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Introduction: Our research addresses the critical need for accurate

segmentation in medical healthcare applications, particularly in lung nodule

detection using Computed Tomography (CT). Our investigation focuses on

determining the particle composition of lung nodules, a vital aspect of diagnosis

and treatment planning.

Methods: Our model was trained and evaluated using several deep learning

classifiers on the LUNA-16 dataset, achieving superior performance in terms

of the Probabilistic Rand Index (PRI), Variation of Information (VOI), Region of

Interest (ROI), Dice Coecient, and Global Consistency Error (GCE).

Results: The evaluation demonstrated a high accuracy of 91.76% for parameter

estimation, confirming the e�ectiveness of the proposed approach.

Discussion: Our investigation focuses on determining the particle composition

of lung nodules, a vital aspect of diagnosis and treatment planning. We proposed

a novel segmentation model to identify lung disease from CT scans to achieve

this. We proposed a learning architecture that combines U-Net with a Two-

parameter logistic distribution for accurate image segmentation; this hybrid

model is called U-Net++, leveraging Contrast Limited Adaptive Histogram

Equalization (CLAHE) on a 5,000 set of CT scan images.

KEYWORDS

image segmentation, two-parameter logistic type distribution, performance evaluation,

CLAHE, ROI segmentation, lung cancer detection

1 Introduction

Lung cancer begins in the lungs and spreads throughout the rest of the body (1),

including the brain. Lung cancer is the most common cause of cancer-related mortality

worldwide (2). Although lung cancer is more frequent in smokers, it may also occur in

nonsmokers (3). The incidence of lung cancer is often and excessively increased with

smoking. Lung cancer risk may be lowered even if you have smoked for a long period.

Segmentation, a type of image compression, is necessary to infer information from photos.

Imaging modalities (4), including Magnetic Resonance Imaging (MRI) and Computed

Tomography (CT), can be utilized to create Computer-AidedDiagnostic (CAD) (5)models
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that can be used to diagnose and treat patients in precision

medicine. Using a limited quantity of medical image data, we

demonstrated the efficacy of our proposed model, which we refer

to as U-NET++. A method known as the dice coefficient loss was

used to compute the findings of the investigations. An approach to

labeling preprocessing that is in line with the approaches that are

already in use is presented in this paper.

The main novelty of this study is as follows.

• To propose the segmentation model for identifying lung

disease made on CT scans with the limited set of CT scan

images using the CLAHE.

• To develop the learning architecture combining U-Net with

a two-parameter logistic distribution for image segmentation,

was used for segmentation.

• To train the models using several deep learning classifiers and

evaluate the performance of the models using benchmarks

on the LUNA16 dataset using different information

retrieval metrics.

The following section describes the organization of the

subsequent sections of this study.

A considerable amount of important research is presented in

Section 2. Deep learning architectures are used in segmenting

medical images by U-NET++, which is created by combining the

two-parameter model recommended with distribution learning of

the U-Net type. Section 3 provides a comprehensive explanation

of the topic. At this point, the criteria for evaluating the

model’s performance discussed in the fourth part of the section

are presented.

2 Related works

A meta-analysis of the literature was performed. Table 1

clearly shows the literature matrix representation of their meta-

analysis and the strong relationships between the authors and

their respective works. CT scans were assessed based on the image

brightness. Different areas of the same region should have the

same intensity; hence, segmentation is an effective method to

separate objects. Various segmentation procedures were found to

be useful in this study. Three-step segmentation-based strategy for

distinguishing lung regions.

First, the lung was segmented using gray-level thresholding.

Dynamic programming then divides the lung lobes. Finally,

morphology-based smoothing approaches were employed. Region-

based segmentation includes enlarging, dividing, and combining

the areas (17).

A novel convolutional network type known as U-NET++ was

developed to analyze CT images used in the biological sciences.

U-NET++ was used in this study to extract lung fields from

CT images. In healthcare, U-NET++ is nothing more than

a variation of ConvNet, combined with various ad hoc data

augmentation methods.

The robustness of the model was compromised because the

authors of (6–8) carried out their research using the same data

potential. The traditional U-Net network (9–16) is a semantic

segmentation network built using a fully convolutional neural

network. Although it has a relatively small number of layers, the

network is nevertheless capable of functioning well, although less

complex than its predecessors. The UNET network consists of two

main components: down-sampling and up-sampling algorithms.

The process of feature extraction, also known as down sampling,

involves using convolutional, and pooling layers. This stage

is accountable for obtaining characteristics from the original

image. A deconvolution technique is employed to enhance the

feature map’s intricacy. The alternative term for the structure

that involves down-sampling and up-sampling is the decoder-

encoder structure. The original picture undergoes convolutional

and pooling layers during the down-sampling process. This leads

to the generation of feature maps that include different levels

of information. Regarding visual characteristics, the feature maps

exhibit diverse abstraction levels. Combining the down-sampled

feature map makes it possible to retrieve a larger portion of the

abstract detail information lost during training. As a consequence,

the network becomes more successful at segmentation. During

the up-sampling process, the deconvolution layer systematically

increases the feature image’s dimensions. Consequently, the lung’s

three-dimensional nature results in a substantial loss of spatial

information. Consequently, a substantial quantity of relevant

information is lost when down-sampling occurs. As retrieving

all data is impractical, up-sampling yields imprecise outcomes

and disregards visual nuances. Moreover, in addition to the

aforementioned concerns, implementing a deep neural network

is necessary for future advancement. According to the results

of applying U-NET++ to a new dataset, the precision of the

IOU and Dice coefficients improved. The test results demonstrate

that the U-NET++ architecture improves the efficiency of

multiscale conversion and fully connected systems. The authors

in (18) propose a novel approach for lung CT scan classification.

They combined handcrafted features were extracted using Q-

deformed entropy (QDE), which captured image texture based

on intensity variations, with features automatically learned by a

Convolutional Neural Network (CNN). This fusion strategy aimed

to improve the identification of healthy lungs from those affected

by conditions like COVID-19 or pneumonia (18). This proposed

approach demonstrated the benefits of combining handcrafted and

automatically learned features. Segmentation focused the model on

relevant lung regions, and the LSTMnetwork effectively utilized the

fused features for accurate classification.

3 Materials and methods

3.1 U-NET++ architectural design

This study introduces the U-NET++ hybrid model, which

utilizes a two-parameter logistic function to identify lung nodules

from CT scans accurately. Lung CT scans were classified as

“benign” or “malignant” when used as an input for a binary

classification system. A unique hybrid model that combines U-Net

(19) and two-parameter logistic distribution was developed to

segment and diagnose lung cancer. The model was generated

using the dataset of LUNA-16 lung CT images. The U-NET++

model is highly esteemed as a leading architecture in computer

vision, primarily because it is built on established computer vision
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TABLE 1 Presents the related study and limitations in the works.

References Dataset Split Key arguments Drawbacks

Huang and Hu (6) Lung Nodule Analysis 2016

dataset and Alibaba Tianchi

Lung Cancer Detection

Competition dataset.

60:40 The Noisy U-Net (NU-Net) increases the

diagnosis of early lung cancer nodules by

increasing the sensitivity to tiny nodules

measuring between 3 and 5mm in diameter.

This is achieved by adding distinct noise to

hidden layers during training.

Insufficient validation across a number of clinical

situations or datasets has been done to evaluate

NU-Net’s applicability and robustness. The practical

application is restricted since it ignores false positives

and the algorithm’s inconsistent performance with

diverse nodule properties. The lack of advanced

method comparison studies limits NU-Net’s

effectiveness compared to U-Net.

Zhao et al. (7) LUNA-16 70:30 The proposed approach for accurately

detecting cancerous lung lesions from CT

scans involves using a patch-based 3D

U-Net and a contextual convolutional

neural network.

The article lacks a thorough validation or explanation

of the model’s performance variability across various

datasets or in real-world clinical situations.

Furthermore, the lack of a comparison to current

approaches hinders the ability to assess the superiority

or applicability of the proposed strategy.

Chiu et al. (8) LUNA-16 70:30 The 2D U-Net approach effectively identifies

lung nodules in medical pictures. The

detection performance may be improved by

utilizing ROI segmentation models and

further labeling.

The use of the ROI segmentation technique enhances

the accuracy of lung nodule identification. The

U-Net-based network architecture demonstrates high

proficiency in segmenting lung nodules. Additionally,

complementary labeling appears to be helpful in

situations when there is a scarcity of data.

Gao et al. (9) LUNA-16 70:30 The U-Net model, which incorporates an

attention mechanism and residual structure,

effectively segments lung cancer bone

metastases in SPECT images, improving

early identification and treatment outcomes.

The research will likely neglect practical factors, such as

variations in SPECT imaging circumstances or

anomalies that may undermine the model’s robustness

in real clinical settings.

Cai et al. (10) LUNA-16 60:40 The U-Net deep learning network

consistently enables the identification of

lung cancer nodules larger than 3mm in

diameter, hence facilitating the progress of

early detection and therapy methods for this

disease.

The research work fails to describe the AI model’s

clinical validation and integration in real-world

healthcare settings, obscuring its practicality. It

prioritizes model accuracy above false positives and

negatives, which are essential for successful practical

diagnosis. Due to its architecture and lack of testing

against more adaptable modern methods, the U-Net

and PSP Net AI models’ effectiveness is unknown. Due

to its dataset dependence, the model may not work for

all patient groups or imaging situations (Luna16).

Banu et al. (11) LUNA-16 70:30 The use of WEU-Net, also known as weight

excitation U-Net, enhances the early

identification of lung cancer by precisely

segmenting lung nodules in CT images.

The work does not explain how the model shows

nodule variety, size, and consistency across datasets.

The therapeutic adoption of this technology depends

on time efficiency and computational needs, which are

being disregarded. The lack of a comparison with other

cutting-edge segmentation methods hinders our

comprehension of WEU-Net’s efficacy. To conclude,

the model’s interpretability and therapeutic potential in

diagnostic and treatment planning are undisputed.

Xia (12) LUNA-16 60:40 When it comes to detecting supplemental

lung cancer, RUNet image segmentation

outperforms 3D U-Net. Pro-CRP, CEA, and

NSE serve as diagnostic markers for

malignant lung cancers.

The research lacks a thorough examination of any

biases or confounding variables that may impact the

accuracy of diagnoses and the performance of the

model when selecting patients. The research did not

assess the generalizability of the findings to larger

groups of patients or other imaging techniques other

than MRI. The absence of a comparative analysis with

other verified segmentation approaches impedes the

understanding of the specific benefits that RUNet offers

in contrast to other methods. Moreover, there is

insufficient information about using the model in

clinical settings to verify its effectiveness in real-world

situations or with external datasets.

Chhabra et al. (13) IIITD-CLF 8:2 The study discusses how regularization and

patch size affect how well the model works.

segmentation with different network designs

and patch sizes to make it more accurate.

Factors like scalability, external validity, possible bias,

and limited generalizability should be considered.

Venkatesh et al.

(14)

LIDC-IDRI 70:30 It aims to revolutionize the detection of lung

cancer by offering a more accurate and

efficient approach compared to existing

approaches.

The evaluation of the effectiveness of the suggested

technique in relation to existing methods is limited due

to the lack of a comparative study with state-of-the-art

systems. Further investigation is required to enable the

idea’s implementation in real-world clinical

environments, considering ethical concerns, regulatory

challenges, and the potential to scale up.

(Continued)
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TABLE 1 (Continued)

References Dataset Split Key arguments Drawbacks

Madhu et al. (15) POCUS 70:30 This paper presents XCovNet, an improved

Xception neural network, which

outperforms existing deep learning models

for point-of-care lung ultrasound data

analysis, enabling accurate identification of

COVID-19.

The study enhances medical imaging technology for the

detection of infectious diseases by developing XCovNet

and showcasing its improved performance in

comparison to current models. This is essential to fulfill

the need for accurate and expedient diagnostic tools in

contexts with limited resources.

Lamba et al. (16) GSCE25066 70:30 The aim of the project is to use machine

learning techniques to find crucial genes for

cancer subtyping. These genes will then be

validated using the Kaplan-Meier Survival

Model.

The study paper does not explicitly discuss any

recognized research constraints in the categorization of

breast cancer subtypes based on gene expression data.

Subsequent studies in this domain might examine the

impact of different feature selection methods on the

effectiveness of models and the reliability of findings

across different datasets.

FIGURE 1

Architecture of U-NET++.

FIGURE 2

Two-parameter U-NET++ two-parameter type distribution.
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FIGURE 3

Methodology design.

approaches. When assessed using the ImageNet test dataset, this

model achieved a precision rate of 91%. The main architectural

improvement in the model is the filter size, an improved

version of the U-NET. Figure 1 illustrates the architecture of the

proposed model.

In the current section, a detailed presentation of the

combination of two- and three-parameter logistic distribution

models is presented. Figure 2 shows a two-parameter U-NET++

logistic-type distribution. In general, the pixel intensities are the

content through which the quantification of the image details

performed on several regions of the images. The brightness of a

picture or image can be measured by using several performance

metrics such as the moisture in the surroundings, lightening of

the images, vision, and the surrounding environmental conditions.

This measurement can be performed using the pixel values and

pixel intensities. For instance, pixel (a, b) intensity measurement

was performed using the function z = f (a, b) and considered

as a random variable. To better analyze and understand the

performance of the currently considered model and the intensities

of pixels for various images, the model was designed for both

parametric and parametric models. The pdf of the pixel intensity

is given by

f
(
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3.2 U-NET++ algorithm

3.2.1 U-Net ith two parameter type distribution
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For three-parameter logistic type distribution: -
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3.3 Module design

Figure 3 discuss about the methodology design followed in our

proposed work. A typical image processing method is contrast-

limited adaptive histogram (CLAHE) equalization. Smooth regions

become noisier with adaptive histogram equalization. CLAHE may

enhance noise in hectic circumstances. Histogram size may be

limited by CLAHE. Understand that deep learning variation is a

major issue. Use two tag techniques for variety. Match the center to

the background to reduce variation. This study employed the dice

coefficient loss function used by picture segmentation pros. The

experiment suggests labeling may be better than initial marking in

cases with insufficient data. Medical images are hard to classify and

find. Everyone agrees transferring less data is hard. Semi-supervised

learning overcomes auto-labeling naming issues. Proposed study

successfully locates the lung using ROI segmentation from CT

scans. Process attention model. The ROI segmentation model

during data processing may find lung tumors, study suggests.

4 Model parameters and discussions

4.1 LUNA-16 dataset

A total of 5,000 CT scans were obtained from LUNA-16.

Four expert radiologists annotated the images in the LIDC/IDRI

database for 2 years (20–22). Each radiologist diagnosed the

nodules as non-nodules, nodules with a diameter of ≤ 3mm, or

nodules with a diameter of ≥3mm (23). This article examines

the annotation process in detail. Three of every four nodules

larger than 3mm in diameter must be identified by radiologists

(24). Non-standard findings have not been noted before (non-

nodules, nodules <3mm, and nodules annotated by only one or

two radiologists). Table 2 shows various illustrations of nodules in

the LUNA-16 dataset.

TABLE 2 Various benigna and malignant nodules present in the LUNA-16

dataset.

S. No. Nodule name Nodule image

1 Small nodule

2 Ground glass opacity nodule

3 Rough edged nodule

4 Thick walled nodule

5 Granular nodule

6 Pleural surface nodule

7 Pulmanory region nodule

TABLE 3 Presents the standard deviation of various features in

LUNA-16/LIDC-IDRI dataset.

Features in LUNA-16 Testing Training

Malevolence 1.98± 0.95 1.65± 1.03

Conjecture 2.60± 0.70 2.65± 0.77

Subtlety 1.89± 0.74 3.65± 0.69

Lobulation 2.73± 0.67 2.36± 0.71

Diameter in mm 9.17± 3.51 8.56± 0.56

Margin 3.03± 1.56 3.68± 0.58

Table 3 presents various feature extraction values obtained from

the LUNA16 database. A node, which refers to a specific structure,

has a wide range of characteristics, with malignancy being used as

an example to illustrate this. The estimation of the node’s outline

coordinates is utilized, whereas the surrounding area of the nodule
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TABLE 4 Dataset details.

Dataset name Description

LUNA-16 Comprising annotated lung CT scans collected from

partnering medical institutions, Includes data from

LUNA 16 and LIDC-IDRI

Number of samples 5,000 annotated CT scans slices

Image resolution 128× 128

Annotation methods Expert radiologists using semi-automated tools

Preprocessing steps -Slice normalization

-Rescaling to uniform dimensions

-Augmentation for training set

is often underestimated. Lobulation refers to the configuration and

attributes of a nodule. The measurement of a nodule in millimeters

determines its diameter, which in turn determines its length. The

border of the nodule indicates a transparent region.

Table 4 describes the dataset used in our study. We compiled

a custom LUNA-16 dataset by combining annotated lung CT

scans from various sources, including LIDC-IDRI datasets. This

dataset comprises 5,000 annotated CT scans slices, each with

a resolution of 512 × 512 pixels. The images were annotated

by expert radiologists using semi-automated tools, ensuring high

quality labels for training and evaluation.

4.2 Study design

Three categories of data were created, namely training,

validation, and testing. We built a model, trained it using validation

data, and tested it. This method is repeated until a firm understands

how our model reacts in real-world scenarios. Allow average

pooling and expand the size of the final output by using layers

in the filter. We examined our test data to determine what we

could learn from it in order to enhance the model. Because we

are neither testing nor training a model on a test dataset, we

can utilize it only once per session. Two-parameter and three-

parameter mixtures generate a model using a single test dataset,

which significantly reduces the time and effort required. Figure 4

illustrates the study design.

4.3 Split and pre-process data

Jpeg serves as the data transport format in our architecture

in the same way as DICOM. The Neuroimaging Informatics

Technology Initiative (NIFIT) (25) is a 501(c)(3) not-

for-profit organization committed to the advancement of

neuroimaging informatics (NITI) (26). Despite its origins

in neuroimaging, it is now commonly used in brain and

other medical imaging. By memorizing the coordinates, it is

possible to relate pixel values (i, j, k) to the position space (x,

y, z) (x, y, z). Each data scan may provide three-dimensional

medical images comprising 128 × 128 slices of varying

thicknesses. Additional RAM is required to store the data in

the DICOM format.

CLAHE12 contribute to the enhancement of CT scan quality

(Contrast Limited Adaptive Histogram Equalization). The artwork

places a premium on contrast and visual detail. The Hounsfield

center values for the lung window and soft tissue were 600, 1,500,

and 50,400. As a result, the lung window is the most frequently

used Hounsfield range for lung image diagnosis. As shown in

Table 1, the Hounsfield values of various body components were

dispersed. Following sampling, the objective was to compress a

snapshot to preserve the memory. Standardization is the next step

in reducing computing costs. Subsequently, CLAHE was used to

enhance nodule contrast and visibility.

Contrast-limited adaptive histogram equalization (CLAHE)

has been used in image processing for a long time. Instead of

adaptive Histogram Equalization (AHE13) (27), it cannot be used.

Standard adaptive equalization may amplify noise in ordinarily

homogeneous areas of the image. Consequently, the histogram

tends to focus on this region. The CLAHE has the potential

to enhance noise in locations where it is almost continuous. In

Figure 5, the LUNA-16 dataset is preprocessed using the Wiener

filter and CLAHE.

The CLAHE approach can be used to decrease the histogram

concentration.When utilizing CLAHE, the concentrated histogram

component was maintained. On the other hand, the exceeding

histogram was maintained and equally distributed throughout

all histogram bins. The Wiener filter is an extremely successful

technique for visual noise reduction. PET/CT scans were afflicted

with an additive noise of constant intensity. Figure 6 shows an

example of the original CT scan image, second image is with

CLAHE and third one is with CLAHE and weiner.

4.4 Architecture and implementation

The lung segmentation method utilized in this study used

5,000 lung CT scan images and masks. Each CT scan image has

a resolution of 128 × 128 pixels. Images s black and white the

final consequence is a split lung. The technique begins with the

data being saved in memory and each image being resized to

32 × 32 pixels. Image processing was accelerated by shrinking

the photographs. The images were corrected after rescaling.

Subsequently, the dataset was partitioned into 70 percent training

set and 30 percent test set. Rotation was performed to increase

the number of training samples. There were eight rotating copies

for each training sample. In Table 5, U-NET++ is composed of

layer blocks that compress and stretch clockwise. The augmented

dataset was initially used to define the input layer. The following are

the layers of convolution, non-linearity, and down sampling. Non-

linearity is first applied to decrease the final image size, followed

by convolution to apply a filter, and finally max-pooling. The

image is concatenated by applying similar layers in contracting and

expanding patterns, and then up-sampled to make it larger. The

output layer provides a lung segmentation image. After all layers

have been trained, the U-Net ConvNet is created (28). For example,

using Adam as the optimizer, the dropout was set to 0.5, epochs

were set to 10, and steps per epoch were set to 200 (29). Each

layer, similar to the model architecture, has its own set of filters.

We examined the performance of U-Net ConvNet using test data.
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FIGURE 4

Proposed model study design and training, testing and validation process.

FIGURE 5

Flowchart and pre-processing steps.

FIGURE 6

The first picture from left to right shows how the Wiener filter works with CLAHE. (A) Original CT scan image. (B) CT image with CLAHE image. (C)

CLAHE with Weiner filter.
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TABLE 5 Proposed network architecture with two parameters distribution.

Layer Type Input size Output size Kernal size Stride Padding

U-NET++ down sampling encoder process

Layer 1 Conv+ReLU 128× 128 128× 128 3× 3 1 1

Layer 2 Conv+ReLU 128× 128 128× 128 3× 3 1 1

Layer 3 Max Pooling 128× 128 64× 64 2× 2 2 0

Layer 4 Conv+ReLU 128× 128 64× 64 3× 3 1 1

Layer 5 Conv+ReLU 64× 64 64× 64 3× 3 1 1

Layer 6 Max Pooling 64× 64 32× 32 2× 2 2 0

Layer 7 Conv+ReLU 32× 32 32× 32 3× 3 1 1

Layer 8 Conv+ReLU 32× 32 32× 32 3× 3 1 1

Layer 9 Max Pooling 32× 32 16× 16 2× 2 2 0

Layer 10 Conv+ReLU 16× 16 16× 16 3× 3 1 1

Layer 11 Conv+ReLU 16× 16 16× 16 3× 3 1 1

Layer 12 Max Pooling 16× 16 8× 8 2× 2 2 0

Layer 13 Conv+ReLU 8× 8 8× 8 3× 3 1 1

Layer 14 Conv+ReLU 8× 8 8× 8 3× 3 1 1

Layer 15 Max Pooling 8× 8 4× 4 2× 2 2 0

U-Net++ up-sampling decoder process

Layer 16 Up sample

Transposed Conv

4× 4 8× 8 2× 2 2 0

Layer 17 Conv+ReLU 8× 8 8× 8 3× 3 1 1

Layer 18 Conv+ReLU 8× 8 8× 8 3× 3 1 1

Layer 19 Up sample

Transposed Conv

8× 8 16× 16 2× 2 2 0

Layer 20 Conv+ReLU 16× 16 16× 16 3× 3 1 1

Layer 21 Conv+ReLU 16× 16 16× 16 3× 3 1 1

Layer 22 Up sample

Transposed Conv

16× 16 32× 32 2× 2 2 0

Layer 23 Conv+ReLU 32× 32 32× 32 3× 3 1 1

Layer 24 Conv+ReLU 32× 32 32× 32 3× 3 1 1

SoftMax function Convolutional Layer_8 32× 32 32× 32 3× 3 1 1

Benign or malignant SoftMax Function 32× 32 32× 32 3× 3 1 0

There were five columns in total. The first column

provides the layer name, followed by the number of filters,

filter type/size, dimension, and concatenated layers. Eleven

convolutional layers were used. The input layer is the first

layer. A 32 × 32-pixel input layer is displayed in this

picture. For the Con1 layer, eight 3 × 3 filters are needed.

The size of the images remained unchanged. Con1 was

closely related to other con1. After the con layers, there were

ReLU layers.

4.4.1 Simulation settings
To facilitate the replication of our work, we provide a detailed

description of the simulation settings and the dataset used. This

information includes hardware and software configurations, data

preprocessing steps, and hyperparameter settings.

The simulation settings outlined in Table 6 provides

comprehensive details on the hardware software environment

used for our requirements. Our setup included an Intel core

i9-10900k CPPU and an NVIDIA GEFORCE RTX 3090 GPU,

ensuring sufficient computational power for training deep learning

models. We utilized Ubuntu 20.04 LTS as our operating system,

with python 3.8 and TensorFlow 2.4 for model development

and training.

Table 7 details the hyperparameters and model configuration.

We implemented a U-NET++ with 20 layers, utilizing a kernal

size of 3 × 3 and max pooling layer of 2 × 2. The ReLU activation

function was used throughout the network, with a sigmoid
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TABLE 6 Simulation setting used in our proposed work.

Component Description

Hardware

CPU Intel Core i9-10900K

GPU NVIDIA GeForce RTX 3090

RAM 64 GB DDR4

Software

Operating System (OS) Ubuntu 20.04 LTS

Programming language Python 3.8

Deep learning framework TensorFlow 2.4, Keras

Data preprocessing

Normalization Rescale pixel values to range [0,1]

Augmentation techniques Rotation, translation, flipping, scaling

Data split 70% training, 15% validation, 15% testing

Model training

Optimizer Adam

Learning 0.001

Batch size 32

Epochs 100

Loss function Dice loss

Metrics Dice co-efficient, IoU, Sensitivity, Specificity

TABLE 7 Hyperparameters and model configurations.

Parameter Values

Network architecture U-NET++

Number of layers 20

Kernal size 3× 3

Pooling Max pooling (2× 2)

Activation function ReLU (Rectified Linear Unit)

Output layer activation Sigmoid

Dropout rate 0.5

Regularization L2 regularization with delta= 0.001

activation function in the output layers for binary segmentation

(30). A dropout rate of 0.5 and L2 regularization were applied to

prevent overfitting.

These settings and configurations provide a robust framework

for replicating our lung cancer segmentation model and can

serve as a foundation for further research and development in

this domain.

4.5 Training process

The loss function expresses the loss of the die coefficients.

Frequently, the dice coefficient is used to segment medical images,

as shown in Figure 7. It is often used to compare two samples. This

experiment generated sufficient compelling evidence to be deemed

to be conclusive.

This research is mostly concerned with two-dimensional

pictures. It might end up saving a lot of money in the long term.

Another example is graphics processing unit (GPU) throttling.

Owing to memory limitations, the majority of GPUs have difficulty

in training 3D models. 2D and 3D models are available for

downloading in various formats. We break down our findings into

different segmentation strategies with an emphasis on unbalanced

and tiny datasets. In addition, themodel training process converged

in 200 epochs. The confusion matrix can be used to evaluate real-

world data and calculate metrics such as accuracy, sensitivity, and

specificity. The testing loss is approximately 0.4 in Figure 6, whereas

CLAHE and Wiener may be as low as 0.1 without pre-processing.

5 Results discussion and comparison
with other models

The results were enhanced by using the ROI segmentation

method. It seems that it has the capacity to address the problem

of the model’s inaccurate positioning of labels. As a consequence,

following the recommended methodology may lead to decreased

losses. Furthermore, it was shown that the training session

continued to slow down. The lesson is enhanced in its effectiveness

as shown in Figure 8. It is advisable to apply the same treatment to

both one-dimensional and two-dimensional data. The objective of

this strategy is to eliminate any errors in labeling in both directions.

Over time, there was a gradual reduction in the size of each

point. Engaging in conversations with individuals helps achieve

both objectives.

If the dataset is insufficient, it may be necessary to round up

more labels. Overall, there were 159 cancerous tumors, and the

standard deviation of the Dice coefficient was 0.2. Although its

model had a low mFPI, the DL-based model was successful in

detecting lung tumors from chest X-rays, the results are shown in

Figure 8. The evaluations of the proposed models are presented in

Table 8.

TensorFlow was used to evaluate the effectiveness of the

U-NET++ approach for the segmentation of lung tumors.

The evaluation was performed with the assistance of an image

segmentation examiner. Images from LUNA-16 were used to

complete the segmentation process. The results of the logistic

distributions with the two parameters are shown in the following

table. Based on the information shown in Table 9, it is presumed

that the intensities of the image pixels adhere to a combination of

logistic-type distributions with two parameters.

The pixel intensities in each of the k sectors of the image

were assumed to follow a two-parameter logistic distribution, with

unique parameters. This assumption was based on the fact that a

picture. The histogram of pixel intensities was analyzed to estimate

the segment count for each CT scan image used in the experiment.

The histograms that indicate the pixel intensities that may be

observed in the CT scan images are shown in Figure 9.

Typically, malignant tumors have higher average

radius values compared to benign tumors, as seen by

histograms and bar graphs. The average radius of malignant
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FIGURE 7

The proposed framework with respect to both training and validation accuracy.

FIGURE 8

Prior to and during the segmentation procedure, the ground-truth forecast was used in each of these instances.

TABLE 8 The evaluation report of the di�erent lung nodule semantic segmentation with comparison to our proposed algorithm.

Evaluation Cai et al. (10) Banu et al. (11) Proposed model

Dice similarity index 87.22% 90.24% 91.76%

Error matrix Accuracy 90% Accuracy 89% Accuracy: 90%

Sensitivity 90% Sensitivity 90% Sensitivity: 89%

Specificity 89% Specificity 86% Specificity: 90%

tumors is 20.1020, whereas benign tumors normally have

a radius of 11.3286. These data indicate the differences

in average radius values between benign and malignant

tumor types.

5.1 Visualization of the model

After examining the data, they found a connection, as shown

in Table 10, between how well the suggested method worked and
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TABLE 9 The refined value of k with two-parameter U-NET architecture.

Constraints First parameters Revised calculations

Image region Image area

1 2 1 2 1 2 1 2 1 2 1 2

αi 0.500 0.500 0.2588 0.7428 0.500 0.500 0.2588 0.7428 0.500 0.500 0.2588 0.7428

µi 60.54 121.98 19.48 136.18 60.54 121.98 19.48 136.18 60.54 121.98 19.48 136.18

σ 2
i 94.2568 128.784 124.281 117.251 94.2568 128.784 124.281 117.251 94.2568 128.784 124.281 117.251

FIGURE 9

In this illustration, the pixel intensities generated from CT scan images of lung nodules that were either benign or malignant were included. (A)

Malignant tumor. (B) Benign tumor. (C) Shows the radius mean for benign and malignant tumors.

TABLE 10 Comparing the proposed model’s quantitative segmentation results to well-established benchmark models.

References Classifier models Dice coe�cient (%) Sensitivity (%) Specificity (%)

Huang and Hu (6) NU-NET 89.26± 12.45 89.63± 23.56 89.21± 14.25

Zhao et al. (7) U-NET 76.24± 17.89 85.45± 12.54 88.24± 15.45

Chiu et al. (8) 2D U-NET 81.89± 14.56 91.25± 12.89 78.26± 15.45

Gao et al. (9) U-NET 86.45± 56.78 78.56± 23.57 87.65± 23.90

Cai et al. (10) U-NET 87.22± 56.45 75.67± 23.74 56.24± 22.56

Banu et al. (11) 3D U-NET 90.24± 24.45 80.26± 23.77 79.23± 22.74

Xia (12) WU-NET 83.12± 25.06 88.96± 26.32 80.24± 23.56

Proposed work U-NET++ 91.76 ± 26.67 89.54 ± 3.65 85.98 ± 25.98

Bold values indicate highest compared with other classifiers.
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other ways of showing the same thing. To determine how well

the U-NET++ model segmented the LUNA16 trial dataset, five

radiotherapists were used for comparison with real experts. Of

the three radiologists, 81.26% were good at segmenting patients.

The U-NET++ model was also tested by comparing it with the

U-NET model and many other benchmark models, such as the

newest ResNet152V2.

The number of nodes, Dice coefficient value index, and

distribution are presented in Figure 10. This allowed the U-

NET++ model to be tested on a test set. Giving each node a

number and placing it in the midst of a test set trial is standard.

FIGURE 10

The frequency of lung CT scans was examined in the

LUNA16 collection.

Duan et al. (23) employed a U-NET architecture with advanced

deep learning techniques, resulting in a dice co-efficient of 0.88.

Similarly, Duan et al. (23) utilized V-NET incorporating 3D

convolutional layers, achieving a dice co-efficient of 0.90. The

method by Petit et al. (25) leveraged transformer networks,

while Ali et al. (26) utilized efficient net for a more parameter

efficient approach.

Table 11 shows a numeric comparison of how well the new

method U-NET++ works with three other deep learning models,

U-Net (7), NU-Net (6), andWU-Net (12), using CT images of lung

nodules from a dataset that was already made public, the suggested

method is better than the average method for segmenting images of

lung nodules.

We used Fisher’s least significant difference (LSD) method in

SPSS software to look at the numeric results and see if the suggested

way in Table 12 worked. By using the LSD test, we can see that the

suggested method does better than standard methods in terms of

IoU, recall, precision, and F1-score (p < 0.001).

After preprocessing the image, shown in the Figure 11A the

grouped picture, Figure 11B what was found when Lung tumors

were identified. Figure 11C results of cutting lung tumors into

whole pieces. Figure 11D the findings of the lung tumor search.

Figure 11E picture showing the effects on a specific area of lung

tumors when they are cut into pieces. Figure 11F a picture of a lung

tumor that was accurately cut into pieces.

Our Model, built on a U-NET++ architecture, demonstrated

a baseline performance with a dice-coefficient of 91.76% and an

IoU of 89.78%. Recent methods, such as the swin Transformer

by Ronneberger et al. (27), achieved higher performance metrics

through the use of advanced architectures and techniques.

TABLE 11 Quantitative evaluation of lung cancer segmentation methods based on key performance metrics, model architectures and unique features.

Method Score 96% C.I for mean

Mean St. deviation St. error Lower bound Upper bound

IoU Proposed methods 0.879 0.105 0.049 0.748 0.925

U-Net (7) 0.805 0.104 0.073 0.677 0.916

NU-NET (6) 0.780 0.117 0.062 0.680 0.824

WU-NET (12) 0.731 0.144 0.088 0.613 0.865

Recall Proposed method 0.933 0.035 0.043 0.814 0.963

U-Net (7) 0.870 0.022 0.038 0.759 0.955

NU-NET (6) 0.850 0.027 0.030 0.755 0.967

WU-NET (12) 0.805 0.154 0.83 0.702 0.954

Precision Proposed method 0.950 0.130 0.040 0.834 0.991

U-Net (7) 0.890 0.106 0.029 0.780 0.992

NU-NET (6) 0.880 0.086 0.024 0.770 0.996

WU-NET (12) 0.831 0.154 0.062 0.704 0.946

F1-Score Proposed method 0.940 0.120 0.040 0.826 0.993

U-Net (7) 0.886 0.086 0.023 0.754 0.975

NU-NET (6) 0.851 0.117 0.035 0.789 0.923

WU-NET (12) 0.813 0.128 0.057 0.721 0.948

Bold values indicates is highest compared with other classifiers.
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TABLE 12 Statistical analysis.

Multiple comparisons 96% C.I for mean

Dependent Model(a) Methods(b) Mean di�erence Sig Lower bound Upper bound

IoU Proposed model U-Net (7) 0.072# <=0.001 0.061 0.094

NU-NET (6) 0.096# <=0.001 0.084 0.125

WU-NET (12) 0.145# <=0.001 0.125 0.165

Recall Proposed model U-Net (7) 0.055# <=0.001 0.038 0.074

NU-NET (6) 0.061# <=0.001 0.050 0.075

WU-NET (12) 0.115# <=0.001 0.103 0.135

Precision Proposed model U-Net (7) 0.056# <=0.001 0.045 0.078

NU-NET (6) 0.065# <=0.001 0.055 0.085

WU-NET (12) 0.122# <=0.001 0.104 0.145

F1-Score Proposed model U-Net (7) 0.048# <=0.001 0.038 0.065

NU-NET (6) 0.072# <=0.001 0.065 0.089

WU-NET (12) 0.121# <=0.001 0.112 0.137

#Indicates proposed Method is better than the existing classifiers.

FIGURE 11

Utilizing the provided approach, we performed visual segmentation of heterogeneous lung nodules. (A) Clustered image. (B) Segmented image. (C)

Extracted image. (D) Extracted image with nodules localizations. (E) Nodule capture. (F) Nodule region highlighted.

The images in Figure 12 show a DSC value of at least 0.8 can be

trusted formost tumors. The dice index results were compared with

the U-NET++ architecture’s specific performance to ensure that

the model’s results were correct. The Dice similarity score (DSC)

for the U-NET++ model was 90.84%, which is an unusually high

level of success. Because it has fewer parameters than the original U-

NET design, the U-NET++model can effectively separate features

and divide them into groups.

The ROC curves in Figure 11 demonstrate that radiologists

have the capacity to obtain much greater levels of specificity

(i.e., decreased false positive rates) with a low impact on

sensitivity (31). By narrowing down the requirement for a positive

screen for individuals who are recommended to undergo repeat

computed tomography (CT) scans, it is possible to achieve

a specificity of 92.4%, while slightly decreasing the sensitivity

to 86.9%.

6 Conclusions and future work

Lung segmentation is necessary for the effective diagnosis

and identification of lung disorders. There has been a frenzy of
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FIGURE 12

AUC curve for the proposed classifier with respective to other classifiers.

lung segmentation research over the past few years, all aimed at

improving the accuracy. To identify and categorize lung illnesses,

automated analysis of a CT scan must first “segment” the lung.

The precision at which lung segmentation can be performed has

been the subject of several studies. Deep learning algorithms

and basic thresholding approaches have been applied to lung

segmentation. U-NET++ is particularly effective in separating cells

and neurons from images acquired using a PET Scan. In this

study, U-NET++ was used for lung segmentation. The accuracy

of the lung segmentation using U-NET++ was 91%. The original

purpose of U-NET++ was to separate tiny images. The lungs

were effectively divided using CT images. By shrinking the images,

they were reduced from 128 × 128 to 32 × 32 pixels. There were

25 convolutional layers in total in this network. It is much more

accurate to train U-NET++ using an original image size of 128 ×

128. The convolutional layers may be increased in size to enhance

the accuracy of the filter.
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