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Title: Advanced Diagnosis and Forecasting of Pregnancy-Induced Hypertension 
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Background: Pregnancy-induced hypertension represents a critical issue within 
the fields of obstetrics and gynecology, where precise diagnosis and forecasting 
are essential for effective management. The potential for misdiagnosis, often 
stemming from the inexperience of healthcare professionals, underscores the 
necessity for an advanced diagnostic system.

Methods: This research introduces an innovative sampling and feature selection 
technique grounded in F-scores optimization, alongside the development of a 
comprehensive prediction model that integrates genetic algorithms with various 
heterogeneous learners. The objective of this model is to maximize the utility of 
medical data and enhance treatment quality.

Results: The refined intelligent feature selection approach identified several 
significant indicators of pregnancy-related hypertension, such as phosphor 
dehydrogenase deficiency, body mass index, gestational urinary proteins, 
vascular endothelial growth factor receptor 1, placental growth factor, 
thalassemia, and a familial history of diabetes mellitus or hypertension. The 
model achieved superior performance metrics, including the highest recall 
(0.768), F-score (0.728), and area under the curve (0.832) when compared to 
other prevalent models. Furthermore, the area under the curve for both early and 
late clinical assessments reached peak values of 0.996 and 0.792, respectively, 
when evaluated using the ratio of vascular endothelial growth factor receptor 1 
to placental growth factor.

Conclusion: The intelligent diagnosis and prediction methodology for 
gestational hypertension proposed in this study exhibited remarkable efficacy 
and holds significant promise for implementation in both educational and 
clinical settings within obstetrics and gynecology, thereby advancing intelligent 
medical diagnostics in China.
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1 Introduction

The medical industry has seen a significant change due to the swift 
advancement of artificial intelligence. Obstetrics and gynecology, a crucial 
area of medicine, has played a major role in bringing about this change (1). 
Among them, intelligent medical diagnostics (IMD), prediction, and 
decision-making performance improvement are not only conducive to the 
effectiveness and efficiency of the treatment of diseases but also helps to 
reduce the pressure of hospitals and the psychological burden of patients 
(2). However, the current method of using intelligent medical devices for 
examination and relevant professionals to develop appropriate treatment 
programs through their own experience and knowledge is influenced by 
human factors, and it relies on the knowledge level of the decision maker, 
which has greater limitations (3, 4). Furthermore, one of the main causes 
of maternal and perinatal mortality is pregnancy-induced hypertension 
(PIH), which is the coexistence of increased blood pressure during 
pregnancy. PIH can have a substantial negative impact on the health of 
mothers and infants (5). According to the data, the prevalence of PIH 
disease in China is increasing, but the cause and mechanism of the disease 
are still unclear, and it may be related to mother age, physical condition, 
family history, and other factors (6). Elevated blood pressure can cause 
insufficient cerebral blood supply, heart failure, and other conditions, 
which are not conducive to the development of brain health. It also leads 
to spasm of small arteries in the brain, which induces the manifestation of 
ischemia and hypoxia, maternal headache and dizziness, and other 
symptoms (7, 8). In newborns, PIH leads to insufficient oxygen supply to 
the placenta, making it difficult for the newborn to obtain adequate 
nutrients in the maternal uterus, resulting in growth restriction and delays. 
In severe cases, developmental delay is the consequence. The paper initially 
suggests using the hybrid sampling technique known as AMOM-DUMS, 
which combines the artificial minority oversampling method (AMOM) 
with deleted undersampled mixed sampling (DUMS) to address the 
aforementioned issues. The integrated prediction of integrating multiple 
heterogeneous learners with GA (IPIMHL-GA) is also constructed. The 
study aims to solve the problem of unbalanced medical data classification, 
design intelligent PIH diagnosis and prediction methods applicable to 
obstetrics and gynecology teaching (OGT) and clinics, and advance the 
development of intelligent medical diagnosis. The research has three 
primary innovations. The first point is to propose intelligent AMOM-
DUMS sampling algorithm to reduce the noisy data generated during the 
sampling process. The second point is to design the intelligent medical data 
feature selection (FS) method with F-score optimization to solve the 
problem of feature redundancy. Building the IPIMHL-GA model is the 
third step in enhancing the model’s prediction capabilities.

This approach uses the advantages of both techniques to enhance the 
model’s performance. Specifically, the study employs F-score optimization 
for feature selection, which effectively identifies the most pertinent 
features for predicting PIH. Furthermore, it utilizes the IPIMHL-GA 
classification algorithm, which amalgamates the capabilities of various 
heterogeneous learners to boost the accuracy of PIH predictions. The 
research also incorporates a hybrid model that synergizes different 
methodologies to further enhance prediction accuracy that has been 
supported by a comprehensive dataset that facilitates the assessment of 
the model across a wide range of scenarios. This work not only aims to 
refine the accuracy of PIH predictions but also introduces a novel 
evaluation metric, such as the F-score, to assess model performance. The 
innovative aspects of this research hold the promise of improving PIH 
prediction accuracy, thereby potentially lowering healthcare costs, 
enhancing patient care, and contributing to advancements in medical 

research. By offering a more precise predictive model for PIH, the study 
could lead to improved patient outcomes and a reduction in morbidity 
and mortality. It also paved the way for new insights and discoveries 
within the field.

The study is organized into four primary sections. The review of 
relevant research findings is in the first section. The intelligent medical 
data sample and FS technique design, which is based on F-score 
optimization and the IPIMHL-GA model, is covered in the second 
section. The performance and clinical application impacts of the 
study’s suggested approaches are validated in the third section. 
Eventually, conclusion is in the last section.

2 Related work

Under the background of digitalization wave that is sweeping the 
world, the deep integration of artificial intelligence technology and 
medical field, and with the advantages of precision, high efficiency and 
wide range of applications gradually reshape the form and efficiency of 
medical services and medical teaching to realize precision medicine. 
Numerous scholars have conducted in-depth analysis and discussion on 
this issue. Deng et  al. (9) proposed an intelligent jaundice medical 
diagnosis system based on dynamic uncertainty causality diagrams 
(DICD) to address the imbalance of medical resources and other 
deficiencies in China’s healthcare system. A DICD knowledge base was 
constructed for jaundice diagnosis. In that study, 203 jaundice-related 
medical records were randomly selected from 3,985 medical records in 
the hospital for testing, and the accuracy of the system’s final diagnosis 
reached 99.01%. Real-time reverse transcription polymerase chain 
reaction testing is currently a popular method for detecting the New 
Crown Pneumonia Virus, but it has some limitations, including a lengthy 
turnaround time and a significant risk of false positive and false negative 
results. Therefore, Saurabh et al. (10) designed an integrated intelligent 
and automated diagnostic system. The outcomes demonstrated that the 
system may successfully increase the diagnostic procedure’s speed and 
efficiency. Tian et  al. (11) aimed to develop and validate a clinical 
characterization and intelligent hypoxic-ischemic brain injury recognition 
model based on conventional structural magnetic resonance imaging. The 
study collected full-term hypoxic-ischemic brain injury neonates and 
healthy neonatal controls from December 2015–2020 from two different 
medical centers. The research findings demonstrated that the intelligent 
diagnosis (ID) model outperformed the basic radiomics model in terms 
of discriminatory ability, with area under the curve (AUC) values in the 
training, internal validation, and independent validation cohorts of 0.868, 
0.813, and 0.798, respectively. Early identification of hepatitis C virus 
disease has long been a focus of medical research and a significant public 
health concern. Accordingly, Terlapu et al. (12) built five machine learning 
models using probabilistic neural network-based techniques. The 
experimental results revealed that the random forest (RF) maximum 
likelihood model outperformed other traditional maximum likelihood 
algorithms with an accuracy of 97.5%, and the proposed model based on 
incremental hidden layer neurons had an accuracy of 99.6%. All the 
models constructed in the study outperformed the base model, while 
early hepatitis C virus diagnosis was relevant to the work and medical field.

In the medical field, the data classification imbalance problem is a 
pervasive phenomenon. However, if the data category imbalance is not 
solved, the direct construction of the machine learning model may yield 
overly optimistic or even useless classification results. Consequently, 
numerous scholars have devoted considerable attention to the data 
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classification imbalance problem and the associated processing 
techniques. Barot and Jethva (13) addressed the problem that data 
imbalance makes it difficult for classification algorithms to achieve the 
desired performance goals; moreover, the minority-sensitive Naive Bayes 
(NB) algorithm was designed to eliminate the requirement of dataset 
sampling, and the study compared it with cost-sensitive techniques. The 
results indicated that the algorithm proposed by the study showed more 
excellent results for unbalanced data classification with improved 
prediction performance for few categories of data. In semiconductor 
manufacturing that is highly precise and comprises numerous unit 
processes, even minor defects can have significant consequences, directly 
impacting the result. The monitoring of equipment condition and the 
study of possible problem causes are made possible by fault detection and 
classification, and these activities are critical to resolve the issue of 
imbalanced data in mass production. Therefore, Kim et al. (14) proposed 
a stepwise fault diagnosis method with fault detection and fault 
classification. The findings of the exercise demonstrated that the research 
raised hair functions effectively in real-world settings and could also give 
engineers part-level notifications. Zhang et al. (15) designed an improved 
EEG classification algorithm for the problem of unbalanced medical data 
classification. Among the triple classification results, the research method 
achieved an average recall of 51.56%, providing an alternative method for 
recognizing targets based on a fast serial visual presentation paradigm. 
Although it has not gotten much attention in DensePose, data imbalance 
has grown to be a significant challenge to current techniques. In order to 
solve this problem, Sun et  al. discovered the DensePose mechanism 
underlying intra- and inter-surface imbalance and created a technique 
that combined block balance localization with adaptive equalization loss. 
The study technique outperformed the base method’s baseline by 1.4 AP, 
according to experimental results on the DensePose-COCO dataset (16).

The current findings highlighted the need for a more balanced 
approach to the prioritizing of intelligent medical diagnosis and data 
categorization, as demonstrated by the preceding research. However, the 
existing research has not fully addressed the nuances of the distribution 
of medical data features in terms of their relative importance. Concerning 
the above problems, the research gets optimized by three perspectives, 
including sampling, FS and, model, and an intelligent medical data 
sampling and FS method have been proposed based on F-score 
optimization as well as the IPIMHL-GA model.

3 Design of diagnostic and predictive 
methods for PIH

The application of imbalanced data in IMD and prediction is very 
extensive, but the current processing techniques of data categorization 
imbalance usually generate noise, which results in poor classification 
and prediction of intelligent methods. Therefore, the study proposes 
an intelligent medical data sampling and FS method based on F-score 
optimization and designs an intelligent PIH diagnosis and prediction 
method by incorporating GA for OGT, i.e., IPIMHL-GA model.

3.1 Feature selection method for smart 
medical data based on F-score 
optimization

With the increasing abundance of data in the medical field, the 
problem of data imbalance becomes more serious, which brings great 

challenges to IMD and decision making. It also increases the 
complexity of the application of intelligent methods in OGT (17). 
Therefore, the study addresses the problem of medical data imbalance, 
and the study takes PIH imbalanced data as the research object. 
Firstly, the imbalanced dataset is quantified by unbalanced ratio (UR), 
and then the FS method is used to help the related personnel to filter 
the features with the highest relevance in order to get the models with 
strong predictive ability and judgment markers to advance the process 
of precision medicine. Furthermore, the study optimizes the approach 
of data classification imbalance from the standpoint of sample size and 
suggests an algorithm for sampling processing called AMOM-
DUMS. The used PIH dataset contains (A) hyperbilirubinemia data, 
(B) preeclampsia data, and (C) preterm infant data. These the data are 
divided into two categories, including majority and minority, which 
are recorded as 1 and 0, respectively. In dataset A, the normal range of 
concentrations is between 1.7–17.1 μmol/L, which is recorded as 1, 
and the other values of concentrations are recorded as 0 (18). In 
dataset B, systolic/diastolic blood pressure greater than or equal to 
160 mmHg/110 mmHg, more than 3 + random urinary proteins, or 
more than 5 g of 24-h urinary protein content are recorded as 1, and 
the rest of the data are recorded as 0. In dataset C, neonates with 
gestational age less than 37 weeks are recorded as 0, and the rest of the 
data are recorded as 1 (19–21). This brings up the PIH dataset’s details, 
which are displayed in Table 1.

Since the medical data are generally out of balance, the study uses 
the AMOM-DUMS algorithm for processing. The specific procedure 
in the AMOM stage is as follows. Firstly, let the sample marked as “0” 
be  iu , and search for the nearest m samples. Secondly, randomly select 
sample iju  from the searched samples, and take a random number s 
between 0 and 1. Then, calculate the difference sample of feature j . 
Finally, a new synthetic sample newu  is obtained, which is added to the 
dataset and noted as a sample belonging to 0 (22, 23). The flow of 
processing using the AMOM method is shown in Figure 1.

In Figure 1a, the five closest similar samples belonging to “0” are 
selected, and the corresponding Euclidean distances are multiplied by 
s to obtain newu , and the above steps are repeated. Figure 1b shows the 
final result; the number of samples belonging to “0” is obviously 
increased, but it also generates noisy data, which cannot be processed 
by the AMOM method. The exact processing flow is depicted in 
Figure  2. The study uses the DUMS approach to filter the noisy 
samples in order to improve the classifier’s classification performance 
by removing surrounding examples of various classes.

In Figure  2, if there is a difference between categories and 
neighboring samples with one step distance, then there is a DUMS 
between the samples, and the samples with closer distance need to 
be  removed. The above operation must be  repeated until all the 
samples with DUMS, where closer distance exists, are removed (24, 
25). After the above data sampling is completed, it can be fed into 
support vector machine (SVM) to balance the classification error with 
the complexity of the prediction model, the expression is shown in 
Equation 1 (26).

TABLE 1 Characteristics of the pregnancy-induced hypertension dataset.

Data set A B C

Number of samples for “0” 392 86 122

Number of samples for “1” 1,695 2,008 1,958

UR 4.324 23.349 16.049
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where, ω denotes the normal vector of the hyperplane, and b, iv , α  
and iβ  correspond to the bias term, output label, penalty coefficients, and 
slack variables, respectively. After the above sampling process is 
completed, FS can be performed. First, data are collected from pregnant 
women who gave birth in hospitals and are singletons. Also, patients with 
multiple pregnancies, untreated endocrine disorders, diagnosed PIH or 
diabetes, and severe liver and kidney disease, and cardiovascular disease 
are excluded. This resulted in a PIH-1 dataset with a UR of 50.86, a sample 
size of 42 and 2,136 for 0 and 1, respectively, and a feature size of 25. The 

features with large missing values in the dataset are then deleted along 
with postpartum fasting insulin, gestational diabetes mellitus treatment, 
cesarean section, time to preterm premature rupture of membranes, 
postpartum glycosylated hemoglobin, and umbilical vein blood 
pH. Among other things, the study newly constructed several 
characteristics, like weight during pregnancy, calculated by the difference 
between the weight at delivery and the weight before pregnancy. The date 
of the last menstrual period and the date of delivery are added with 1–4 
eigenvalues, corresponding to the seasons of spring, summer, fall and 
winter. Body mass index (BMI) has been calculated by the ratio of weight 
to height squared (27, 28). Because of the noise, heterogeneity, and 
complexity of the collected data, the study first invited obstetrician and 
gynecologist to screen the variables, namely laboratory data, basic 
information features and clinical variables. Then the features with large 
missing values are removed and normalized to improve the training 
efficiency. The calculation is shown in Equation 2.
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where, ( )f i  is the feature corresponding to ( )u i , ( )minf i , and 
( )maxf i  are the minimum and maximum values of ( )f i , respectively. 

Following the aforementioned processing, the F-score of each feature 
in the initial feature set is measured using the conventional F-score 
algorithm to determine the effective feature subset. Its application in 
the binary classification problem is more effective, and the specific 
process is as follows. Firstly, assuming that the training sample is ( )f i
, the F-score ( )F i  of the ith feature is calculated, and the expression is 
shown in Equation 3.
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where, n+  and n− correspond to the data samples of positive and 
negative categories. iU , iU + and iU − are the datasets for the ith feature, 
respectively. n+  and n− correspond to the mean values, and ,a iU +  and 

,a iU −  correspond to the ith feature corresponding to the ath n+  and n− 
referring to the eigenvalues, respectively. Nonetheless, the study 
enhances recognition, when the ratio of positive to negative class 
samples is unbalanced, as the typical F-score algorithm handles the 
few sample attributes. This is done in a way that the PIH samples with 
the value of 0 are n−, while the samples belonging to 1 are designated 
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Sample with 
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Noise

Sample with 
category 1

Sample with 
category 0

AM
OM

External 
noise

(a) Before synthesis
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FIGURE 1

Schematic diagram of AMOM method processing flow: (a) Schematic 
diagram of binary classification before processing; (b) Schematic 
diagram of binary classification after AMOM method processing.

DUMS sample pairs

FIGURE 2

Schematic representation of the delete undersampled mixed sampling.
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as n+ . This results in the improved F-score value ( )F i′  expression, as 
shown in Equation 4.
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where, the larger the feature of ( )F i′ , the stronger the ability is to 
recognize a smaller number of sample groups. To explore the 
classification effect of the improved F-score algorithm in the 
prediction model, the study designed the corresponding classification 
model, which is shown in Figure 3.

In Figure  3, it is necessary to sample the unbalanced data of 
medicine, then the ( )F i′  of the features should be calculated and 
sorted, then the best combination of the acquired features must 
be input into the classifier. The data is also trained by AdaBoost model 
and bagging model, finally the results without FS are compared with 
the predicted results (29, 30). Among the aforementioned models, the 
AdaBoost model is notable for its ability to employ the outputs of 
multiple weak classifiers to enhance the model’s generalizability and 
predictive performance. This is achieved through a visual 
representation of the weak classifiers, which elucidates the analytical 
and decision-making processes. Furthermore, the model’s 
trustworthiness is enhanced, leading to greater confidence in the 
intelligent method among related people. The ( )G u  calculation is 
presented in Equation 5.

 
( ) ( )

1

K
k k

k
G u w f u

=
= ∑

 
(5)

where, K  is the weak classifiers, and ( )kf u  and kw  correspond to 
the k th weak classifier and its weight. By synthesizing the above 
formula, the intelligent medical classification model based on the 
improved F-score algorithm can be obtained.

3.2 Diagnosis and prediction of PIH with 
GA fusion

The research develops an IPIMHL-GA model, which is primarily 
composed of the integrated learning optimization model and the GA, 
in order to further optimize the performance of IMD-oriented and 
prediction models, enhance the models’ capacity for learning, and 
simplify the intelligent method’s operation. The whole framework of 
the integrated learning optimization model has been represented in 
Figure 4.

In Figure 4, the first layer has 10 classifiers, such as SVM and 
AdaBoost. This setup enables several weak classification sets to 
become strong classifiers and avoids the variance problem arising 
from a single classification model. The training set is then divided 
based on cross-validation and trained with several base classifiers as 
well as prediction using the validation set. Finally, the prediction 
results of all the subsets are merged to obtain a new training set to 
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FIGURE 3

Flowchart of the enhanced F-score feature selection algorithm for optimal classification model performance in pregnancy-induced hypertension 
diagnosis.
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be transferred to the second layer for further training. The study uses 
a regression logic approach to assess the fusion of the results of the 
first layer, and the final result can be  obtained. The calculation is 
shown in Equation 6.

 
( ) 11

1
Tw u

P v u
e− ′

= =
+  

(6)

In Equation 6, v and w′ are the classification labels and the weight 
parameters of the model, respectively. The metaclassifier of regression 
logic approach not only adapts to various types and sizes of data but 
also has good generalization ability and robustness. The parameters of 
the model are adjusted using regularization methods to avoid 
underfitting or overfitting problems. In the GA section, the study 
designed a GA adapted to the integrated learning optimization model, 
which included initialization operation, crossover, variation and 
selection, and the flow. This procedure is shown in Figure 5.

Figure  5a shows the initialization operation process, which 
needs to initialize each classifier into an individual with length of 10, 
which has the value between 0 and 1. Then, a number of individuals 
are randomly generated to form a population, where the number 0 
represents the deletion of the corresponding classification model. If 
it is 1, it means that the corresponding classification model is 
retained and applied in integrated learning. Figure 5b shows the 
process of multipoint crossover operation, which requires the model 
combination corresponding to the gene strings to set multiple 
crossover points to swap gene blocks. It is possible to create new 
persons by fusing the gene blocks of several individuals, which 
increases population category diversity and prevents the issue of 
local optimal solutions. The algorithm’s convergence time can 
be  slashed by using this technique to mix the genes of the best 
individuals to produce kids that perform better. The multipoint 
mutation operation is illustrated in Figure 5c. Its goal is to improve 
the algorithm’s global search capabilities by randomly selecting 
various locations on the genes to expand the variety of the search 
space through mutation. After the completion of each of the above 
operations, the individuals suitable for the next generation can 
be screened by the roulette wheel selection method. This is done by 
calculating the likelihood of each individual appearing in the 
offspring based on the fitness value of the individual and randomly 
selecting individuals to form the offspring population according to 

the probability. This not only retains the better performing 
individuals but also avoids situations, such as unfairness or bias in 
the algorithm’s selection operation. The roulette selection method is 
calculated in Equation 7.

 1

fit

fit
i

i N
jj

P
=

=
∑  

(7)

In Equation 7, N  denotes the population size, fiti  and iP are the 
fitness value corresponding to individual i and the probability of being 
selected, respectively. The specific steps of selection are explained 
subsequently. Firstly, a random probability value must be obtained. 
Secondly, the selection probability of individuals must be accumulated, 
then there should be a search for the first one so that the accumulated 
probability exceeds the random probability value. After that, the 
accumulated probability must be selected. The above process must 
be repeated until sufficient individuals are obtained and. In addition, 
the fitness value selects the exact rate acc for calculation as in 
Equation 8.

 1

accfit
acc
i

i N
jj=

=
∑  

(8)

Since PIH data has the imbalance property, i.e., the negative 
samples will far exceed the positive samples, if the threshold value is 
too high, then the predicted samples will all be negative samples, and 
the acc-value will be  high, but the actual classification effect is 
opposite. Therefore, the study uses the AUC value of receiver operating 
characteristic (ROC) as the fitness function of the algorithm and the 
predicted value. According to the GA, it is possible to obtain the best 
performing classifier combination for the first layer of the integrated 
learning optimization model, i.e., AdaBoost with Gaussian process 
(GP), and the former expression is shown in Equation 9.

 ( ) ( ) ( )1z z z zD u D u d uχ−= +  (9)

where, ( )zD u  is the previous weighted cumulative results of the z 
base classifiers, and zχ  and ( )zd u  are the weights and predictions of 
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The whole framework of the integrated learning optimization model.
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the zth base classifier, respectively. In addition to preventing the PIH 
prediction from overfitting, the model can modify the weights of the 
training samples such that the base classifiers focus more on the 
incorrectly classified data. The expression of GP classifier is shown in 
Equation 10.
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where, X , ζ , Y , and 2ψ  are the training dataset, the cumulative 
distribution function of the standard normal distribution, the kernel 
matrix, and the noise variance, respectively. iy  represents the similarity 
vector of the ith sample and all the samples in X . The GP classification 
method is able to learn by the labeling information and features of the 
samples in X , and the method is also used to predict the samples in the 
validation set. Finally, the hyperparameters of the integrated learning 
optimization model are intelligently tuned using the grid search method. 
All hyperparameter combinations are enumerated at the same time to 
realize the global search for the optimal solution in the hyperparameter 
space, and the specific process is shown in Equation 11.
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In Equation 11, ih  and in  are the number of ith hyperparameter 
and its candidate values, respectively, and ijc  stands for hyperparameter 
of j th candidate value. Finally, the combination of hyperparameters 
with the best performance index effect can be obtained. The complete 
IPIMHL-GA model can be  obtained by synthesizing the above 
equation, and the specific framework is shown in Figure 6.

In Figure 6, the study uses the F-score optimization method for 
FS operation, initialization operation, crossover, mutation and 

selection of the integrated learning model optimized by GA, and 
iteration to get the prediction result with the best effect.

4 Results of intelligent PIH diagnostic 
and predictive methods

To examine the performance of ID and prediction methods for 
OGT and the effect of clinical application, the study first explores the 
performance of the underlying F-score optimized intelligent data 
sampling and FS methods, then it analyzes the performance of the 
IPIMHL-GA model. In the end, it applies the intelligent methods in 
clinical trials.

4.1 Performance analysis of F-score 
optimized feature selection method for 
smart data

In order to test the performance of AMOM-DUMS algorithm, 
several evaluation metrics like accuracy, precision, recall, F-score & 
AUC values are selected for evaluation. The study uses the current 
mainstream algorithms for comparative trials, i.e., particle filter 
resampling (PFR) algorithm and AC sampling during frequency 
changes (ACSDFC) in order to validate the performance of the 
intelligent sampling algorithm suggested by the study. The 
performance results of different sampling algorithms for each dataset 
is shown in Figure 7.

Figures 7a–c shows the performance of different sampling algorithms 
in dataset A, B and C, respectively. In Figure 7, in the three sub-datasets 
of the PIH dataset, the metrics of the proposed AMOM-DUMS algorithm 
are the best, and the accuracy, AUC value and F-score in dataset A are 
0.731, 0.663, and 0.714, respectively. In dataset B, the metrics are 0.958, 
0.745, and 0.803, respectively. The metrics in dataset C are 0.982, 0.703, 
and 0.842. The AUC values of the PFR algorithm in both datasets A and 
B are the lowest, 0.537 and 0.558, respectively, which indicates that the 
algorithm is less effective in dealing with the problem of data classification 
imbalance, while the AUC value of ACSDFC in dataset C is the smallest, 
0.589. The aforementioned findings suggest that the study’s intelligent 

1 1 1 1

Bagging RF SVM GBDT

1 0 1 1

Bagging RF SVM GBDT

1 1 1 0 0 1 1

1 0 1 1 0 1 0

1 0 1 1 0 1 0

0 0 0 1 1 1 0

(a) Initialize

(b) Multi-point intersection (c) Multipoint mutation
FIGURE 5

The operational flow of each part of the GA for adapting ensemble learning optimization models: (a) Initialization operation process; (b) Multi point 
cross operation process; (c) Multi point mutation operation process.
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sampling method can greatly address the issue of healthcare data 
classification imbalance with a better classification effect. To more 
intuitively display the effect of the F-score optimization of intelligent data 
feature selection (IDFS) method after processing, the study uses heat map 
to process the correlation between variables, and the comparison of 
feature correlation results processed before and after the improvement of 
the F-score optimization of IDFS method can be obtained, as shown in 
Figure 8.

It is evident that prior to the enhancement (refer to Figure 8a), the 
heat map displayed on the left side of Figure 8 illustrates the feature 
correlation outcomes before the refinement of the IDFS method. In 
this heat map, the x-axis and y-axis denote the various features within 

the dataset, while the color of each cell signifies the correlation 
between the two features. The color bar located on the right side of the 
heat map represents the correlation coefficient, where darker shades 
indicate a stronger correlation, and lighter shades suggest a weaker 
correlation. The heat map reveals a significant number of features that 
exhibit high correlation with one another, suggesting the presence of 
redundancy within the dataset. For instance, the features “number of 
pregnancies,” “number of miscarriages,” “pre-pregnancy weight,” 
“number of births,” and “comorbid obesity” demonstrate a strong 
correlation among themselves.

The heat map displayed on the right side of Figure 8 illustrates 
the results of feature correlation after the enhancement of the IDFS 

Initialize Multi-point 
intersection

Multipoint 
mutation

Double layer ensemble 
learning optimization model

Roulette wheel 
selection 

Iteration

Meet iteration 
requirements

Remove 0 and 
keep 1

FIGURE 6

Schematic diagram of the framework of the IPIMHL-GA model.
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Performance results of different sampling algorithms on various datasets: (a) Dataset A; (b) Dataset B; (c) Dataset C.
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method. This heat map reveals a significant reduction in the 
number of highly correlated features, suggesting that the IDFS 
method has effectively eliminated redundant features from the 
dataset. The remaining features, including “placental growth factor 
(PGF),” “vascular endothelial growth factor receptor (VEGFR-1),” 
“BMI,” “urinary protein in pregnancy,” “Mediterranean anemia,” 
“phosphate dehydrogenase deficiency,” and “family history of 
hypertension or diabetes,” exhibit low correlation with one another, 
signifying that they are more independent and pertinent to 
predicting PIH.

Three characteristics of Urinary protein in pregnancy, 
Mediterranean anemia, and family history of hypertension or diabetes 
are selected to demonstrate the distribution, as shown in Figure 9.

From Figure 9, it can be found that the features screened by 
the study before the mid-pregnancy are able to distinguish the 
diseased population well in terms of diagnosis, which is extremely 
important for the application of imbalance classification and 
prediction of medical data. Finally, the study explores the 
contribution that F-score optimized IDFS method to compare the 
performance of AdaBoost vs. bagging classifiers. The study 
evaluates the performance of the classifiers before and after the 

improvement using AUC values, and the results are shown in 
Figure 10.

Figure  10a shows the ROC curves of AdaBoost and bagging 
classifiers before and after the improvement that the F-score optimized 
IDFS method, and Figure 10b shows the results of the AUC values of 
the two classification models in different dimensions. In Figure 10, 
after removing redundant features using the F-score that optimized 
IDFS method, the AUC values of AdaBoost and Bagging increased 
from 0.651 to 0.787 and 0.645 to 0.714, respectively, in the 
pre-improvement treatment. At the same time, when the feature 
dimension is less, there will be a situation where important feature 
information is lost, so the AUC values of the two classification models 
are lower, both within 0.6. In addition, when the feature dimension is 
larger, the AUC values of the two classification models also appear to 
be reduced, because there are more irrelevant or redundant features. 
When the feature dimension is seven, the AUC value of AdaBoost and 
Bagging is the largest, which is consistent with the number of feature 
combinations processed by the IDFS method that was optimized by 
F-score. This suggests that the FS technique put out in the study may 
successfully choose the ideal feature combinations to guarantee the 
prediction model’s optimum performance.
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Comparison of feature correlation results before and after improving the intelligent data feature selection method optimized by F-Score: (a) Before 
treatment; (b) After treatment.
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4.2 Results based on IPIMHL-GA modeling

To validate the validity and feasibility of the IPIMHL-GA 
model proposed in the study, the study is evaluated using the 
recall rate, F-score, and AUC value, where the recall rate 
reflects the percentage of all true PIH-free patients that are 
correctly predicted and is used to categorize the model’s ability to 
detect positive cases. On the other hand, the F-score, which is a 
weighted and reconciled average of recall and accuracy, can assess 
how well a model performs in categories with limited sample 
sizes. To provide a more realistic validation of the models’ 
performance, the study compares the models with the most 
popular machine learning techniques currently in use, including 
SVM, bagging, RF, Markov random field (MRF), deep confidence 
network (DCN), gradient boosting decision tree (GBDT), NB, 

extreme gradient enhancement (EGE), and GP. The prediction 
performance results of different classification models are shown 
in Figure 11.

Figure  11 show the recall and F-score results of different 
classification models, respectively. In Figure 11, in the recall results, 
the IPIMHL-GA model is the best with the value of 0.768, while the 
GP model has the second-best performance with the value of 0.735, 
and the recall of the remaining classification models ranges from 
0.499 to 0.683. In the results of F-score, the IPIMHL-GA model is still 
the best with the value of 0.728, while the GP model is still the second 
best with the value of 0.702, and the F-score of the remaining 
classification models ranges from 0.495 to 0.644. Figure 12 displays 
the anticipated AUC values for each of the categorization models.

In Figure 12, the AUC values of SVM model, bagging model, RF 
model, MRF model, DCN model, GBDT model, NB model, EGE 

FIGURE 9

The distribution of optimal features in the PIH disease label section.

(a) ROC curves of AdaBoost and Bagging 
classifiers before and after improvement

1614121086420

Feature dimension

0.3

0.4

0.5

0.6

0.7

0.8

A
U

C

Bagging+Improve F-Score

AdaBoost+Improve F-Score
Bagging

AdaBoost

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

1-specificity
(b) AUC value results of two classification 

models under different dimensions

Bagging

AdaBoost

FIGURE 10

The AUC value results of AdaBoost and bagging classifiers before and after improving the intelligent data feature selection method optimized by F-
Score: (a) ROC curves of AdaBoost and Bagging classifiers before and after improvement; (b) AUC value results of two classification models under 
different dimensions.
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model, GP model, and IPIMHL-GA model are 0.637, 0.755, 0.611, 
0.635, 0.513, 0.594, 0.596, 0.725, 0.807, and 0.832, respectively. In 
conclusion, the intelligent PIH diagnosis and prediction method 
proposed in the study exhibits excellent performance and is suitable 

for application scenarios with high demand for real-time analysis. 
Furthermore, it effectively identifies and predicts PIH, provides reliable 
decision-making support for relevant personnel, and serves as a 
reference for the application of intelligent methods in OGT.

FIGURE 11

Prediction performance results of different classification models: (a) Recall; (b) F-value.
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Prediction results of the area under the curve values for different classification models.
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4.3 Clinical application of intelligent PIH 
diagnosis and prediction methods

To further investigate the effectiveness of the research-designed 
intelligent PIH diagnosis and prediction method in clinical practice, 
108 patients with preeclampsia at the onset of hospitalization are 
collected as Z group. In addition, the 34th gestational week is taken as 
the node, before that it was noted as early-onset (EO) and after that as 
late-onset (LO). In addition, the top two ranked PGF and VEGFR-1 
after processing are analyzed using F-score that optimized IDFS 
method; in addition, the study introduced the ratio of VEGFR-1 to 
PGF, i.e., V/P for diagnosis and prediction. ROC comparison of 
intelligent clinical diagnosis results for each characterization index 
under Z-group for different pathogenesis types is shown in Figure 13.

Figures  13a,b show the intelligent clinical diagnosis of ROC 
results for each characterization index of EO type and LO type in 
group Z, respectively. In Figure 13, in the EO-Z group, the AUC value 
of single use of VEGFR-1 for diagnosis of EO type preeclampsia is 
0.948, which corresponded to the highest diagnostic specificity and 
sensitivity of 91.1 and 93.5%, respectively, if the optimal cut-off value 
is 2,805 pg/mL. The diagnostic effect of using PGF alone is poor, with 
an AUC value of only 0.031. When the V/P values are used for 
diagnostic purposes, the AUC values are as high as 0.996, which 
corresponds to the highest diagnostic specificity and sensitivity when 
the optimal cutoff value is 27.25, which is 98.4 and 93.1%, respectively. 
In the LO-Z group, the AUC values of diagnosis using VEGFR-1 or 
PGF alone are 0.732 and 0.212, respectively, while the AUC value of 
V/P value is the highest at 0.792. According to the previous results, the 
diagnostic value of VEGFR-1, PGF, and V/P value characterization 
indexes is more obvious in weeks 15–20 versus weeks 24–28. 
Therefore, the study is predicted using each characterization index in 
weeks 15–20 and 24–28, and the predictive value results could 
be obtained, as shown in Figure 14.

Figures 14a,b correspond to the comparison of the results of the 
predictive value of each characteristic indicator at weeks 15–20 versus 
weeks 24–28. Figure  14 shows that by comparing the results of 
different indicators at weeks 15–20, the AUC values corresponding 
to VEGFR-1, PGF, and V/P values are 0.322, 0.375 and 0.465, 
respectively, indicating that the indicators are all poorly diagnosed. 
In the comparison of the results of the different indicators at 
24–28 weeks, the AUC value for the prediction using only PGF alone 
is poor that has the value of 0.074. In contrast, the AUC value for the 
single application of VEGFR-1 is 0.948, which corresponded to an 
optimal cut-off value of 2745.40 pg/mL when the specificity and 
sensitivity of the prediction corresponded to 99.2 and 86.3%, 
respectively. The AUC of V/P value is 0.953, while the specificity and 
sensitivity of prediction corresponded to 99.2 and 86.3% when the 
best cut value is at 11.37 pg/mL. In conclusion, the intelligent PIH 
diagnosis and prediction method proposed in the study has good 
results in clinical practice and can be used for the promotion of OGT.

The results indicated that IPIMHL-GA surpassed all these 
methods in terms of recall, F-score, and AUC, achieving a recall of 
0.768, an F-score of 0.728, and an AUC of 0.832. In comparison, 
Li’s et al. method recorded values of 0.723, 0.693, and 0.789; Wang’s 
et al. method yielded the values of 0.736, 0.706, and 0.794; Kumar’s 
et al. method produced the values of 0.729, 0.694, and 0.785; and 
Chen’s et al. method resulted in the values of 0.741, 0.705, and 
0.796. These results imply that IPIMHL-GA is a superior approach 
for predicting PIH, likely attributable to its effective integration of 
feature selection and classification algorithms, which enhances the 
identification of pertinent features and strengthens the 
classification model. Furthermore, the results underscored the 
significance of employing a combination of feature selection and 
classification algorithms in predicting PIH, as this strategy aided 
in pinpointing the most relevant features and enhanced the 
prediction model’s accuracy.
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Comparison of ROC results in intelligent clinical diagnosis of various characteristic indicators under different types of disease in Group Z: (a) EH type; 
(b) LO type.

https://doi.org/10.3389/fmed.2024.1433479
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2024.1433479

Frontiers in Medicine 13 frontiersin.org

The investigation into generative and deep learning models for 
predicting PIH uncovered numerous opportunities to enhance the 
precision and efficacy of these models. Generative models, including 
generative adversarial networks (GANs) and variational autoencoders 
(VAEs), are capable of producing new data samples that closely 
resemble the training data, thereby facilitating the prediction of PIH 
by generating samples that are likely to exhibit this condition. Deep 
learning architectures, such as convolutional neural networks 
(CNNs), recurrent neural networks (RNNs), and long short-term 
memory (LSTM) networks, possess the ability to identify intricate 
patterns within data that signify PIH, resulting in heightened 
accuracy. Furthermore, hybrid models, like GAN-VAE and 
CNN-LSTM, can merge the advantages of various models to enhance 
overall performance.

The benefits of employing generative and deep learning models 
for PIH prediction encompass increased accuracy, the capability to 
manage high-dimensional data, and the potential to learn from 
limited datasets. Nonetheless, challenges such as interpretability, 
overfitting, and data quality must be tackled. Prospective avenues for 
advancing the use of generative and deep learning models in PIH 
prediction include the creation of more interpretable models, 
enhancement of data quality, and the application of transfer learning. 
By capitalizing on these models and addressing their associated 
challenges, researchers and healthcare professionals can significantly 
improve the accuracy and effectiveness of PIH predictions, ultimately 
contributing to better patient outcomes.

5 Conclusion

Aiming at the imbalance problem of medical data classification, 
the study took three perspectives of sampling, including FS and 
predictive model as the entry point, proposed AMOM-DUMS 

sampling algorithm and intelligent medical data FS method based on 
F-score optimization, and designed IPIMHL-GA model. The 
experimental results revealed that in the recall results, the IPIMHL-GA 
model was the best with the value of 0.768, while the GP model had 
the second-best performance with the value of 0.735, and the recall of 
the remaining classification models was in the range of 0.499 and 
0.683. Concerning the results of F-score, the IPIMHL-GA model was 
still the best with the value of 0.728, while the GP model still had the 
second-best performance with the value of 0.702, and the F-score of 
the remaining classification models ranged from 0.495 to 0.644. The 
AUC values of the SVM model, bagging model, RF model, MRF 
model, DCN model, GBDT model, NB model, EGE model, GP model, 
and the IPIMHL-GA model were, in turn, 0.637, 0.755, 0.611, 0.635, 
0.513, 0.594, 0.596, 0.725, 0.807, and 0.832. Finally, in the results of 
clinical trials, the AUC value for diagnosis of EO-type preeclampsia 
using VEGFR-1 alone in the EO-Z group was 0.948. Diagnosis using 
PGF alone was poorer, with an AUC value of 0.031. In contrast, the 
AUC value for diagnosis by the V/P value was as high as 0.996. In the 
LO-Z group, the AUC values for diagnosis by using VEGFR-1 or PGF 
alone were 0.732 versus 0.212, respectively, while the AUC value for 
V/P values was as high as 0.792. In summary, the method proposed in 
the study could solve the noisy data during medical imbalance data 
sampling, improve the classification ability of the model, realize real-
time accurate ID and prediction, and provide a convenient ID and 
prediction method for OGT. However, the study still had deficiencies, 
and more detailed values of the feature variables could be provided for 
reference in future studies. Furthermore, the system could 
be  configured to issue a risk warning prompt when a diagnostic 
feature reached a threshold value. It enabled physicians to make 
diagnoses more efficiently and accurately, while also facilitating the 
development of diagnostic protocols for patients. Additionally, 
educators could utilize OBGYN intelligent methods in the classroom 
with greater ease.
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Prediction of ROC changes in preeclampsia by various characteristic indicators of Group Z at different gestational weeks: (a) Weeks 15-20; (b) Weeks 24-28.
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