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Over the past decade, artificial intelligence (AI) and its subfields, deep

learning and machine learning, have become integral parts of ophthalmology,

particularly in the field of ophthalmic imaging. A diverse array of algorithms

has emerged to facilitate the automated diagnosis of numerous medical and

surgical retinal conditions. The development of these algorithms necessitates

extensive training using large datasets of retinal images. This approach has

demonstrated a promising impact, especially in increasing accuracy of diagnosis

for unspecialized clinicians for various diseases and in the area of telemedicine,

where access to ophthalmological care is restricted. In parallel, robotic

technology has made significant inroads into the medical field, including

ophthalmology. The vast majority of research in the field of robotic surgery has

been focused on anterior segment and vitreoretinal surgery. These systems offer

potential improvements in accuracy and address issues such as hand tremors.

However, widespread adoption faces hurdles, including the substantial costs

associated with these systems and the steep learning curve for surgeons. These

challenges currently constrain the broader implementation of robotic surgical

systems in ophthalmology. This mini review discusses the current research and

challenges, underscoring the limited yet growing implementation of AI and

robotic systems in the field of retinal conditions.
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Introduction

Artificial intelligence (AI) is a subfield of computer sciences
with the goal of creating intelligent machines (1). Deep learning
(DL), as a subfield of machine learning, allows computational
models consisting of numerous layers, to learn representations
of data characterized by varying degrees of abstraction (2).
Ophthalmology is one of the specialties with widespread
experimental implementation of AI. Deep learning (DL) can
be extremely assistant in automated diagnosing of medical retinal
diseases, like neovascular AMD, retinopathy of prematurity,
diabetic retinopathy as well as of surgical retinal diseases, such
as macular hole, retinal detachment and epiretinal membrane.
On the other side, the emerging advancement of robotics has
led to the introduction of robotics into a variety of surgical
medical specialties like gynecology, urology and general surgery
(3). Eye surgery necessitates sufficient lighting, stabilization
of the hand movements and unobstructed view (4). Robotic
surgical systems offer specialized features that can effectively
fulfill these requirements, ensuring optimal conditions for surgical
precision and success.

Considering the above, the primary aim of this review is to raise
awareness about the novel applications of artificial intelligence and
robotic technology on the management of vitreoretinal diseases.
Recent publications on the field of AI and deep learning application
in the diagnosis of medical and surgical retina disorders along
with the challenges and limitations are going to be summarized.
Moreover, published data on novel robotical approaches in the
surgical management of retinal disorders are going to be analyzed.

Methods

For this mini-review, we conducted a search in PubMed,
Embase and Scopus using the keywords “(Automated diagnosis)
AND (OCT∗ OR Optical Coherence Tomography∗),” “(‘Artificial
Intelligence’ OR ‘Machine Learning’) AND ‘Retina’ ‘and’ (Robotics)
AND (Ophthalmology).” These searches were performed between
27 February 2024, and 1 April 2024. To be included in the
review, studies needed to focus on either the automated diagnosis
of OCT images using deep learning algorithms for surgical
or medical retinal diseases, or the application of robotics in
ophthalmology. Studies without English manuscript or clinical
relevance were excluded.

Automated diagnosis through the
utilization of machine learning and
deep learning algorithms

Convolutional neural network (CNN) is a deep learning model
designed to analyze data exhibiting a grid-like structure, such as
images (5). Modern architecture CNNs are employed to perform
the segmentation of the retinal OCT. The development of an
algorithm necessitates a large dataset of fundus images (OCT,
fundus or sonography images) as a reference for the system to
differentiate the anatomical structures on the images such as retinal

layers or pathological abnormalities. In OCT images, segmentation
and masking of retinal layers are conducted to emphasize the region
of interest, while excluding extraneous background regions (6).
Fundus images are being processed on a gray-scale mode where the
pixel values of the background equated to zero, while the pixel value
of the active area is above zero (7).

In general, the performance of these algorithms is evaluated in
most published studies using metrics such as AUC (area under the
ROC curve), specificity, sensitivity, accuracy, intraclass coefficients,
or by comparing them to ophthalmic specialists or residents for
accuracy in a series of clinical cases.

Artificial intelligence and deep
learning in color fundus
photography and optical coherence
tomography (OCT)

One of the first applications of AI and Dl in retinal diseases,
was the automated interpretation of color fundus photos for the
screening of age-related macular degeneration (AMD) through
the study of Van Grinsven et al. (8), who presented a system for
differentiating high-risk from low-risk patients for non advanced
AMD. The authors reported that the detection of drusen was
highly similar between the human observers and the machine
learning system with a mean intraclass correlation coefficient (ICC)
over 0.85. In terms of risk prediction for AMD the proposed
system reached the receiver operating characteristic (ROC) curve
of 0.948 and 0.954, achieving similar performance with the
human observers.

In the field of ROP, a prompt and accurate diagnosis is of
paramount importance. ROP is also an area of ophthalmology that
AI has been widely implemented over the last few years. Brown
et al. (9) were the one of the first to create and validate a deep
convolutional neural network for the automated diagnosis of plus
disease in ROP with the use of 5,511 retinal images from the cohort
study imaging and informatics in retinopathy of prematurity (i-
ROP). The authors reported a 93% sensitivity and 94% specificity
for identification of plus disease, achieving comparable or better
accuracy than human retinal experts (9).

A deep convolutional neural network proposed by Li and Liu
was trained for the diagnosis of ROP for stages I, II and III,
using 18,827 fundus images from premature infants. This proposed
network achieved a high specificity and sensitivity for all three
stages of ROP (Table 1) with the highest an average AUC score
of 0.9663 (10). More recently, another computer algorithm was
published from Sharafi et al. (11) for the automated diagnosis
of plus disease in ROP through accurate segmentation of retinal
vessels.

In the spectrum of nAMD, Jang et al. (12) recently designed a
deep learning algorithm for the prediction of the first recurrence
following three loading injections of anti-VEGF. This study
included 1,444 eyes from 1,302 patients. Their findings illustrate
that a model utilizing OCT scans of the fluid region post-loading
phase exhibited the top classification performance, achieving an
area under the receiver operating characteristic (AUC) of 72.5%.
Analysis via heatmap uncovered that three distinct pathological
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TABLE 1 Overview of studies with application of novel DL-algorithms in medical retina diseases.

Disease References Number of images
used for the

development of the
algorithm

Key findings

ROP Brown et al. (9) 5,511 retinal images • For plus disease 93 % sensitivity with 94% specificity
• For pre–plus disease or worse, 100% sensitivity and 94% specificity were

100%
• Quadratic-weighted κ coefficient of 0.92

Li and Liu (10) 18,827 retinal images • ROP Stage I: 90.21% sensitivity with 97.67% specificity
• ROP Stage II: 92.75% sensitivity with 98.74% specificity
• ROP Stage III: Sensitivity of 91.84% with 99.29% sensitivity
• For normal images, 95.93% sensitivity and 96.41%, specificity

Sharafi et al. (11) 76 retinal images • Accuracy in differentiating between Plus and non-Plus images, 0.86 ± 0.01

AMD Van Grinsven et al. (8) 407 color fundus images • For automatic AMD risk assessment: (ROC) curve of 0.948 and 0.954

nAMD Jang et al. (12) 888 Cirrus and 556 Spectralis
OCT images

• AUC of 0.725 ± 0.012 for the model with the fluid region of OCT following
the loading phase

dAMD Pramil et al. (13) 126 en face swept-source OCT
images

• 0.99 ICCs o for the GA measurement and 0.94 ICCs for the progression rates
of GA area, respectively.

Myopic maculopathy Ye et al. (14) 2,342 OCT images • For all 5 different entities of myopic maculopathy AUC from 0.927 to 0.974
• Sensitivity of 56.16–99.73% equal to or better than those of junior retinal

practicians.

Central serous
chorioretinopathy

Aoyama et al. (17) 100 OCT-A en face images • Mean accuracy rate of 88% for the Keras-Ten- sorflow and 95% for Neural
Network Console.

• Not significant difference (P > 0.01) between the two models.

Ko et al. (16) 7425 Spectral Domain-OCT
images

• Average cross-validation accuracy of 94.2% (95% CI 0.897–0.986), with
sensitivity of 94.9% and specificity of 99.1%.

• Equal to superior performance compared to other CNN-based models as
well as compared to ophthalmic specialists.

AUC, area under the ROC curve; AMD, age-related macular degeneration; dAMD, dry age-related Macular Degeneration; nAMD, neovascular age-related macular degeneration; CNN,
convolutional neural network; GA, geographical atrophy; ICC, intraclass correlation coefficient; OCT, optical coherence tomography; OCT-A, optical coherence tomography angiography;
ROP, retinopathy of prematurity; ROC, receiver operating characteristic curve.

TABLE 2 Overview of studies with application of novel DL-algorithms in surgical retina diseases.

Disease References Number of images
used for the

development of the
algorithm

Key Findings

Epiretinal membrane Lo et al. (18) 3,618 OCT images • 98.7%, specificity: 98.0%, and F1 score: 0.945.
• AUC of the ROC curve was 0.999.
• Slightly better score than non-retinal specialized ophthalmologists in the

diagnosis of ERM.

Tang et al. (19) 468 OCT images • Image-level accuracy of 95.65%, and ERM region-level accuracy of 90.14%
• Significant improvement of the accuracy of the clinicians in detecting ERM.

Retinal detachment Fung et al. (21) 6,661 retinal images • AUC of 0.94, sensitivity of 73.3% and a specificity of 96%

Wang et al. (20) 5,000 ultrasound images • The most effective DL model achieved an AUC of 0.998, coupled with a
sensitivity of 99.2% and specificity of 99.8%.

Li et al. (22) 24,208 ultra-wildfield images • 48-partition lesion detection: 86.42% precision and 83.27% recall with an
average precision of 0.9132.

• Baseline model: 92.67% precision and recall of 68.07%
• Holistic lesion localization: 89.16% precision and 83.38% recall.

Macular hole Valentim et al. (23) 601 OCT images • Test set 1: Sensitivity 75.7%, Specificity 94.8%, Accuracy 88.5%, AUC 90.2%
• Test set 2: Sensitivity 89.5%, Specificity 94.2% Accuracy 91.4%, AUC 95.5%

AUC, area under the ROC curve; DL, deep learning; ICC, intraclass correlation coefficient; OCT, optical coherence tomography; ROC, receiver operating characteristic curve.

fluids (PED, SRF, IRF), diminished choroidal neovascularization
lesions and hyperreflective foci were significant regions associated
with the initial recurrence.

Automated algorithms have been also introduced for dry
AMD. One of them from Pramil et al. (13) employed for the
training of the algorithm using 126 SST-OCT images scans from 90
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individuals with geographical atrophy, 32 individuals with early or
intermediate AMD and 16 healthy controls. For the development
of the algorithm 3 parameters were used for the automated
segmentation: hypertransmission within the subretinal pigment
epithelium layer, areas exhibiting RPE absence, and reductions in
retinal thickness. The algorithm demonstrated strong consistency,
achieving ICCs (intraclass correlation coefficients) of 0.99 and 0.94
for the measurements of geographic atrophy (GA) area and the
rates of GA area enlargement, respectively.

Regarding myopic maculopathy, several DL-based models
have been proposed that aid for an automated diagnosis based
on the OCT-images. Ye et al. (14) introduced an algorithm
that was developed with the use of more than 2,300 OCT
Spectralis HRA (Heidelberg Engineering, Heidelberg, Germany)
images and was developed for the detection of five entities of
the myopic maculopathy: macular choroidal thinning, macular
Bruch membrane (BM) defects, subretinal hyper-reflective material
(SHRM), myopic traction maculopathy (MTM), and dome-shaped
macula (DSM). This neural network recorded an AUC from 0.927
to 0.974 for the different entities of myopic maculopathy as well as
equal to better sensitivities than junior specialists.

Central serous chorioretinopathy (CSC) is distinguished
through localized serous detachment of the macula and affects
mostly young males (15). The diagnosis of CSC has relied on
invasive imaging techniques, such as fluorescein angiography (FA)
and indocyanine green angiography (ICGA). Deep learning finds
application in the diagnosis of CSC, with a proposed algorithm
that included 7425 SD-OCT images from 297 individuals (16). This
diagnostic system achieved an average cross-validation accuracy
of 94.2% (95% CI 0.897–0.986), with a sensitivity of 94.9% and
specificity of 99.1%. Similarly, another DL algorithm have shown
sufficient efficacy in the automated diagnosis of CSC (17).

Surgical diseases

With regard to surgical retinal diseases, a plethora of algorithms
based on DL have been published for automated diagnosis of
clinical entities such as epiretinal membrane, macular hole and
retinal detachment. To start with, few studies have been focused on
epiretinal membranes; Lo et al. (18), who used 3,141 OCT images,
introduced an algorithm with an AUC of 0.99, sensitivity 0.99 and
specified 0.98. More recently, Tang et al. (19) introduced a model
using 468 OCT images, which helped junior physicians significantly
to increase their accuracy at diagnosing epiretinal membrane.

With relation to retinal detachment, Wang et al. (20)
introduced and validated an DL-algorithm in China using 6,000
ophthalmic ultrasound images from 1,645 participants. The top-
performing DL model in detecting RRD in this study attained
an area under the ROC curve (AUC) of 0.998, accompanied by
a sensitivity of 99.2% and a specificity of 99.8%. This DL model
could be extremely helpful on the countryside, where there is no
wide availability of ophthalmologists. In addition, Fung et al. (21)
trained a DL model for the prediction of postoperative anatomical
outcomes after RRD surgery. The authors used 6661 digitally
drawn RRD images from patients that had undergone pars plana
vitrectomy with endotamponade in order to train the DL model.
This model achieved an AUC of 0.94, with sensitivity of 0.73 and
specificity of 0.96.

DL algorithms have also been developed for the diagnosis of
RDD based on fundus images (Table 2). Li et al. (22) trained
an algorithm with 24.208 ultra-widefield fundus images for the
localisation of the anatomical retinal detachment areas. The
authors used various localization systems in the development
of the algorithm, which recorded an 86.42% precision and an
83.27% recall in the 48-partition lesion detection and a 92.67%
precision with a recall of 68.07% in the baseline model. The
algorithm for holistic lesion localization achieved 89.16% precision
and 83.38% recall.

Another DL-based model has been introduced from Valentim
et al. (23) for the automated detection of idiopathic full thickness
macular holes with the use of spectral domain optical coherence
tomography. More than 600 cube scans from patients were used to
train the algorithm. An accuracy of 88.5% was mentioned by the
authors together with the need for further training of the algorithm
in order to recognize the different stages of macular holes.

Robotic Surgery

In this section, a comprehensive synopsis of the most important
clinical studies on application of robotics in vitreoretinal diseases
along with an overview of the most prominent surgical robotic
systems in ophthalmic surgery is provided.

Ophthalmic surgery is a surgical field that demands a high
level of precision and accuracy in a series of sensitive tissue
manipulations that can last up to hours. For example, from
anatomical point of view, an epiretinal membrane has a mean
thickness of ca. 60 microns, necessitating high precision during
removal to avoid injury to nearby tissues. Moreover, some factors
like hand tremor, excessive number of tissue manipulations and
surgeon’s fatigue can have a negative impact on the surgery. Hence,
robotic technology offers a variety of advantages in the operative
theater. Firstly, robotic technology can achieve a precision of 1 mm
(3). Furthermore, robotic surgical systems can reduce the hand
tremor, whilst offering a 360◦ range of movement intraoperatively.
The accuracy of robotic systems can be further warranted through
the incorporation of intraoperative OCT, allowing for better
intraoperative visualization, like already mentioned above.

The most prominent robotic surgical systems in ophthalmology
is the da Vinci system (Intuitive Surgical, USA) with more than
4,000 unit installations worldwide until 2017 (24). It is composed
from two primary components, a control console and the robotic
apparatus. Da Vinci system offers optical magnification of the
surgical field together with the feature of reducing the hand tremor
of the surgeon. Another benefit of this surgical system is the 360◦

range of motion of the joints, enabling optimal positioning and
enhancing precision during the ophthalmic surgery (3).

The Intraocular Robotic Interventional Surgical System (IRISS)
is a contemporary telemanipulated robotic surgical system that was
developed for reducing complication rates in cataract extraction
(25, 26). IRISS possesses an integrated OCT and a stereo-camera
that allows for preoperative planning and accurate intraoperative
intervention. IRISS consists of two surgical manipulating arms
that can simultaneously be remotely controlled through a distant
operator. This surgical system is capable of simultaneously
attaching up to four tools and seamlessly transitioning between
them during surgical procedures.
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Preceyes surgical system (PSS, Preceyes bv, Eindhoven, the
Netherlands) is another robotic surgical system that has been
designed for surgical procedures of the posterior segment, such
as vitrectomy or subretinal injections. It carries the advantage of
uncomplicated integration into the operating microscope while the
surgeon could be positioned at his usual surgical site. PSS offers the
ability to incorporate useful surgical instruments, such as forceps,
scissors, and cutters that can be easily operated through a foot pedal
(2). This robotic surgical system offers a significant intraocular
reach spanning of 130 degrees from a temporal opening (27).

In a prospective randomized clinical study from Faridpooya
et al. (28), 15 patients with idiopathic ERM after randomization
received either a manual surgery or a robotic-assisted one, with the
aid of the Preceyes surgical system (PSS, Preceyes bv, Eindhoven,
the Netherlands). Results showed no complications in the PSS
group, as well as shorter distance traveled by the forceps. With
regard to visual outcomes, similar results were reported between
the two groups, with longer mean surgical time in the PSS group
(PSS: 56 min vs. Manual Surgery: 24 min). Moreover, a comparative
study was undertaken to assess the efficacy of robotic versus manual
peeling techniques (3). Initially, manual peeling was performed
with the aid of Eyesi surgical simulator (VRmagic, Mannheim,
Germany) followed by the application of the Preceyes surgical
system from the same surgeon. The findings demonstrated that
manual peeling took 5 min on average, whereas peeling assisted
by the robotic system required an average of 9 min. Additionally,
the robotic approach necessitated an average of 344 mm to
complete the ILM peeling, whereas the manual method utilized
approximately 600 mm. Overall, the robot-assisted procedure was
found to be safer due to reduced number of macular hemorrhages
during the peeling and because of total eliminated retinal injuries
caused from the surgical instruments.

Limitations, challenges and future
aspects

Robotic eye surgery, while a frontier of innovation, faces
substantial challenges that could impede its broader adoption.
The complexity of mastering robotic systems presents a significant
learning curve, which may deter many surgeons from transitioning
to these technologies. The high costs associated with purchasing,
maintaining, and training personnel on robotic systems pose
financial burdens that many institutions may find prohibitive. The
time-intensive setup and the need for specialized training can
limit the practicality of robotic systems in high-throughput surgical
environments. Furthermore, issues such as suboptimal endoscopic
visualization, which lacks the detail provided by traditional
microscopes, and the potential for increased ocular surface stress
due to the remote center of motion, further complicate the use of
systems like the da Vinci robotic operating system (4).

Looking to the future, developments should focus on
integrating robotic systems seamlessly into the existing surgical
workflows, enhancing their adaptability to various surgical
scenarios. Innovations in visualization technologies could mitigate
current limitations, offering clearer, more detailed intraoperative
views that could improve surgical precision and outcomes.
Making robotic systems more cost-effective and easier to maintain

could facilitate their adoption in a wider range of medical
settings, potentially making them a standard tool in ophthalmic
surgeries. Advanced simulations and training programs could be
developed to reduce the learning curve and enhance the surgical
skills necessary to operate these sophisticated systems effectively.
Leveraging AI to integrate real-time data analytics during surgery
could enhance decision-making processes and surgical precision,
leading to better patient outcomes.

In the field of AI in ophthalmology, the journey is just
beginning. As algorithms evolve, there is a continuous need for
refinement and training of algorithms with larger, more diverse
data sets, including complex and rare conditions, to enhance
accuracy and reliability. Developing standardized protocols for AI
applications in medical settings, addressing privacy, and ethical
concerns related to patient data use are critical. Strengthening
collaborations across disciplines—combining insights from data
scientists, clinicians, and engineers—can drive innovations that
fully harness AI’s potential in ophthalmology.

The integration of large language models (LLMs) like ChatGPT
into ophthalmology offers promising advancements (29). These
AI systems could improve diagnostics and patient education
through real-time data analysis and access to vast research
resources. LLMs have the potential to enhance decision-making
and extend specialized care to underserved regions. However, their
clinical application will require thorough validation and careful
consideration of data security and ethical concerns to fully realize
their transformative impact on ophthalmology.

These initiatives will not only overcome existing barriers but
also expand the capabilities of AI and robotics in ophthalmology,
setting a new standard for precision and efficiency in patient care.

Conclusion

AI holds tremendous promise as an emerging field in
ophthalmology. To date, numerous deep learning-based
algorithms have been developed for automated diagnosis of a
plethora of medical and surgical retinal diseases. Yet, international
collaborations remain imperative, alongside enhancing the
capabilities of existing algorithms through extensive training with
larger datasets encompassing complex cases. This approach aims
to refine and optimize these algorithms for enhanced efficacy.

Additionally, robotic surgery presents a promising frontier
in ophthalmology. However, it necessitates further research,
particularly focused on pioneering robotic systems seamlessly
integrated into the routine operations of ophthalmic theaters.
Such advancements hold the potential to revolutionize surgical
procedures, ultimately benefiting patients and practitioners alike.
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