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Background: Calcium pyrophosphate deposition (CPPD) disease is a leading 
cause of arthritis, which can mimic or strongly interfere with other rheumatic 
diseases such as gout, osteoarthritis (OA) or rheumatoid arthritis (RA). In the 
recently established ACR/EULAR CPPD classification criteria, calcification and 
OA features of the wrist and hand joints are substantial features.

Objectives: To develop and test a deep-learning algorithm for automatically and 
reliably detecting CPPD features in hand radiographs, focusing on calcification 
of the triangular fibrocartilage complex (TFCC) and metacarpophalangeal 
(MCP)-2 and -3 joints, in separate or combined models.

Methods: Two radiologists independently labeled a dataset of 926 hand 
radiographs, yielding 319 CPPD positive and 607 CPPD negative cases across 
the three sites of interest after adjudicating discrepant cases. CPPD presence 
was then predicted using a convolutional neural network. We  tested seven 
CPPD models, each with a different combination of sites out of TFCC, MCP-2 
and MCP-3. The model performance was assessed using the area under the 
receiver operating characteristic (AUROC) and area under the precision-recall 
(AUPR) curves, with heatmaps (Grad-CAM) aiding in case discrimination.

Results: All models trialed gave good class separation, with the combined TFCC, 
MCP-2 and MCP-3 model showing the most robust performance with a mean 
AUROC of 0.86, mean AUPR of 0.77, sensitivity of 0.77, specificity of 0.80, and 
precision of 0.67. The TFCC-alone model had a slightly lower mean AUROC of 
0.85 with a mean AUPR of 0.73. The MCP-2-alone and MCP-3-alone models 
exhibited mean AUROCs of 0.78–0.87, but lower mean AUPRs of 0.29–0.47. 
Heatmap analysis revealed activation in the regions of interest for positive cases 
(true and false positives), but unexpected highlights were encountered possibly 
due to correlated features in different hand regions.

Conclusion: A combined deep-learning model detecting CPPD at the TFCC 
and MCP-2/3 joints in hand radiographs provides the highest diagnostic 
performance. The algorithm could be used to screen larger OA or RA databases 
or electronic medical records for CPPD cases. Future work includes dataset 
expansion and validation with external datasets.
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Introduction

Calcium pyrophosphate deposition (CPPD) disease 
encompasses a range of conditions, including calcium 
pyrophosphate (CPP) crystal arthritis (acute and chronic forms) 
and osteoarthritis (OA) (1). This disease affects hyaline and 
fibrocartilage such as the meniscus, visible as “chondrocalcinosis” 
(CC) on radiography, computed tomography, or 
ultrasound imaging.

The release of CPP crystals into the synovial fluid may result in 
microcrystalline arthritis, which can resemble or coincide with other 
arthritic conditions such as gout, RA, or rapidly progressive OA. The 
European Alliance of Associations for Rheumatology (EULAR) and 
the American College of Rheumatology (ACR) have recently 
published classification criteria for CPPD disease (2). A key feature of 
CPPD in hand radiographs is the presence of calcifications within the 
triangular fibrocartilage complex (TFCC) (or lunotriquetral ligament) 
or finger joints. Additional diagnostic criteria include joint space 
narrowing in different hand joints, especially the metacarpophalangeal 
(MCP) joints of the index and middle fingers (MCP-2 and MCP-3), 
and scaphotrapeziotrapezoidal (STT) joint.

The incorporation of automated image recognition technology 
marks a significant milestone, extending its application into the field 
of rheumatology (3). The majority of the so far FDA-approved AI 
algorithms are in the field of image recognition (4). The success of AI 
models in radiology is attributed to the use of radiographs as static, 
labeled datasets for input, and the execution of clinically meaningful 
classification tasks as output. Convolutional neural networks (CNNs) 
have proven to be a robust technology for image recognition, capable 
of classifying radiological images either standalone or in conjunction 
with clinical data to forecast disease progression (5). In CPPD, 
imaging remains a diagnostic hallmark, especially in the absence of 
laboratory evidence of CPP crystals in the synovial fluid. Ultrasound 
has developed into an efficient bedside tool, but radiography is still 
important, e.g., to determine the degree of OA or to rule out other 
pathologies (6).

The objective of this study was to develop and test a predictive 
deep-learning model for CPPD using hand radiographs and a 
labeled dataset that indicates the presence of CPPD at specific sites 
of interest (TFCC, MCP-2, MCP-3). As a rationale, the novel ACR/
EULAR CPPD classification criteria permit the classification of 
CPPD disease based on clinical and radiological signs, without the 
need to identify CPP crystals or synovitis (2, 7, 8). Hence, algorithms 
designed to evaluate radiological features of CPPD could serve as 
valuable research tools, especially in larger datasets such as clinical 
registries. They would also facilitate the detection and scoring of 
CPPD features in datasets with concomitant OA or RA and could 

thus explore the role of CPPD as a largely ignored factor in these 
disorders. In this work, we primarily explored the feasibility and 
interpretability of various deep-learning models for detecting CPPD 
features in hand radiographs.

Methods

Dataset

Ethical approval from the local committee was obtained for this 
study (CER-VD protocol 2020–00033). The dataset consisted of 
DICOM files with 12-bit pixel data, containing radiographs with a 
single posteroanterior (PA) view of both hands with a few containing 
a single PA view of one hand. In total, we labeled a dataset of 926 hand 
radiographs, yielding 319 CPPD positive and 607 CPPD negative 
radiographs. The mean age of the patients was 64.5 years, 63% 
were females.

Labeling
Hand radiographs were assessed by two independent board-

certified radiologists, with adjudication by a third senior musculoskeletal 
radiologist (with 16 years of experience) in case of disagreement, and 
binary labels (CPPD present or not) provided for the three sites of 
interest (TFCC, MCP-2, MCP-3). CMC1 and STT joints were omitted. 
The number of positive and negative cases per site and overall (a hand 
was considered positive overall if at least one site is classified as positive) 
are summarized in Table 1. Age and sex distribution per CPPD site are 
reported in Supplementary material S1. Interobserver agreement per 
CPPD site is reported in Supplementary material S2.

Preprocessing
The pre-processing script was written in Python 3.11, 

predominantly making use of the scikit-image (v0.21.0) package and 
performed the following steps:

Hand separation
Images containing the left and right hands were split into two 

separate images to be processed and analyzed separately (Figure 1A). 
This was done by identifying the minimum of the mean pixel intensity 
in a vertical slice of the middle third of the pixel data. The right hand 
underwent vertical mirroring such that all images had the same 
hand orientation.

Segmentation
The border of the digital radiograph was identified and a binary 

erosion performed to eliminate image artifacts on the edges. A mask of 

TABLE 1 Information for the class distribution and mean AUROC and AUPR results for the single site and combined models using five-fold cross-
validation.

Model Positive Negative AUROC AUPR

TFCC, MCP2, MCP3 319 607 0.86+/−0.02 0.77+/−0.04

TFCC 282 644 0.85+/−0.02 0.73+/−0.02

MCP2 73 853 0.78+/−0.05 0.29+/−0.09

MCP3 91 835 0.77+/−0.04 0.47+/−0.08

The standard deviation of the AUROC and AUPR in each case is also provided.
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the hand was created by first smoothing the image using a Gaussian 
function with a sigma of 3, and then using the otsu threshold to binarize 
the image (Figure 1B). Following this, we cropped the image to the hand 
region, retaining bones and the majority of the soft tissue. Occasionally, 
other regions of noise or labels were present, thus we removed all smaller 
remaining objects after thresholding to retain only the hand region. The 
MCP joint for digits 2 and 3, and the TFCC region are the areas used for 
the human classification of this dataset as CPPD positive or negative. 
Therefore, after filling in any holes in the hand region, we trimmed our 
images on each side (30% from the top, 5% from the base, 10% from the 
left, 20% from the right) to reduce our region of interest. Finally, 
we enhanced the contrast by using contrast-limited adaptive histogram 
equalization and adjusting the gamma contrast using a gamma of 1.5 and 
a gain of 1. Images were rescaled by converting the pixel values to a float 
between 0 and 255 and resized to a square with sides of 224 pixels. To 
develop site-specific models, we create two more zoomed-in regions: (i) 
for TFCC predictions; and (ii) for MCP-2 and MCP-3 predictions.

Model development and evaluation
The models were built, trained and evaluated using Keras (v2.13.1). 

We usedEfficientNetB4 as a base model (9) and took advantage of 
transfer learning: initially we used weights obtained from the ImageNet 
database for our base EfficientNetB4 model, and only trained on the 
additional layers specific to our model: (i) global average pooling; (ii) 
dense layer with an output of 16; and (iii) dense layer with an output of 
1. Following this, we fine-tuned the model by unfreezing all layers and 
retraining. As our dataset was imbalanced, we used class weightings 
inversely proportional to their respective frequencies to reduce bias 
toward the negative class. For model training, we  used the Adam 
optimizer with a learning rate of 1e-3 over 10 epochs for the transfer 
learning step, and a learning rate of 1e-4 over 8 epochs for fine-tuning, 
evaluating the loss using the binary cross-entropy loss function. From 
the three sites of interest (TFCC, MCP-2, MCP-3) there are seven 
possible models. For model comparison, we compared these models 
on identical input images (using the region showing all three sites of 
interest, as in the image on the far right of Figure 1C) using 80% of the 
data for training and 20% for testing, stratified on the MCP-3 dataset. 
Additionally, we investigated the combined, TFCC, MCP-2 and MCP-3 
models alone using stratified five-fold cross-validation to obtain the 
mean AUROC and AUPR for each of these alternatives. In this case, 
the input images for the combined model are the same as before (far 
right of Figure 1C) while the input images for the single-site models are 
further cropped, as seen in Figure 1D. Finally, we examined a specific 
threshold on a fold of the combined model providing a confusion 
matrix, along with sensitivity, specificity and precision metrics.

Interpretability
To understand the decision-making taking place in our model, 

we applied the Grad-CAM technique to our last convolutional layer 
(“top_conv” in our base model, EfficientNetB4).

Results

Algorithm performance

Figure 2 shows the ROC curves for the seven potential CPPD 
models. All models showed predictive ability, with clear class 

separation. The combined TFCC, MCP-2 and MCP-3 model showed 
the highest performance with an AUROC of 0.85. The TFCC model 
performed the best out of any single-site model (AUROC of 0.84, 
compared to 0.81 and 0.83 for the MCP-2 and MCP-3 models, 
respectively). Combining information from the different sites 
increased the AUROC when TFCC was included, however decreased 
the AUROC if only the MCP sites were included: a model based on 
MCP-2 and MCP-3 gave the lowest AUROC of 0.76.

The results of the five-fold cross-validation for the full combined and 
single-site models can be seen in Table 1. The ROC and PR curves for 
these models are seen in Figure 3. Again, we found good class separation 
for all models with the highest performance seen in the combined and 
TFCC models. The MCP-2 and MCP-3 models in this case, where the 
input images have been trimmed to a smaller region of interest, showed 
lower performance than in Figure 2 where the input images included the 
TFCC region. The confusion matrix using a threshold of 0.7 on a single 

FIGURE 1

Preprocessing steps before training the model. (A) Hand splitting. 
(B) Thresholding to generate a mask of the hand region (original 
image on left, mask on the right). Other features were sometimes 
retained, as in the case of the circled ‘G’ (center), thus smaller objects 
needed to be removed (right). (C) Cropping reduced the region of 
interest to part of the hand containing the TFCC, MCP-2, and MCP-
3, and contrast enhancement was performed on this reduced region. 
(D) Further trimming to two smaller regions: on the left, the TFCC 
region; on the right, the MCP-2 and MCP-3 joints.
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FIGURE 2

ROC curves for each of the seven different potential CPPD models, using an identical training and testing dataset.

fold of the combined model can be seen in Figure 4. This corresponds to 
a sensitivity (recall) of 0.77, a specificity of 0.80, and a precision of 0.67.

Interpretability
To understand the decision-making taking place in our model, 

we applied the Grad-CAM (10) technique to the last convolutional layer 
in our base model. Example heatmaps can be found in Figure 5 for the 
model classifying positive cases as those where any site (out of TFCC, 
MCP-2, MCP-3) is positive. In general, cases classified as positive (true 
positive and false positives) have a large amount of activation focused on 
the hand region. In some true positive images the activated area is mostly 
focused on the regions of the hand labeled as positive. However, in some 
true positive images the highlighted regions are not those we anticipated, 
due to correlated features in other areas of the hand. These may 
be correlated due to features correlated with the presence of calcifications, 
or they may be features due to other correlated conditions. Similarly, 
false positives show activation in regions of interest, but also in other 
regions of the hand. Negative cases (both positive and negative), show 
very little activation. Where present, it tends to be in the background or 
in regions of the hand not being considered for the labels in our model. 
The model seems to focus less on MCP joints as compared to the wrist.

Discussion

In this study, we present the initial steps of a deep-learning 
model that recognizes CPPD in hand radiographs at different 
sites. Leveraging the latest ACR/EULAR CPPD classification 
criteria, our findings underscore the advantage of employing a 
composite model that predicts a combination of radiographic 
CPPD features. The model demonstrates robust class 

differentiation, both in the combined classification and the TFCC-
specific analysis. Using MCP lesions alone is less reliable for 
detecting CPPD, possibly due to a limited number of positive 
instances in the dataset. Despite MCP joint calcification seems to 
be  a less specific indicator of CPPD compared to TFCC 
calcification, it can be helpful to differentiate CPPD from other 
conditions such as seronegative RA (11).

To the best of our knowledge, this is the inaugural CNN 
algorithm aimed at predicting CPPD via radiographic analysis. 
However, it is imperative to acknowledge that this algorithm alone is 
insufficient for diagnosing CPPD disease. Clinical and demographic 
parameters must also be  considered to meet the ACR/EULAR 
criteria’s 54-point threshold (2). CPPD features in hand radiographs 
contribute to 16 points if a single joint is affected, 23 points if 2–3 
joints are affected and 25 points if ≥4 joints are affected. As a next 
step, we are planning to add a model for the detection of OA in 
MCP-2 and -3, carpo-metacarpal-1 and scaphotrapeziotrapezoid 
joints. This would increase the ACR/EULAR criteria by further 7 
points. Together with patient-reported information on age, joint 
distribution and comorbidity, this would be sufficient to make the 
classification for CPPD disease provided that entry criteria are met.

Ultrasound and dual-energy computed tomography play an 
important role in the diagnostic algorithm of CPPD (12, 13). 
Notwithstanding, radiography remains a crucial screening tool for 
CPPD due to its widespread availability and cost-effectiveness. Its 
ability to visualize the entire joint aids in assessing differential 
diagnoses or concurrent conditions. Furthermore, future machine 
learning pipelines may combine the identification of radiographic 
CPPD with other rheumatic conditions such as distal hand OA, RA, 
or psoriatic arthritis lesions (14, 15). Combined with further 
patient-reported outcomes and algorithms for predicting 
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non-radiographic features, such as hand joint swelling from 
photographs (16), the scope of algorithms in remote patient 
monitoring could be expanded.

Machine learning models, like the one described here, extend 
beyond automation. Notably, heatmaps provide educational value by 
highlighting areas of interest, especially in positive classifications. 

FIGURE 3

ROC curves for the model predicting whether any site (TFCC, MCP-2, MCP-3), TFCC alone, or MCP2 or MCP3 alone are positive for CPPD after further 
trimming of the image (test set, according to Figure 1D). On the right, precision to recall curves are shown. Different colors correspond to five-fold 
cross-validation.
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FIGURE 4

Confusion matrix corresponding to a threshold of 0.7 on one of the 
test folds of the combined model, giving a sensitivity (recall) of 0.77, 
specificity of 0.80, precision of 0.67, and F1 score of 0.72. Increasing 
the threshold increases the specificity and precision but decreases 
the sensitivity (recall), thus the threshold needs to be selected based 
on the clinical requirements.

Imaging remains the primary diagnostic tool in the absence of CPP 
crystals in the synovial fluid, requiring imaging of at least one 
symptomatic joint in patients not meeting sufficient criteria. This 
algorithm gains increased relevance in individuals with CPPD in four 
or more peripheral joints rather than monoarthritis. However, the 
diagnostic accuracy of radiography for CPPD and thus the algorithm’s 
veracity remains under-researched.

Limitations of this study include the dataset’s size, lack of external 
validation, and absence of data on different ethnicities. Hand 
radiographs with concomitant OA, RA, psoriatic arthritis or gout 
have not been excluded. The aim was to demonstrate the workflow of 
this algorithm and its interpretability for a basic classification task. 
Future tasks should aim to quantify CPP load, despite the current 
lack of evidence linking higher CPP loads to more severe CPPD 
disease. This could be explored in larger datasets using regression 
analysis similar to knee OA studies. The external validation should 
also be carried out in images from different X-ray devices, e.g., in 
“older” images with lower quality (higher noise, lower contrast-to-
noise ratio).

Several avenues exist for improving or adapting our model. For 
instance, adjusting the threshold for our final model(s) could optimize 
its application, potentially incorporating different Fβ scores based on 
the relative clinical importance of precision and recall. Further accuracy 
enhancements could possibly be achieved by refining the input images, 
modifying preprocessing steps, or trialing different base models.

Overall, this work illustrates the feasibility and interpretability of 
using a deep-learning model to predict and detect CPPD in hand 
radiographs. Future improvements and validation efforts will involve 
larger and external datasets, accompanied by detailed clinical data 
analysis. Assessing user experience among radiologists and 
rheumatologists and addressing regulatory considerations and clinical 
workflow integration should be prioritized moving forward.
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