supplementary Figure  1C). This dataset will now be  referred to 
as dense3.

The median initial age of the study population was 62 (IQR 47 to 
73), with a median baseline eGFR of 50 mL/min/1.73m2. The patients 
had a median follow-up time of 7 years (IQR 3 to 13). Only 500 of 
4,950 patients were documented to have any diagnosis of 
glomerulonephritis or vasculitis. ESKD events occurred in 1,270 
(25%) and death in 733 (15%) patients. In the external cohort, the total 
cohort size was 8,729 subjects with a median age of 57 (IQR 47 to 66). 
The patients had relatively similar follow-up durations. Notably, 
patients in the external cohort had better baseline kidney function 
(median eGFR 89 mL/min/1.73m2). Due to the absence of death 
information, only an ESKD event was reported. A total of 246 patients 
of 8,729 (3%) experienced ESKD. The baseline demographic and 
clinicopathological data from the internal and external cohorts are 
displayed in Table 1.

Models comparison

To incorporate longitudinal data, the landmarking approach can 
utilize the last observed value of the longitudinal biomarkers, known 
as the last observed carried forward (LOCF), or incorporate all the 
previous longitudinal biomarkers to model the value of the respective 
biomarkers at the beginning of each landmark time. The linear mixed 
model is the standard approach in analyzing repeated measures and 
dependent data of longitudinal biomarkers. Two linear mixed model 
methods were used for comparison: the unconditional growth model 
(LME) and the unconditional quadratic growth model (LME poly). At 
each landmark time, there was no significant performance difference 
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between models that used time-varying clinicopathological data value 
using the LOCF, LME, and LME poly approach in predicting ESKD 
or death (Figure 1 and Supplementary Table 3).

Important predictors

To examine the importance of each covariate in the model 
prediction, we explored the variable importance (VIMP, Figure 2). 
A large VIMP indicates the model relies on the respective predictors 
to achieve prediction accuracy and is thus likely a potentially 
predictive variable. We  calculated the median of variable 
importance for individual predictors using 5-fold cross-validation 
and the interquartile range. eGFR is the most important predictor 
for ESKD prediction in all landmark times, followed by serum 
albumin and bicarbonate. In contrast, initial age at presentation, 
eGFR, and serum chloride are crucial for death prediction. To test 
whether we  could reduce the number of predictors to allow 
visualization of the dynamic prediction plot, we  combined the 
VIMP value for ESKD and death for all the landmark times and 
calculated their median (Supplementary Table 4).

We then compared the performance of the full model (LOCF) 
against a sequence of models using the top 10 (Top 10) longitudinal 

predictors (serum measurement of albumin, alkaline phosphatase, 
bicarbonate, chloride, potassium, and sodium, eGFR, hemoglobin, 
platelet count, and white cell count) and a sequence of models 
using the top five longitudinal predictors (serum measurement of 
albumin, bicarbonate, chloride, eGFR, and hemoglobin). For the 
top  10 and top  5 models, we  removed the diagnosis of 
glomerulonephritis or vasculitis and gender due to low median 
VIMP values.

The ESKD concordance index for the top 5 models was close to 
85%, except at the 1.5-year landmark, where the median was 83.81% 
(IQR: 83.3 to 87.02%, Supplementary Table  3A), with a median 
td-AUC for ESKD of approximately 84.9% (Supplementary Table 3C). 
Additionally, the ESKD iBS for the top  5 was approximately 0.03 
(Supplementary Table 3B). No significant performance differences 
were found when comparing the top 5 models to the full model or the 
top 10 models (Figure 1), indicating the top 5 variables accounted for 
most of the model’s predictive capability.

External validation performance

In external validation, the ESKD median concordance index 
across all landmark times ranged from 83.1 to 88.3% 

TABLE 1 Baseline summary of internal and external cohorts.

Variables Dense3 
(N = 4,950)

Acr3 
(N = 2,916)

External cohort 
(N = 8,729)

Demographic data

Gender - Female 2,217 (45%) 1,280 (44%) 4,865 (56%)

Initial age of presentation (median, IQR) 62 (47–73) 59 (45–70) 57 (47–66)

Glomerulonephritis or vasculitis diagnosis 500 (10%) 445 (15%) No information

Follow-up time in years (median, IQR) 7 (3–13) 8 (4–14) 8 (5–13)

Event

ESKD 1,270 (25%) 639 (22%) 246 (3%)

Death 733 (15%) 278 (9.5%) No information

Censored 2,947 (60%) 1,999 (69%) 8,483 (97%)

Baseline clinicopathological data

Serum albumin in g/L (median, IQR) 42 (39–44) 42 (39–44) 43 (41–45)

Serum alkaline phosphatase in U/L (median, IQR) 78 (63–97) 77 (63–95) 73 (60–89)

Serum bicarbonate in mmol/L (median, IQR) 23 (21–26) 24 (22–26) 28 (26–29)

Serum calcium in mmol/L (median, IQR) 2.36 (2.27–2.44) 2.36 (2.27–2.43) 2.37 (2.31–2.44)

Serum chloride in mmol/L (median, IQR) 105 (102–107) 105 (102–107) 103 (101–105)

eGFR in mL/min/1.73m2 (median, IQR) 50 (30–73) 57 (36–77) 89 (74–90)

Serum glucose in mmol/L (median, IQR) 5.7 (5–7.20) 5.6 (5–7.3) 5.3 (4.8–5.9)

Hemoglobin in g/L (median, IQR) 133 (118–146) 136 (122–148) 139 (129–149)

Serum phosphate in mmol/L (median, IQR) 1.13 (0.99–1.28) 1.12 (0.99–1.26) 1.10 (1–1.22)

Platelet count in x109/L (median, IQR) 240 (198–290) 245 (203–294) 255 (212–305)

Serum potassium in mmol/L (median, IQR) 4.2 (3.9–4.6) 4.3 (4–4.6) 4.3 (4.1–4.6)

Serum sodium in mmol/L (median, IQR) 139 (137.5–141) 140 (138–141) 140 (139–141)

White cell count in x109/L (median, IQR) 7.3 (6–8.9) 7.3 (6–8.8) 6.6 (5.4–8.2)

Albumin creatinine ratio in mg/mmol (median, IQR) NA 13 (2–92) NA
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(Supplementary Table 3). The Wilcoxon rank-sum test comparing the 
ESKD concordance index at each landmark between the top 5 models 
and external validation showed no significant difference.

Comparison to 8-variable KFRE

Using the clinicopathological data of death-censored patients in 
the test datasets on the last landmark time, the 8-variable KFRE model 
(38) was used to calculate ESKD prediction at 2 years and 5 years. 
There is no performance difference between our models and KFRE at 

5 years, but the 8-variable KFRE concordance index at 2 years was 
superior (Supplementary Table 6).

Dynamic prediction plot

We used three case studies to demonstrate the utility of the 
dynamic prediction plot (Figure 3). For case 1, an 80-year-old patient 
had the last clinicopathological test at 6.91 years and died at 7.2 years. 
The predicted death CIF curve peaked at 7.5 years. Case 2, a 62-year-
old subject, was followed for 11.66 years with an ESKD event at 
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5.08 years. The ESKD CIF curve steadily rose and overtook the death 
curve from 4 years onwards. Finally, a 67-year-old patient was 
followed until 6.69 years without any event. ESKD and death CIF 
curves peaked at approximately 10%.

Sensitivity analysis

To create a “sens” dataset, 10,198 patients were extracted. A total 
of 15 patients were excluded due to incomplete baseline demographic 
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FIGURE 1

Comparison of landmarking approach. (A) The Concordance index. (a) ESKD: The Kruskal–Wallis test comparing the ESKD concordance index of the 
models for each landmark time was non-significant. Each boxplot was created using the model’s performance on the five-fold cross-validation test 
dataset. (b) Death: The Kruskal–Wallis test comparing the death concordance index of the models for each landmark time was non-significant. Each 
boxplot was created using the model’s performance on the test dataset of the five-fold cross-validation. (B) Integrated Brier score. (a) ESKD: The 
Kruskal-Wallis test comparing the ESKD integrated Brier score of the models for each landmark time was non-significant. Each boxplot was created 
using the model’s performance on the test dataset of the five-fold cross-validation. (b) Death: The Kruskal–Wallis test comparing the death-integrated 
Brier score of the models for each landmark time was non-significant. Each boxplot was created using the model’s performance on the test dataset of 
the five-fold cross-validation.
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information (absence of gender and birth year). Another 495 
patients were removed due to pre-existing ESKD. A total of 31 
patients did not have any clinicopathological tests within 10 years of 
the event, resulting in 9,657 patients for further analysis. Applying 
the same filter criteria as for ‘dense3’, the ‘sens’ dataset included 4,225 
patients. To create “acr3,” we applied additional filter criteria (three 
or more uACR) to the dense3 dataset, resulting in 2,916 patients.

There was no significant difference in discrimination or calibration 
performance between the original, conventional censoring definition 
(LOCF, censoring date based on the data extraction date) and the 
alternative censoring definition (sens, censoring date based on the last 
clinicopathological data). There was no improvement in performance 
when the urine albumin/creatinine ratio was included in the acr3 
model training (Supplementary Figure 2 and Supplementary Table 5).
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FIGURE 2

Variable of importance. (A) ESKD and (B) Death. A bar plot value indicates median with an interquartile range.
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Discussion

We demonstrated how longitudinal clinicopathological data can 
be incorporated to create a dynamic prediction plot that estimates the 
risks of death and ESKD. The graph, designed as an end-user 
interface, resembles the workflow of specialist clinical practice. CKD 
patients are typically monitored quarterly to annually, generating 
dense clinicopathological data points over extended follow-up 
periods. In contrast, static predictive models require nephrologists to 
disregard valuable data points or previous predictions, treating each 
visit as if the patients were new.

Instead of relying on cross-sectional values, clinicians could use 
all accumulated and updated data points to generate personalized 
dynamic predictions. These predictions can be used during patient 
education, decision-making regarding dialysis preparation, and 
resource planning, especially for older patients with underlying poor 
kidney function who are at risk for both events. By integrating clinical 
expertise with the predicted risks provided by dynamic predictions, 

clinicians can better guide discussions about whether patients at high 
risk of death should undergo dialysis preparation, such as 
fistula creation.

Our limited comparison showed that our model performed 
similarly to KFRE at predicting ESKD at 5 years and was inferior to 
KFRE at 2 years. However, this is not a valid comparison because 
the KFRE was designed using baseline data and provided a static 
prediction at a single time point. The KFRE model was not designed 
to be  applied to subsequent clinicopathological data. Moreover, 
KFRE was created from a cohort of patients with eGFR less than 
60 mL/min/1.73m2 with a development cohort comprised of 
patients with a mean age of 70 years (71% of patients were more 
than 65 years old) to predict ESKD without taking death into 
account. Of all patients aged 70 years or older in our cohort 
(“dense3”), 495 patients of 1,612 (31%) died before developing 
ESKD, and 423 (26.2%) experienced ESKD as the first event. 
Therefore, analyzing the performance of KFRE in our cohort will 
likely produce biased results. Our model seeks to move to an 

FIGURE 3 (Continued)
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analysis of continuous data and outputs estimates of both ESKD and 
death to better inform clinical decision-making.

We also observed a higher prevalence of ESKD (25%) during the 
study period in the internal cohort. To compare the event, we reviewed 
datasets from another state in Australia (Tasmania). Irish et al. reported 
2.2% ESKD and 6.8% death within 2 years of observation (41). The 
difference is likely due to the data source. Our cohort came from patients 
referred to nephrologists with CKD. TASlink was a cohort created 
through data linkage. It is also worth pointing out that our external 
validation cohort (from Western Australia) had a relatively similar ESKD 
prevalence of 3%, and the parallel performance we demonstrated to the 
external cohort implied the external validity of our models.

The difference in ESKD prevalence potentially affected the 
comparison of internal versus external performance. The median 
external ESKD concordance index at the landmark time of 0.5 years 
was better than the internal ESKD concordance index. However, it had 
a wider interquartile range and did not achieve statistical significance 
in formal comparison (p = 0.056). Reviewing the respective landmarks, 
489 patients in the internal cohort had ESKD events, while only 50 
ESKD events occurred in the external cohort. In addition, unlike the 
internal cohort used to train the algorithm, our validation cohort did 
not have mortality information. As a result, we could not estimate the 
C-index for death and the integrated Brier score.

Our experiment showed no performance difference between the 
standard landmarking approach that used the LOCF approach versus 
modeling the clinicopathological values using linear mixed models. 
Our findings further emphasized the difficulties of modeling real-life 
biomarker trajectories using linear mixed models observed in the 
literature (27, 28). This finding might extrapolate to the joint model’s 
likely suboptimal performance, as the approach combines a Cox 
model with linear mixed models that estimate the trajectories of 
longitudinal biomarkers (35).

Furthermore, random survival forests with landmarking can 
tackle the limitation of restrictive proportional hazard assumptions, 
outperform joint modeling or Cox landmarking in the setting of a 
complex relationship between the survival and longitudinal 
biomarkers (29), and are also less sensitive to misspecification of 
longitudinal biomarker trajectories (34).

The strength of our study lies in the incorporation of high-
dimensional, longitudinal clinicopathological data with a landmarking 
approach and a random survival forests capable of predicting ESKD 
with death as a competing risk. The models were built with a relatively 
large dataset and externally validated in a larger dataset in another 
Australian center. Another advantage of our approach is that it utilizes 
common clinicopathological data and does not require a urine 
albumin/creatinine ratio.

However, this approach has several limitations. We had to train six 
different models as we pre-specified six landmark times, requiring 
significant computing resources. Extending the landmark times would 
increase the entire model’s size and limit the model’s applicability. To 
ensure the models provide a continuous prediction for patients with 
accumulated data points over 3 years, we could apply the models as a 
rolling window. For example, patient Mr. X had clinicopathological data 
repeated for 4 years. Our model cannot process the clinicopathological 
data after 3 years and can only provide a prediction of ESKD or death 
up to 8 years when, theoretically, we have the information to predict 
Mr. X’s outcome at 9 years. Therefore, we disregard the longitudinal 
data of the preceding 1 year and use the clinicopathological data at year 
1 as input for the landmark 0.5-year model. As a result, this also means 
longitudinal data starting from 1.5 years will be used for the landmark 
1-year model, longitudinal data from 2 years for the landmark 1.5-year 
model, and data from 2.5 years for the landmark 2-year model. 
Applying the approach will allow the model to provide an extended 
prediction when the patients have repeated tests after 3 years of 

FIGURE 3

Dynamic prediction plot. (A) Case 1: An 80-year-old patient died at 7.2 years. (B) Case 2: A 62-year-old patient with ESKD event at 5.08 years. (C) Case 
3: A 67-year-old patient did not experience any event and was censored at 6.69 years. (A–C) On the left of the dynamic prediction plot, we plot all the 
observed longitudinal clinicpathological data (serum measurement of albumin, bicarbonate, chloride, eGFR, and hemoglobin) for the first 3 years. On 
the right, we drew the predicted CIF curve for ESKD and Death using the top 5 trained models on patients from the test dataset.
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follow-up. To support this approach, our sensitivity analysis showed 
similar performance of models trained using the conventional time 0 
definition (first kidney function test) versus using the earliest kidney 
function test within 10 years of events (“sens,” Supplementary Figure 2 
and Supplementary Table 5).

Another limitation is that we could only categorize the etiology as 
glomerulonephritis or vasculitis, while other ESKD aetiologies—such 
as diabetes, hypertension, post-nephrectomy, or other causes—had to 
be grouped into an “others” category. A kidney biopsy is required to 
definitively diagnose glomerulonephritis or vasculitis. However, 
biopsies are not always mandatory and can sometimes be relatively 
contraindicated, as in the case of single kidneys.

For patients with underlying conditions such as diabetes and 
hypertension, which are highly prevalent globally, determining the 
exact cause of ESKD can be particularly challenging. 

Furthermore, the diagnosis category was identified as having low 
importance for model performance (Figure 2). We suspect that the 
varying kidney or mortality outcomes associated with different 
underlying conditions could be better predicted by the model using 
longitudinal data, such as eGFR or other biomarker measurements, 
rather than relying on baseline ESKD etiology.

Finally, it is crucial that we test the model performance in patients 
with reduced kidney function following an intervention, such as post-
nephrectomy (42) or cryoablation (43), in future studies. We expect 
the longitudinal model, similar to ours, will have the advantage when 
predicting the outcomes, as the model can incorporate multiple 
sequential biomarker values before and after the procedure, and the 
cohort might experience some improvement in kidney function due 
to hypertrophy of the remaining kidney tissue.

In conclusion, we  developed and validated a dynamic survival 
prediction model to predict ESKD, incorporating death as a competing risk. 
The model utilized common longitudinal clinicopathological data and 
demonstrated performance in satisfactory discrimination and calibration.
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