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Renal fibrosis, a critical factor in the development of chronic kidney disease 
(CKD), is predominantly initiated by acute kidney injury (AKI) and subsequent 
maladaptive repair resulting from pharmacological or pathological stimuli. 
Phosphatase and tensin homolog (PTEN), also known as phosphatase 
and tensin-associated phosphatase, plays a pivotal role in regulating the 
physiological behavior of renal tubular epithelial cells, glomeruli, and renal 
interstitial cells, thereby preserving the homeostasis of renal structure and 
function. It significantly impacts cell proliferation, apoptosis, fibrosis, and 
mitochondrial energy metabolism during AKI-to-CKD transition. Despite gradual 
elucidation of PTEN’s involvement in various kidney injuries, its specific role in 
AKI and maladaptive repair after injury remains unclear. This review endeavors to 
delineate the multifaceted role of PTEN in renal pathology during AKI and CKD 
progression along with its underlying mechanisms, emphasizing its influence 
on oxidative stress, autophagy, non-coding RNA-mediated recruitment and 
activation of immune cells as well as renal fibrosis. Furthermore, we summarize 
prospective therapeutic targeting strategies for AKI and CKD-treatment related 
diseases through modulation of PTEN.
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1 Introduction

Acute kidney injury (AKI) is a clinical syndrome characterized by acute renal failure and 
poor clinical prognosis, which results in evident acid–base imbalance, disturbances in water 
and electrolyte homeostasis, and increases nitrogenous waste products in the blood, known 
as azotemia (1). The development of AKI is frequently precipitated by risk factors such as 
ischemia–reperfusion injury, cisplatin exposure, and sepsis (2–4). It is distinguished by tubular 
cell necrosis, tissue damage, renal dysfunction, and the manifestation of acute kidney failure 
(5). The pathophysiology of renal injury in AKI encompasses a spectrum of mechanisms 
including autophagy dysregulation, apoptosis induction, oxidative stress response activation, 
and inflammatory reactions triggered by direct harm to renal vessels and tubular epithelial 
cells (6). The duration and severity of AKI are highly associated with the progression toward 
chronic kidney disease (CKD). Inadequate repair post-AKI leads to alterations characterized 
by tubular atrophy and interstitial fibrosis, ultimately precipitating CKD which involves an 
array of multiple cell types including fibroblasts, proximal tubular cell, and immune cells (7). 
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Despite extensive research reports on the molecular mechanisms 
driving the progression from AKI to CKD, the understanding of its 
pathogenesis and treatment options remains limited, predominantly 
due to the intricate interplay of various factors involved in this 
transition. Thus, it is imperative to elucidate their interconnected roles.

The tumor suppressor, phosphatase and tensin homolog (PTEN), 
located on chromosome 10, is recognized for its dual-specificity 
phosphatase activity (8). In physiological conditions, PTEN serves as 
a critical regulator of the PI3K/AKT signaling pathway in 
inflammatory diseases, influencing critical biological functions such 
as angiogenesis, cell survival, and other biological processes (9). As a 
defender against cancer, PTEN inhibits tumorigenesis and tumor 
progression across various tumors including gastric, liver, ovarian, and 
kidney cancers, by modulating key cellular functions like cellular 
proliferation, apoptosis, migration, and invasion (10–12). Importantly, 
accumulating evidence underscores the significance of PTEN in 
kidney diseases, particular emphasis on regulating renal energy 
metabolism, fibrosis, and podocyte injury (13). Adequate expression 
of PTEN within renal tissue impedes glomerulosclerosis, tubular 
epithelial cell transdifferentiation, and extracellular matrix 
accumulation which contribute to renal fibrosis (14). Moreover, 
beyond its regulatory effects on regulating immune cell recruitment 
and activation along with autophagy and mitochondrial function 
during AKI, PTEN also assumes a pivotal position in CKD induced 
by impaired repair mechanisms through modulating epithelial-
mesenchymal transition (EMT) (15, 16). However, the precise 
mechanisms underlying the contribution of PTEN to AKI 
pathogenesis as well as AKI-to-CKD transformation remain largely 
elusive. This review aims to comprehensively summarize the functions 
and mechanisms associated with PTEN during pharmacological, 
ischemia–reperfusion, and sepsis-induced AKI as well as AKI-to-CKD 
transformation. We  also discuss potential therapeutic approaches 
targeting PTEN for treating both AKI and CKD.

2 Dual roles of PTEN in AKI

The PTEN consists of nine exons and encodes the protein 
comprising 403 amino acids with phosphatase activity, which 
dephosphorylates PI3P to PI2P, resulting in the inactivation of the 
phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway (17). The 
involvement of PTEN-mediated inflammation and apoptosis in the 
pathogenesis of ischemia–reperfusion injury (IRI)-induced AKI has 
been widely reported (18). However, the precise mechanism by which 
PTEN operates in AKI remains elusive, particularly regarding its 
expression varies under different AKI-provoking situations, both in 
physiological and pharmacological conditions. Furthermore, the 
debate continues whether PTEN exerts a protective effect on renal 
cells or induces renal injury, and controversies exist in the internal 
molecular mechanisms underlying PTEN’s role in AKI.

2.1 PTEN promotes autophagy in alleviating 
AKI

In AKI, renal inflammation is frequently accompanied by the 
generation of a substantial amount of reactive oxygen species 
(ROS) and excessive responses to oxidative stress, leading to 

detrimental effects on mitochondrial structure and function, 
ultimately exacerbating renal injury (Figure  1) (19). Recent 
evidence has increasingly demonstrated a close association 
between autophagy and renal diseases (20, 21). Autophagy 
represents a dynamic cyclic process wherein damaged or aging 
macromolecules and organelles within cells are degraded and 
recycled by proteolytic enzymes in lysosomes to renew cellular 
components and maintain cellular homeostasis (22). The alterations 
in autophagy have been extensively documented in AKI induced 
by cisplatin, ischemia–reperfusion injury (IRI), sepsis, and other 
risk factors, particularly evident in proximal tubular cells of the 
kidney (23, 24).

Autophagy plays a dual role in the pathogenesis of AKI. On one 
hand, autophagy contributes to the repair of renal tubular injury by 
eliminating reactive oxygen species (ROS) and mitigating 
mitochondrial dysfunction (25). Moreover, it activates PTEN-induced 
kinase 1 (PINK1)/MFN2/Parkin-mediated mitophagy in M2 
macrophages, and induces autophagy as a protective mechanism for 
renal tubular cells, which represents a promising approach for 
improving AKI progression (26). Numerous studies have 
demonstrated that dynamic changes in autophagy are also crucial for 
the proliferation and repair of renal tubular cells during the recovery 
phase following AKI (27). IRI serves as the primary etiology of AKI, 
leading to necrosis of tubular epithelial cells and triggering an innate 
immune response (28). Wang et al. (29) established both in vitro and 
in vivo models of renal IRI using bilateral renal artery IRI mice and 
HK-2 cell hypoxia/reoxygenation (H/R), and found that 
downregulation of PTEN expression in IRI-induced kidney injury, 
with time-dependent inhibition observed after H/R-induced hypoxia. 
However, reoxygenation did not affect PTEN expression levels. PTEN 
exerts renoprotective effects against renal IRI by reducing apoptosis 
in HK-2 cells while enhancing autophagy concurrently (30). The 
renoprotective mechanism mediated by PTEN involves activation of 
PI3K/Akt/HIF1-α and PI3K/Akt/mTOR signaling pathways, which, 
respectively, mitigate apoptosis and enhance autophagy 
(Figure 1) (31).

Conversely, excessive activation of autophagy hampers the cellular 
capacity to eliminate oxygen free radicals, leading to apoptosis under 
severe stress conditions (32). Research has demonstrated that the 
PTEN inhibitor BpV1  in combination with phosphoinositide 
phosphatase myotubularin related protein 14 (MTMR14) can 
attenuate the interaction between PTEN and LC3B, thereby reducing 
excessive autophagy and preventing cell death caused by its 
overactivation, which also exhibits neuroprotective effects in cases of 
ischemic stroke (33). Furthermore, hyperactivation of autophagy 
contributes to maladaptive repair in AKI, promoting its progression 
into CKD (34). Interventions involving PTEN inhibitors protect 
against oxidative stress-induced damage during sepsis-induced AKI 
recovery in mice; however, overexpression of PTEN yields contrasting 
results (35). For renal tubular epithelial cells experiencing severe AKI, 
maintaining a moderate level of autophagy can mitigate mitochondrial 
damage and facilitate renal function recovery. Additionally, 
knockdown of PTEN improves tissue dysfunction by enhancing 
mitochondrial oxidative phosphorylation, particularly through 
modulation of autophagic flux (36, 37). Therefore, inhibiting the 
upregulation of PTEN protein mediated by excessive activation of 
autophagy represents a potential therapeutic approach for alleviating 
kidney injury-related diseases especially AKI.
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2.2 Oxidative stress and inflammation in 
PTEN-mediated improvement of AKI

The pathogenesis of sepsis-induced AKI involves the interplay of 
inflammation, oxidative stress, multiple effector cells, and apoptosis 
as pivotal contributors (38). In septic patients, inflammation not only 
triggers apoptosis, necrosis, and immune cell recruitment but also 
exacerbates renal tubular injury by augmenting oxidative stress levels 
through the generation of reactive oxygen species during the injurious 
process (39). Therefore, therapeutic interventions targeting oxidative 
stress, inflammation, and apoptosis hold substantial potential for 
enhancing outcomes in AKI patients.

Conversely, Zhou et al. presented a contrasting perspective by 
demonstrating that the upregulation of PTEN expression plays a 
crucial role in the regulation and protection against AKI induced by 
ischemia–reperfusion injury (40). In models of AKI induced by 
ischemia–reperfusion, an increase in PTEN expression was observed, 
and inhibiting PTEN further exacerbated renal dysfunction following 
ischemia–reperfusion injury (41). Moreover, Fang et  al. (42) also 
found that PTEN facilitated tubular epithelial cell apoptosis and 
enhanced Caspase 3 activation in the kidney post-ischemia–
reperfusion injury. Conversely, inhibition of PTEN resulted in 
heightened neutrophil and macrophage infiltration into the kidney, 
elevated expression of renal inflammatory chemokines and cytokines, 

ultimately leading to kidney injury (42, 43). Similarly, during renal 
ischemia–reperfusion and hypoxia in cultured mouse renal cells, 
miR-687 induced by HIF-1 upregulated PTEN activity to activate the 
cell cycle and promote apoptosis, which facilitated renal tubular cell 
proliferation and kidney repair (44). Retaining PTEN attenuated these 
effects thereby providing protection against kidney injury (9). In 
summary, PTEN regulates both renal tubular cell apoptosis and 
inflammation indicating its potential as a therapeutic target for 
ischemic AKI, modulation of autophagy through gene expression 
alterations may ameliorate cellular damage in AKI.

2.3 Non-coding RNA (ncRNA)-targeted 
PTEN in AKI

Aberrant expression of long non-coding RNAs (lncRNAs) has 
been documented in the peripheral blood of AKI patients, indicating 
their potential as prognostic indicators for AKI patient survival (45). 
Specifically, the endogenous antisense lncRNA level in the circulating 
system can serve as one such indicator. Both lncRNA6406 and PTEN 
expression exhibited downregulation in an LPS-induced AKI model. 
Moreover, ectopic overexpression of lncRNA 6,406 significantly 
upregulated PTEN expression, resulting in attenuation of LPS-induced 
inflammation, inhibition of oxidative stress and apoptosis, ultimately 

FIGURE 1

The pathways and molecular mechanisms of PTEN in the progression of AKI. Various pharmacological or pathological factors including ischemia–
reperfusion, cisplatin-induced nephrotoxicity, and sepsis, can induce alterations in the expression of SP1 transcription factor, non-coding RNA (ncRNA) 
molecules, and reactive oxygen species (ROS) within renal tubular epithelial cells. These changes subsequently modulate PTEN expression either 
positively or negatively. Consequently, the PI3K/AKT/mTOR cascade reaction is triggered and leads to downstream gene modifications associated with 
inflammation, autophagy, and oxidative stress. Ultimately, these detrimental effects contribute to renal tubular injury and exacerbates AKI. IRI, 
ischemia–reperfusion injury; Cisp, Cisplatin.
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leading to amelioration of AKI (46). This effect is attributed to the role 
played by lncRNA 6,406 as a competing endogenous RNA (ceRNA), 
which sequesters miR-687 and modulates LPS-induced AKI through 
regulation of the miR-687/PTEN axis (47). Targeting lncRNAs-
mediated PTEN may provide a novel therapeutic approach for sepsis-
induced AKI with a protective effect. Conversely, elevated levels of 
PTEN can also contribute to kidney injury in AKI (48). Wang et al. 
(49) demonstrated that overexpression of miR-22-3p in vivo could 
downregulate PTEN expression levels and inhibit inflammation, 
identifying PTEN as a potential downstream functional regulator 
controlled by miR-22-3p during regulation of sepsis-induced kidney 
injury (50).

Hypoxia-inducible factor (HIF) levels in ischemia or hypoxia are 
closely associated with the severity of kidney injury, and accumulating 
evidence suggests that both HIF and HIF2α exert protective effects in 
renal ischemia–reperfusion (IR) injury (21, 51). The promoter region 
of miR-21 contains a binding site for HIF-1α, and miR-21 regulates 
the expression of HIF-1α by targeting the PTEN/Akt signaling 
pathway, which is involved in the kidney’s response to IRI (52). Song 
et al. (53) demonstrated that IRI induces high expression of miR-21 in 
renal tubular epithelial cells, and inhibition of miR-21 exacerbates 
AKI. Elevated levels of miR-21 suppress PTEN, activate the AKT/
mTOR/HIF pathway, and inhibit apoptosis of renal tubular epithelial 
cells (Figure 1) (53). Furthermore, miR-21 attenuates kidney injury by 
inhibiting inflammatory responses mediated by mature dendritic cells 
through the PDCD4/NF-κB pathway (54, 55).

Cisplatin (Cisp) and other platinum derivatives are currently 
widely used chemotherapeutic agents for the treatment of solid 
tumors (56). However, dose-dependent toxicity is a significant adverse 
reaction (57). PTEN exhibits high expression in multiple organ tissues, 
and studies have reported that inhibiting PTEN can provide protection 
to intestinal, neuronal, and cardiomyocyte cells (58–60). Inhibition of 
PTEN can promote PI3K/Akt activation and exacerbate cisplatin-
induced AKI (61). Inhibition of PTEN activity aggravates cisplatin-
induced AKI and renal tubular cell apoptosis by further activating 
caspase 3 and upregulating Bax expression levels, which leads to the 
blockade of p53 signaling pathway activation, ultimately resulting in 
inflammatory cell infiltration and production of proinflammatory 
molecules (41, 62). On the contrary, Huang et al.’s study confirmed 
reduced PTEN expression in a cisplatin-induced AKI model with 
involvement of the miR-181a/PTEN axis in curcumin’s protective 
effect against cisplatin-induced AKI. Curcumin treatment reduces 
miR-181a expression levels induced by cisplatin while restoring 
inhibited PTEN expression in vivo (63). Considering the pivotal role 
of PTEN in the pathogenesis of cisplatin-induced AKI, regulating its 
activity represents a novel therapeutic strategy for this condition.

2.4 Sp1/PTEN/AKT axis-mediated 
renoprotection in AKI

The function of PTEN and its downstream proteins is highly 
dependent on the transcriptional activity of PTEN itself (64). As a 
critical upstream regulator of PTEN, Sp1 (specific protein 1) belongs 
to the transcription factor family, which also includes Sp2, Sp3, and 
Sp4 (61). Sp1 has been closely associated with significant biological 
processes such as cell growth, differentiation, apoptosis, and 
carcinogenesis (65). Sp1 inhibits the activity of PTEN by modulating 

the transcriptional level (66). Furthermore, Sp1 exacerbates diabetic 
renal tubular injury by binding to the promoter of phosphoglycerate 
mutase family member 5 (PGAM5) (67). Numerous studies have 
revealed that SP1 expression and intracellular mitochondrial division 
are significantly increased in diabetes or hyperglycemia environments 
(68). Additionally, SP1 is markedly upregulated in type 2 diabetes 
(T2DM)-induced pulmonary tuberculosis (PTB) (69). Moreover, 
through Akt activation pathway-mediated signaling cascade 
regulation mechanism involving SP1 suppresses PTEN transcription 
while promoting lung injury in T2DM-PTB mice models (70). 
However, overexpression of PTEN enhances mouse survival rate while 
reducing inflammatory infiltration, apoptosis, and fibrosis in lung 
tissue (71).

The downregulation of SP1 expression and upregulation of PTEN 
expression were observed in the IRI-induced AKI model (72). SP1 
modulates autophagy and ameliorates IRI-induced AKI by regulating 
the miR-205/PTEN axis and mediating the Akt signaling pathway 
(72). Overexpression of SP1 inhibits the upregulation of PTEN 
expression, thereby promoting p-AKT activation to mitigate AKI (73). 
SP1 suppresses mRNA and protein expression of PTEN through 
repressing transcription at site C (918/913) in the core promoter 
region of PTEN, while site B (934/929), due to its proximity to the 
activator binding site (Egr-1) (947/939), cannot mediate SP1 inhibition 
of PTEN transcription (74–76). Therefore, targeting specific SP1 
binding sites on PTEN for selective activation or inhibition may serve 
as a potential therapeutic strategy for kidney injury-related diseases, 
and the SP1/PTEN/Akt axis holds promise as a therapeutic approach 
for ischemia–reperfusion-induced AKI.

3 Regulation of PTEN in CKD

The occurrence and progression of renal tubular injury in AKI 
could result in either complete or incomplete renal recovery (77). 
Long-term follow-up data indicate that approximately 25% of AKI 
patients develop renal fibrosis, leading to the development of CKD 
(15, 78). CKD is characterized as a global public health issue with an 
increasing incidence rate, and renal interstitial inflammation and 
fibrosis are the predominant pathological processes involved in CKD 
progression, ultimately culminating in end-stage renal disease (ESRD) 
(79–81). Renal fibrosis is characterized by activated and proliferating 
fibroblasts, infiltration of inflammatory cells, and atrophy of renal 
tubular cells (82). Epithelial-mesenchymal transition (EMT) induced 
by excessive accumulation of extracellular matrix (ECM) proteins, 
including type I and type III collagen within the renal interstitium 
represents a critical stage (83, 84). However, effective treatment 
methods to prevent this process are currently limited. It is crucial to 
comprehend the pathophysiological mechanisms underlying the 
occurrence and development of renal interstitial fibrosis while 
exploring novel strategies for preventing and treating CKD leading 
to ESRD.

3.1 PTEN regulates fibroblast proliferation 
and differentiation in AKI-to-CKD transition

The primary target of PTEN is phosphatidylinositol 
3,4,5-triphosphate (PIP3) (85). Pharmacological inhibition of PTEN 
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not only regulates PI3K/Akt signaling and exacerbates AKI caused by 
ischemia–reperfusion but also contributes to the pathogenesis of renal 
inflammation and fibrosis by modulating the infiltration of myeloid 
fibroblasts and immune cells into the kidney (15, 86). Studies have 
demonstrated that myeloid-specific deletion of the PTEN gene in mice 
leads to severe proteinuria, renal dysfunction, and fibrosis following 
angiotensin-converting enzyme therapy (87). Furthermore, PTEN can 
suppress renal inflammation and fibrosis in angiotensin II (AngII)-
induced hypertensive nephropathy through the CXCL16/
phosphatidylinositol-3 kinase γ (PI3Kγ) signaling pathway (88). 
Additionally, myeloid-specific deficiency of PTEN enhances 
extracellular matrix protein production while promoting myeloid 
fibroblast accumulation and myofibroblast formation after 
angiotensin-converting enzyme inhibitor therapy, which is 
accompanied by increased macrophage and T cell infiltration in 
mouse kidneys (61, 89).

During the transition from AKI to CKD, the activation of 
pro-inflammatory cytokines can induce an upregulation of 
non-coding RNA expression, thereby exacerbating renal injury and 
promoting fibroblast proliferation and differentiation (73, 90). This 
process is highly dependent on the activation of the Wnt/β-catenin 
axis and Notch-induced Bmp signaling, which in turn promotes 
PTEN-mediated inflammatory cell activation of PI3K/AKT/mTOR 
(91, 92). Additionally, differences in macrophage polarization directly 
determine the outcomes of kidney adaptive repair. M2 polarization 
alleviates kidney fibrosis by inhibiting PTEN expression, while M1 
polarization accelerates mitochondrial dysfunction and activates 
Bcl-2/Bax/Caspase-3 signaling, leading to maladaptive kidney repair 
(93, 94). The aristolochic acid (AA) nephropathy model serves as a 
representative model for the progression from AKI to CKD, and 
targeting the NF-κB/miR-382/PTEN/AKT axis can significantly 
ameliorate AA-induced tubulointerstitial fibrosis (Figure 2) (95).

3.2 PTEN regulates epithelial-mesenchymal 
transition (EMT)

The renal tubular epithelium is susceptible to various adverse 
effects including ischemia, toxicology, and pharmacology (96). Under 
stressful conditions, injured renal tubular epithelial cells can 
communicate with mesenchymal cells, particularly fibroblasts, and 
stimulate their activation and proliferation, thereby contributing to 
the development of renal fibrosis (97). Previous studies have 
demonstrated that exosome-mediated miR-21 released by renal 
tubular cells promotes fibroblast activation in ureteral obstruction-
induced hydronephrosis and long-term renal fibrosis models, and the 
activation occurs through targeting PTEN and thus modulating the 
PTEN/Akt axis (98). Furthermore, enhancer of zeste homolog 2 
(EZH2) enhances EMT by binding to the PTEN promoter and 
regulating its transcription (99). EZH2 also activates the EGFR/
ERK1/2/STAT3 signaling pathway and induces M2 macrophage 
polarization through STAT6 and PI3K/AKT pathways, which 
exacerbates renal fibrosis (Figure 2) (15, 100).

Ubiquitination of PTEN is crucial in EMT-mediated renal fibrosis 
as well. During the progression of CKD, EMT promotes the deposition 
of interstitial matrix (101). In diabetic kidney disease (DKD) mice 
with renal tubular injury, there is a significant increase in the level of 
PtenK27-polyUb (13). When PTEN undergoes polyubiquitination at 

lysine 80 through MEX3C-mediated K27 linkage, it exhibits a 
pro-inflammatory effect by promoting the secretion of interleukin-6 
(IL-6) and transforming growth factor-beta 1 (TGF-β), thereby 
exacerbating hyperglycemia-induced EMT (102). The MEX3C-
PTENK27-polyUb axis also enhances the dephosphorylation and 
protein stabilization of fibrosis-related proteins TWIST, SNAI1, and 
YAP in renal tubular epithelial cells, thus aggravating EMT (103). The 
concentration of PTENK27-polyUb in urine may serve as a potential 
prognostic indicator for diabetic disease or patients with renal fibrosis 
complicated by AKI who exhibit a poor prognosis.

3.3 PTEN affects BMP and its receptors to 
regulate fibrosis

Vascular calcification presents a major contributor to cardiovascular 
disease in patients with CKD (104). Elevated serum levels of bone 
morphogenetic proteins (BMPs), such as BMP-2 and BMP-4, have been 
identified as potential serum markers for vascular calcification in CKD 
(105). Moreover, BMP demonstrates renoprotective effects in various 
acute and chronic kidney injuries, including IRI, unilateral ureteral 
obstruction (UUO), and streptozotocin (STZ)-induced injury (106). 
BMP is predominantly expressed in proximal renal tubular cells and 
glomerular podocytes (107). Importantly, it plays a significant role in 
fibrosis during the progression from AKI to CKD (108). As an inhibitor 
of PI3K and BMP-7, BMP-7 suppresses PI3K/Akt signaling by 
upregulating PTEN expression without altering fibroblast activation or 
α-SMA expression (109). This counteracts the profibrotic effect of 
TGFβ1 on cultured renal cells and prevents interstitial fibrosis in both 
acute and chronic kidney injury (110).

Endothelial dysfunction is commonly recognized as a characteristic 
step in vascular injury among patients with CKD (111). Recent findings 
have indicated that PTEN-mediated activation of BMP receptor 
signaling serves as a potential mechanism contributing to endothelial 
dysfunction in CKD (112). The activation of BMP receptors plays a 
conclusive role in the mechanism underlying endothelial dysfunction 
during early stages of CKD. PTEN, as a key mediator between BMP 
receptors and endothelial function, assumes an important role in the 
development of endothelial dysfunction in CKD (91). As a downstream 
effector molecule activated by BMP receptor signaling, PTEN is 
upregulated in vascular endothelial cells of mice with CKD, leading to 
the activation of BMP receptor signaling and inhibition of the Akt-eNOS 
pathway, subsequently resulting in endothelial dysfunction (113).

3.4 Epigenetic modification mediates PTEN 
to regulate renal fibrosis

Epigenetic modifications are critically implicated in renal 
pathologies, exerting substantial influence on the progression of renal 
fibrosis (114). During ischemia–reperfusion injury, UUO, nephrotoxic 
drug-AKI, CKD, and the transition from AKI to CKD, epigenetic 
regulatory mechanisms are activated to varying degrees (103, 115). 
Histone modification (acetylation and methylation) and DNA 
methylation are currently the most extensively investigated epigenetic 
modifications in kidney disease (116, 117). Several histone 
methyltransferases (HMTs) have been employed to ameliorate renal 
fibrosis in CKD (118). Studies have demonstrated that activation of 
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epigenetic regulatory factors during diabetic kidney disease progression 
confers renal protection by restraining inflammation, excessive activation 
of tubulointerstitial fibroblasts, and fibrosis development (119, 120). In 
mice with UUO or 5/6 nephrectomy-induced renal fibrosis, there is a 
notable increase in JMJD3 expression, concomitant with enhanced 
activities of H3K9 methyltransferase G9a and H3K4 methyltransferase 
SET7/9 (121). JMJD3 exerts its epigenetic regulation by demethylating 
H3K27me3 which targets PTEN transcription activation for inhibition 
(122). The demethylation of H3K27me3 mediated by JMJD3 inhibits 
AKT phosphorylation through increased PTEN expression, thereby 
improving renal fibrosis (123). Currently, chemical inhibitors targeting 
methyltransferases have been reported to significantly reduce the level of 
H3K9me1 methylation leading to decreased PTEN activity and 
accelerated renal fibrosis in UUO mice (124).

DNA methylation is a critical epigenetic modification pathway in 
the progression of kidney-related diseases (125). The methylation of 
PTEN is highly correlated with the occurrence of CKD, and modulating 

PTEN activity through DNA methylation also constitutes a fundamental 
element in genetic modification pathways that affect the progression of 
CKD (126). PTEN regulates ECM metabolism and impacts the onset 
and development of CKD-induced fibrosis (Figure  2) (14). PTEN 
methylation leads to decreased PTEN activity in a mouse model of renal 
fibrosis induced by UUO (127). Hu et al. (126) has demonstrated that 
DNA methyltransferases (DNMTs), including DNMT1, DNMT3a, and 
DNMT3b, are primarily involved in this process. Inhibitors targeting 
DNMTs can effectively ameliorate abnormal DNA methylation in 
UUO-induced renal fibrosis (128). DNMT negatively regulates PTEN 
methylation to modulate the PI3K/AKT signaling pathway (129). 
Previous studies also demonstrated that pharmacologically reducing the 
interaction between DNMT3a and PTEN can significantly delay renal 
fibrosis (128). Additionally, knockdown of DNMT3a restores TGF-β1’s 
inhibitory effect on PTEN activity in the TGF-β-induced renal fibrosis 
model mainly through controlling Klotho promoter methylation 
mediated by DNMT3a (130, 131). Consequently, regulating PTEN 

FIGURE 2

PTEN governs the process of renal adaptive and maladaptive repair in AKI-to-CKD transition. Upon the initiation of AKI, M1 macrophages undergo 
polarization to M2 phenotypes within the confines of immunoregulatory capacity, leading to the secretion of anti-inflammatory factors to facilitate 
adaptive kidney repair, thereby mitigating AKI. Conversely, the undue inhibition of PTEN promotes monocyte polarization toward M1 macrophages, 
suppresses PTEN expression, induces EMT, and enhances renal interstitial fibrosis. Simultaneously, reduced PTEN levels lead to decreased 
mitochondrial oxidative phosphorylation and mitochondrial membrane permeability, resulting in mitochondrial dysfunction and apoptosis via the 
caspase protein cascade. Moreover, severe AKI activates the β-catenin/Notch signaling axis to promote BMP-mediated repression of PTEN along with 
its receptor BMPR, while suppressing inflammatory responses triggered by the PI3K/AKT/mTOR pathway. The synergistic consequences of these 
effects severely undermine the kidneys’ capacity for effective adaptive restoration, eventually leading to the progression of CKD. ECM, extracellular 
matrix; EMT, epithelial-mesenchymal transition; AKI, acute kidney injury; CKD, chronic kidney disease.
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activity through epigenetic modification pathways including histone or 
DNA methylation represents a potential therapeutic approach for 
improving CKD and kidney diseases.

3.5 PTEN controls phagophore closure and 
regulates autophagy

Autophagy plays a dual role in the repair of injury from AKI to 
CKD (Figure 1) (132). Sustained activation of autophagy may lead to 
tubular atrophy and shedding, thereby promoting renal fibrosis (133). 
On the contrary, autophagy can prevent renal interstitial fibrosis by 
degrading excessive collagen within cells (134). Recently, it has been 
reported that PTEN-mediated adaptive renal repair in proximal renal 
tubular cells (RPTC) is crucial for delaying the transition from AKI to 
CKD, and its expression is inversely correlated with markers of renal 
injury and fibrosis (135, 136). PTEN alleviates renal fibrosis by 
upregulating phagophore closure mediated by the autophagy-related 
protein CHMP2A (35). CHMP2A belongs to the SNF7 family which 
regulates protein transport from endosomes to lysosomes (137). 
During the initiation of autophagy, CHMP2A translocates to the 
phagophore and facilitates phagocytic closure, thereby inducing 
lysosomal recruitment and fusion while separating the inner and outer 
autophagosomal membranes to form double-membrane 
autolysosomes or autophagolysosomes (138, 139). Downregulation of 
PTEN in RPTC inhibits CHMP2A expression, leading to endosome 
sorting complex required for transport (ESCRT)-mediated membrane 
shedding in a model of DKD resulting from impaired renal repair after 
IRI (126). Conversely, PTEN downregulation leads to heightened 
interactions between LC3-II and P62 proteins and immature 
autolysosomal organelles, reflecting a bottleneck in the 
macroautophagy, which is accompanied by increased apoptosis in 
renal proximal tubular cells and escalated interstitial fibrosis (140).

Currently, the mechanism by which PTEN regulates CHMP2A 
and influences cell autophagy remains unclear. Several studies have 
demonstrated that inhibition of the PI3K/AKT pathway using 
LY294002 (a specific inhibitor of PI3K) does not affect the expression 
of CHMP2A, indicating that PTEN-mediated autophagy lysosomal 
generation through CHMP2A is independent of the PI3K/AKT axis 
(141, 142). Additionally, pronounced decrease in nuclear PTEN levels 
compared to cytoplasmic levels in a mouse model of renal fibrosis, 
which primarily due to phosphorylation of PTEN serine 113 mediated 
by ATM (ataxia telangiectasia mutated serine/threonine kinase), 
leading to its translocation into the nucleus (143). Nuclear PTEN 
further triggers cascade activation of the JUN-SESN2/AMPK axis, 
thereby enhancing autophagy flux (144, 145). It is also evident that 
differential concentrations of PTEN between the nucleus and 
cytoplasm impact transcriptional regulation of CHMP2A (140, 146). 
However, further investigation is required to elucidate their regulatory 
mechanism. PTEN-mediated CHMP2A could be a novel therapeutic 
approach for renal fibrosis resulting from AKI progression to CKD.

4 Potential strategies for targeting 
PTEN to treat AKI and CKD

The selective inhibitor BpV (HOpic) of PTEN has been 
demonstrated to activate caspase-3 and enhance renal tubular cell 

apoptosis, exacerbating ischemia–reperfusion injury-induced acute 
kidney injury (IRI-AKI) (147, 148). Therefore, restoring PTEN 
expression and function through pharmacological or genetic 
manipulation pathways represents a promising strategy for mitigating 
organ damage. Studies have shown that methylation of the PTEN 
promoter CpG site can target regulatory factors of PTEN to activate 
and enhance their transcription, thereby inhibiting cancer cell 
proliferation (40). Similarly, it has been extensively reported that 
inhibitors targeting the PI3K/PTEN/Akt/mTOR pathway can 
ameliorate organ injury during cisplatin chemotherapy (149). mTOR 
inhibitors such as rapamycin and everolimus can effectively protect 
ovaries from the toxic effects of cisplatin by relying on inactivation of 
the PI3K/AKT signal mediated by PTEN (150). Currently, drugs 
(BKM120, AZD-5363 and Olaparib) targeting Class IA PI3K, AKT/
p70S6K/PKA or PARP have been used in treating patients with 
PTEN-defective cancers such as hematologic malignancies, pancreatic 
and colorectal cancers, which are already tested in phase I to phase III 
clinical trials (151). However, the use of specific PTEN agonists or 
small molecule drugs to intervene in the transition of AKI to CKD has 
not yet been reported in clinical trials. Further exploration is also 
needed to identify the role of PTEN in kidney diseases.

Recently, genetic intervention to manipulate PTEN has emerged 
as a promising treatment for AKI and CKD. For instance, the 
administration of 3-Deazaneplanocin A (DZNep) has been shown to 
effectively inhibit the specific binding of EZH2 to the proximal 
promoter of PTEN, thereby reducing the transcription level of PTEN 
mRNA and improving the pathological damage of CKD (15). It is 
important to note that recent studies have demonstrated that reversing 
the transcriptional repression of PTEN in highly invasive tumors such 
as melanoma through the CRISPR system can effectively inhibit 
cancer cell proliferation and migration (152). However, it remains 
unknown whether targeted activation of PTEN mediated by gene 
editing influences AKI and CKD. Therefore, exogenous PTEN gene 
modification may offer a potential new therapy to prevent AKI to 
AKD transition. Additionally, manipulating miR-21 expression and 
regulating PTEN expression through delivery of antisense 
oligonucleotides (ASO) or miRNA mimics also holds promise for the 
treatment in preventing the kidney failure (153).

Renal tubular injury and subsequent regeneration play a pivotal 
role in determining the recovery from AKI or its progression to CKD 
(154). Interventions targeting renal tubular regeneration hold 
significant potential as therapeutic strategies for AKI (155). The 
upstream transcription factor ZBTB7A regulates the PTEN/AKT 
pathway downstream of KLF10 protein, thereby augmenting the 
proliferation and lumen formation capacity of damaged renal tubular 
cells and promoting renal tubular regeneration in cisplatin-induced 
AKI (62, 156). Moreover, given PTEN’s regulatory role in apoptosis 
and autophagy, certain natural plant extracts have been found to 
enhance PTEN expression and restore impaired autophagy levels 
(157). These bioactive compounds frequently demonstrate anti-
inflammatory, antioxidant, and antifibrotic properties in other disease 
models (157, 158). Curcumin exerts a protective effect against 
cisplatin-induced AKI by targeting microRNAs (such as miR-18a and 
miR-19b), upregulating PTEN expression, improving mitochondrial 
function, and reducing the release of proinflammatory factors (IL-6, 
TNF-α, IL-1β) (Table 1) (159–162). However, due to the complex 
pharmacological effects of natural drugs and the lack of specific PTEN 
agonists for clinical treatment of AKI, further research is warranted.
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5 Conclusion and future perspectives

The high prevalence of AKI and CKD is often attributed to 
maladaptive repair processes. Following AKI, the upregulation of 
proinflammatory cytokines, including IL-1β, TNFα, and TGF-β, 
is central to the development of renal pathologies such as tubular 
atrophy, glomerulosclerosis, interstitial fibrosis, renal ischemia, 
and capillary loss. These clinical manifestations precipitate renal 
dysfunction, subsequently diagnosed as CKD. PTEN has garnered 
considerable attention due to its involvement as a lipid 
phosphatase in various physiological processes including cell 
proliferation, apoptosis, and fibrosis during the progression of 

AKI and CKD. The activation of NF-κB and HIF initiates a 
cascade effect that significantly contributes to the AKI 
progression. Furthermore, PTEN-mediated interactions among 
signaling pathways, including PI3K/AKT, TGF-β/Smad, Notch, 
and NF-κB, has been reported to participate in the EMT process 
during the transformation from AKI to CKD. In conclusion, 
serum PTEN concentration emerges as a potential biomarker for 
assessing the severity of AKI and its progression to CKD. Targeting 
PTEN to modulate non-coding RNA expression, autophagy, and 
oxidative stress in renal tubular cells emerges as an effective 
strategy for alleviating kidney injury. Future research focused on 
uncovering the functions and mechanisms of PTEN in kidney 

TABLE 1 Summary of recent studies investigating the potential strategies for targeting PTEN in AKI and CKD treatment.

Candidate 
targets

Species (in 
vivo)

Cells (in vitro) Model/
samples

Effect on PTEN Mechanisms Drugs and 
status in 
clinical trials

Reference

3-DZNeP

EZH2fl/

flCdh16-

Cre+/− Mice;

HK2 cells

IR and folic 

acid (FA) 

induced AKI-

to-CKD 

transition

Downregulation of 

EZH2 to increase 

PTEN expression

Inhibits EGFR/

ERK1/2/STAT3 axis 

and the polarization 

of M2 macrophages 

via STAT6 and PI3K/

AKT pathway

Drugs: 

Tazemetostat (EPZ-

6438); Approved

Zhou et al. (15)

miR-382
miR-382−/− 

mice

renal tubular 

epithelial cells

Aristolochic 

acid (AA)-

induced AKI-

to-CKD 

transition

Activation of PTEN/

AKT signaling

Inflammation 

response activation 

and ECM production

Not reported yet Wang et al. (95)

miR-21
miR-21−/− 

mice

renal tubular 

epithelial cells

LPS-induced 

sepsis

Upregulation of 

PDCD4/NF-κB and 

then activation of 

PTEN/AKT pathways

Increases anti-

inflammatory and 

anti-apoptotic 

cytokines

Drugs: Lademirsen; 

RG-012; ADM-21; 

Clinical trial phase 

II

Pan et al. (55)

miR-687
Male C57BL/6 

mice

The mouse PT cell 

(BUMPT-306) line; 

BU.MPT cells

IR-induced 

AKI; LPS-

induced AKI

miR-687 represses 

PTEN via HIF-1/

miR-687/PTEN 

signaling

Accelerates apoptosis 

for tissue remodeling
Not reported yet

Bhatt et al. (44) 

and Liu et al. (46)

bpV(HOpic) C57BL/6 mice

The mouse lung 

fibroblasts (NIH-

3 T3)

IR-induced 

apoptosis

Sustained inhibition 

of PTEN

Activates AKT 

signaling to alleviate 

oxidative stress and 

elevates glycolysis

Not reported yet

Maidarti et al. 

(147) and 

Chauhan et al. 

(148)

ZBTB7A
Male C57BL/6 J 

mice

Madine-Darby 

Canine Kidney 

(MDCK) cells

IR-induced 

AKI

Activation KLF10 to 

inhibit PTEN/AKT 

axis inhibition

Increases renal 

function and tubular 

proliferation

Not reported yet Zhang et al. (62)

Naringenin Not mentioned
The 786-O cell line; 

OS-RC-2 cell line

Renal cell 

carcinoma 

(RCC)

Inhibition of the 

PTEN/PI3K/p-AKT 

axis

Anti-proliferative and 

apoptosis
Preclinical Wang et al. (157)

Curcumin
Male C57BL/6 

mice

Human embryonic 

kidney 293 T cell 

line

Cisplatin-

induced AKI

Downregulation of 

miR-181a to increase 

PTEN expression

Protection of 

mitochondrial 

bioenergetics and 

redox balance

Preclinical Huang et al. (63)

IRF4

LysM-Cre 

IRF4f/f 

(myeloid 

IRF4−/−) mice

Kidney Monocytes/

macrophages 

Murine macrophage 

RAW 264.7 cells

IR-induced 

AKI

Inhibition of PTEN to 

activate PI3K/AKT 

axis

Increases monocyte 

recruitment against 

renal fibrosis

Drugs:Frenlosirsen; 

NMP; KB-9558; 

Clinical trial phase 

1

Sasaki et al. (43)
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diseases holds substantial promise for elucidating the 
pathophysiology of both AKI and CKD, thereby paving the way 
for novel therapeutic strategies.
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