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Background: Given the high prevalence of fibrotic interstitial lung abnormalities 
(ILAs) post-COVID-19, this study aims to evaluate the effectiveness of quantitative 
CT features in predicting fibrotic ILAs at 3-month follow-up.

Methods: This retrospective study utilized cohorts from distinct clinical 
settings: the training dataset comprised individuals presenting at the fever clinic 
and emergency department, while the validation dataset included patients 
hospitalized with COVID-19 pneumonia. They were classified into fibrotic group 
and nonfibrotic group based on whether the fibrotic ILAs were present at follow-
up. A U-Net-based AI tool was used for quantification of both pneumonia lesions 
and pulmonary blood volumes. Receiver operating characteristic (ROC) curve 
analysis and multivariate analysis were used to assess their predictive abilities 
for fibrotic ILAs.

Results: Among the training dataset, 122 patients (mean age of 68  years ±16 
[standard deviation], 73 men), 55.74% showed fibrotic ILAs at 3-month follow-
up. The multivariate analysis identified the pneumonia volume [PV, odd ratio (OR) 
3.28, 95% confidence interval (CI): 1.20–9.31, p  =  0.02], consolidation volume 
(CV, OR 3.77, 95% CI: 1.37–10.75, p  =  0.01), ground-glass opacity volume (GV, 
OR 3.38, 95% CI: 1.26–9.38, p  =  0.02), pneumonia mass (PM, OR 3.58, 95% CI: 
1.28–10.46, p  =  0.02), and the CT score (OR 12.06, 95% CI: 3.15–58.89, p  <  0.001) 
as independent predictors of fibrotic ILAs, and all quantitative parameters were 
as effective as CT score (all p  >  0.05). And the area under the curve (AUC) values 
were PV (0.79), GV (0.78), PM (0.79), CV (0.80), and the CT score (0.77). The 
validation dataset, comprising 45 patients (mean age 67.29  ±  14.29  years, 25 
males) with 57.78% showing fibrotic ILAs at follow-up, confirmed the predictive 
validity of these parameters with AUC values for PV (0.86), CV (0.90), GV (0.83), 
PM (0.88), and the CT score (0.85). Additionally, the percentage of blood volume 
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in vessels <5mm2 relative to the total pulmonary blood volume (BV5%) was 
significantly lower in patients with fibrotic ILAs (p  =  0.048) compared to those 
without.

Conclusion: U-Net based quantification of pneumonia lesion and BV5% 
on baseline CT scan has the potential to predict fibrotic ILAs at follow-up in 
COVID-19 patients.

KEYWORDS

post-acute COVID-19 syndrome, pulmonary fibrosis, lung diseases, interstitial, 
artificial intelligence, multidetector computed tomography

1 Introduction

Pulmonary fibrosis represents the final stage in the progression of 
various interstitial lung diseases, resulted from over 200 contributing 
factors, including viral infections, or environmental toxins (1, 2). 
Notably, a meta-analysis has indicated that viral infections can increase 
the risk of Idiopathic Pulmonary Fibrosis (IPF) (3). Fibrotic changes in 
CT, which were referred to fibrotic interstitial lung abnormalities 
(ILAs) by the Fleischner Society Glossary, are considered as crucial 
precursors to idiopathic pulmonary fibrosis (4, 5). However, in a 
two-year follow-up study, 23% of COVID-19 survivors exhibited 
persistent fibrotic ILAs, with symptoms like dry cough, breathlessness, 
and impaired lung function, Markedly reducing their quality of life (6). 
Considering the widespread transmission of COVID-19 (7), the 
emergence of fibrotic ILAs poses a substantial health challenge. Despite 
the lack of standardized treatment, early intervention with antifibrotic 
medications (8) and steroids (9) has shown promise in preventing the 
onset and progression of fibrotic ILAs. Consequently, accurately 
predicting the occurrence of fibrotic ILAs during the acute phase of 
infection is crucial, as it allows for the early adoption of active treatment 
approaches, potentially averting the development of fibrotic ILAs (10).

Risk factors of fibrotic ILAs include patient characteristics like 
advanced age and smoking, and clinical indicators such as high CRP 
and IL-6 levels (11). Crucially, the initial imaging, particularly the 
visual CT score, serves as a significant predictor of fibrotic ILAs, 
highlighting the vital role of early radiological findings in forecasting 
the development of fibrotic ILAs (12–14).

The assessment of chest CT images, traditionally performed by 
radiologists, can be influenced by subjective bias (15). Deep learning 
algorithms offer a more precise and consistent method for the 
quantitative analysis of abnormal lung findings, potentially improving 
the identification of pneumonia-related lesions in COVID-19 
patients (16–18). Preliminary research has demonstrated that 
quantitative analysis of early COVID-19 CT scans, including 
pneumonia volume (PV), ground-glass opacity volume (GV), 

consolidation volume (CV), and the percentage of blood volume 
contained in vessels with a cross-sectional area less than 5 mm2 
(BV5%) can be predictive of patient outcomes (16–20). Nonetheless, 
research that employs quantitative analysis of initial COVID-19 chest 
CT to predict the development of fibrotic ILAs remains scarce (13).

In this study, we aimed to examine the utility of quantitative CT 
features, as compared with traditional radiologist-defined CT features 
in predicting the development of fibrotic ILAs in COVID-19 
pneumonia patients after at 3-month follow-up.

2 Methods

The study was approved by the institutional ethic committee of 
our hospital (approval number: K2926) and individual consent for this 
retrospective analysis was waived.

2.1 Patient population and study design

This retrospective study reviewed consecutive patients from two 
time periods for model development and validation purpose 
respectively: (1) patients who visited the fever clinic and emergency 
department at our hospital during the Omicron outbreak from 
November 28, 2022, to January 8, 2023 (Figure 1A); and (2) patients 
who were hospitalized for COVID-19 pneumonia between May and 
August 2023 (Figure 1B). The inclusion criteria were as follows: (1) 
patients with COVID-19 confirmed by real-time positive polymerase 
chain reaction (RT-PCR) or antigenic test results at our hospital; (2) 
the availability of thin-slice digital imaging and communications in 
medicine (DICOM) data of the chest CT (slice thickness ≤ 1 mm) both 
at the initial visit and follow-up within 3 months of the initial visit; and 
(3) the availability of clinical and laboratory test results at our hospital. 
The exclusion criteria were as follows: (1) patients with an inadequate 
CT image quality for a quantitative analysis; (2) patients whose interval 
between follow-up and the initial visit was less than 1 month; (3) 
pregnant patients; (4) pediatric patients (age < 18 years) and; and (5) 
patients with pre-existing interstitial lung diseases.

2.2 Data collection and CT image 
acquisition

The information was collected using a digital hospital information 
system (HIS) that included the demographic data (age and gender), 

Abbreviations: GGO, ground-glass opacity; ILAs, interstitial lung abnormalities; 

BV5, blood volume in vessels with cross-sectional areas less than 5  mm2; BV5%, 

the percentage of blood volume contained in vessels with a cross-sectional area 

less than 5  mm2; PV, pneumonia volume; PA, mean attenuation of pneumonia 

lesions; GV, ground-glass opacity volume; CV, consolidation volume; PM, 

pneumonia mass; ROC, receiver operating characteristic; AUC, area under 

the curve.
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preexisting comorbidities, the initial symptoms, the initial laboratory 
findings, and the clinical type at baseline. The initial clinical type was 
divided into mild/moderate and severe/critical classifications by a senior 
physician who specialized in respiratory diseases. Additional information 
about data collection can be found in Supplementary materials.

The most severe chest CT images obtained within a 15-day period 
from the first hospital visit were selected as the initial images. 

Follow-up chest CT images were then acquired 1–3 months after the 
initial scan to evaluate disease progression or improvement. The chest 
CT scan was conducted in a single breath-hold using several multi-
detector CT (MDCT) scanners: Somatom Definition Flash or 
Somatom Force (Siemens, Forchheim, Germany), Discovery CT750 
HD (General Electric, Milwaukee, WI) or IQon CT (Philips, The 
Netherlands). The patients were all scanned in the supine position, 

FIGURE 1

Enrollment flowchart of the study. RT-PCR: real-time reverse-transcription polymerase chain reaction. DICOM: thin-slice digital imaging and 
communications in medicine. (A) Depicts the data collection process utilized for the training dataset. (B) Illustrates the data collection process for the 
validation dataset.
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with the tube voltage set to 120 kV, and with the automatic tube 
current exposure-control technology. All images were reconstructed 
in the axial plane. Images were transmitted to the Picture Archiving 
and Communication System (PACS) (GE Healthcare, Chicago, IL, 
United States) for further data analysis.

2.3 Qualitative and semi-quantitative 
image evaluation

The image analysis was performed using the preselected lung 
(width, 1,200 HU; level, −600 HU) and mediastinal (width, 450 HU; 
level, 50 HU) window settings. Two senior radiologists (19 years, 
30 years of experience in thoracic radiology, respectively) independently 
reviewed the PACS system images, blind to patients’ clinical or 
laboratory data. Ambiguous findings were resolved by discussion and 
consensus. CT findings were defined by the Fleischner Society glossary 
(21). Signs of fibrotic ILAs were recorded in the presence of reticulation, 
traction bronchiectasis and/or bronchiolectasis, architectural 
distortion, or honeycombing (Figure 2) (22, 23). Then, patients were 
classified into fibrotic group and nonfibrotic group based on whether 
the fibrotic ILAs were present in the follow-up CT images.

A semi-quantitative CT score was used to quantify the initial 
pulmonary involvement by two senior radiologist specialized in chest 
imaging (24). Involvement in each of the five lung lobes was rated on 
a scale: 0 (no disease), 1 (<5% involvement), 2 (5–24%), 3 (25–49%), 
4 (50–74%), and 5 (>75%). The total CT score, summing individual 
lobe scores, ranged from 0 (no disease) to 25 (maximum involvement). 
To validate the reliability of the CT scores, the Intraclass Correlation 
Coefficient (ICC) was calculated to measure the consistency between 
the two radiologists’ assessments.

2.4 Quantitative chest CT analysis

A neural network model, based on the U-Net architecture, was 
employed for the automatic segmentation of pulmonary blood vessels 
(25). The detailed methodology of this model is elaborated in 
Supplementary materials. Subsequently, the segmented blood vessels 
were categorized into three groups based on their cross-sectional 
areas: BV5 for the blood volume in vessels with a cross-sectional area 
less than 5 mm2, BV5–10 for those with a cross-sectional area between 
5 and 10 mm2, and BV10 for vessels with a cross-sectional area larger 
than 10 mm2 (Figure 3). The percentages of blood volume within these 

FIGURE 2

The initial and 48-day follow-up CT findings of a 93-year-old man with COVID-19 pneumonia. The initial CT scans (A,B) did not reveal any signs of 
fibrotic interstitial lung abnormalities (ILAs). However, the follow-up CT (C,D) showed fibrotic ILAs at the identical anatomical level. These changes 
include architectural distortion (indicated by a circle in C), reticulation (outlined by a rectangle in D), and traction bronchiectasis and/or 
bronchiolectasis (marked by an arrow in D).
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categories, BV5%, BV5–10%, and BV10%, were computed relative to 
the total blood volume in the lung.

The detection, segmentation, and quantification of pneumonia 
lesions, including consolidation and ground-glass opacity (GGO), 
were automated using an AI system combining MVP-Net and 3D 
U-Net (Figure  4). The methodology is detailed in 
Supplementary materials. The quantitative parameters included the 
pneumonia volume (PV in ml), the mean attenuation of pneumonia 
lesions (PA in HU), the GGO volume (GV in ml), and the 
consolidation volume (CV in ml) in both lungs. In addition, the 
pneumonia mass (PM in g) was calculated as follows: PM (g) = PV 
(ml) * [PA(HU) + 1000]/1,000.

2.5 Statistical analysis

Statistical analyses were executed in R (version 4.3.1), with 
categorical variables analyzed via the Chi-square test, normally 
distributed continuous data by t-test, and non-normally distributed 
data by the Wilcoxon rank-sum test. Adjustments for multiple tests 
used the false discovery rate (FDR) method, and missing laboratory 
data were handled through multiple imputation with R’s “mice” 
package.

A receiver operating characteristic (ROC) curve analysis was 
performed for all the above quantitative CT parameters and the CT 
score to compare their effectiveness in predicting fibrotic ILAs. And 

FIGURE 3

Volume-rendered chest CT images of a 52-year-old woman at initial (A) and follow-up (B) with color-coded segmentation of the pulmonary vascular 
cross-sectional area. a. the initial CT with a BV5% of 27.76%. b. the follow-up CT with a BV5% of 51.14%. The color coding denotes the blood volume in 
vessels with cross-sectional areas <5  mm2 (BV5), between 5 and 10  mm2 (BV5–10), and  >  10  mm2 (BV10). In addition, the BV5% is the percentage of the 
volume of blood contained in vessels with a cross-sectional area less than 5  mm2.

FIGURE 4

Representative images from the quantitative analysis of pneumonia lesions. Pneumonia lesions at the baseline (A) and follow-up (B) CT scans of a 
75-year-old woman with critical COVID-19 were segmented into ground-glass opacity (GGO) and consolidation, shown in blue and yellow, 
respectively. The raw baseline and follow-up images of this patient are shown in (C,D), respectively.
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the optimal cutoff values were identified to maximize the Youden 
index. The area under the curve (AUC), accuracy, precision, specificity, 
sensitivity, and F1 score were computed.

Univariate logistic regression examined the association of these 
CT, demographic, and laboratory parameters with fibrotic ILAs, 
removing unevenly distributed variables including comorbidity along 
with neutrophil and lymphocyte counts. Following this, a multivariate 
logistic regression model incorporated age, gender, clinical type, 
anemia, and raised hsCRP levels as covariates to determine if the CT 
parameters could independently predict fibrotic ILAs. The Delong 
test compared AUC values among CT parameters.

3 Results

3.1 Demographic, clinical and laboratory 
characteristics of the training dataset

As shown in Table 1, a total of 122 patients [73 men, 49 women; 
age median 68.50 (60.00, 78.75) years] were enrolled in this study. No 
patients reported previous infection with SARS-CoV-2.

The median and IQR for the time interval between the follow-up 
CT and initial visit CT was 54 days [43, 75], respectively. Based on 
whether de Novo fibrotic ILAs were present on the follow-up CT 
(Supplementary Table S1), all patients were divided into a nonfibrotic 
group (n = 54) and a fibrotic group (n = 68).

In the fibrotic group, patients were generally older [median (IQR): 
74.50 (66.00, 84.25) vs. 64.00 (51.75, 69.00), p <  0.001], more 
frequently categorized as severe/critical at their initial visit (57.35% vs. 
18.52%, p < 0.001), and more likely to possess at least one pre-existing 
comorbidity (100% vs. 87.04%, p = 0.008) than those in the nonfibrotic 
group (Table 1).

A comparison of the clinical and laboratory test results and initial 
clinical symptoms is presented in Supplementary Tables S2, S3, 
respectively. Anemia (47.06% vs. 14.81%, p = 0.001) and increased 
hsCRP (51.47% vs. 24.07%, p =  0.01) were more prevalent in the 
fibrotic group compared to the nonfibrotic group 
(Supplementary Table S2). Supplementary Table S3 shows that the 
fibrotic group exhibited more observations of chest tightness (50.00% 
vs. 27.78%, p = 0.02) than the nonfibrotic group.

3.2 Comparison of the qualitative CT 
features, the CT score, and quantitative CT 
parameters at baseline within the training 
dataset

The ICC for the CT score between the two radiologists was 0.99, 
indicating nearly perfect agreement. The Bland–Altman plot 
(Supplementary Figure S1) also demonstrated excellent interobserver 
reliability in the quantitative assessment of lung involvement using the 
CT score.

As shown in Table 2, patients in the fibrotic group had much 
higher CT score than those in the nonfibrotic group [median (IQR): 
14.00 (7.75, 17.00) vs. 7.00 (3.00, 9.75), p < 0.001]. The patients in 
the fibrotic group were more likely to have higher prevalences of 
GGO (100.00% vs. 83.33%, p = 0.002) and consolidation (52.94% 
vs. 27.78%, p =  0.009) at the initial CT than those in the 
nonfibrotic group.

As for the quantitative CT parameters, compared with the 
nonfibrotic group, the patients in the fibrotic group had higher 
levels of baseline PV, CV, GV, and PM (all p <  0.001). For the 
blood volume distribution, patients in the fibrotic group had 
significantly lower BV5% compared with patients in the 

TABLE 1 Group comparison of demographic and clinical characteristics.

Characteristics All cohort Nonfibrotic cohort Fibrotic cohort p

Number of cases 122 54 68 /

Sex 0.07

Male 73 (59.84) 27 (50.00) 46 (67.65) /

Female 49 (40.16) 27 (50.00) 22 (32.35) /

Age [median (IQR), years] 68.50 [60.00, 78.75] 64.00 [51.75, 69.00] 74.50 [66.00, 84.25] <0.001*

Clinical type <0.001*

Mild/moderate 73 (59.84) 44 (81.48) 29 (42.65) /

Severe/critical 49 (40.16) 10 (18.52) 39 (57.35) /

Comorbidity 115 (94.26) 47 (87.04) 68 (100.00) 0.008*

Diabetes 33 (27.05) 12 (22.22) 21 (30.88) 0.39

Cardiovascular disease 60 (49.18) 23 (42.59) 37 (54.41) 0.27

Cerebral artery disease 18 (14.75) 5 (9.26) 13 (19.12) 0.20

Chronic lung disease 40 (32.79) 13 (24.07) 27 (39.71) 0.10

Chronic kidney disease 14 (11.48) 4 (7.41) 10 (14.71) 0.33

Chronic liver disease 2 (1.64) 0 (0.00) 2 (2.94) 0.58

Immunocompromised status or 

malignancies

58 (47.54) 23 (42.59) 35 (51.47) 0.43

Except where indicated, the data are the numbers of patients, with percentages in parentheses. IQR: Interquartile range. *Denotes p < 0.05.
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nonfibrotic group (p = 0.003) on the baseline CT during the acute 
infection phase.

3.3 Comparison of the CT features 
between the initial and follow-up chest CT 
in the training dataset

At the 3-month follow-up chest CT (Supplementary Table S1), 
persistent GGO was observed in 103 of 122 patients (84.43%), while 
15 of 122 patients (12.30%) exhibited consolidation. Fibrotic ILAs 
were present in 68 of 122 patients (55.74%).

As detailed in Table 3, compared with the initial chest CT, the 
percentage of patients with consolidation (41.80% vs.12.30%, 
p < 0.001) was significantly reduced in the follow-up CT. Furthermore, 
the follow-up CT showed notable Decreases in the CT score, PV, CV, 
GV, PM and PA (all p < 0.001).

3.4 Follow-up findings of the 
microcirculation in the training dataset

In contrast to PV, BV5% demonstrated a significant increase in the 
follow-up CT (p < 0.001), while BV10% had a notable Decline in the 
follow-up CT compared with the initial CT (p <  0.01) (Figure 5). 
Concurrently, the BV5% of the patients in the fibrotic group was 
significantly lower at both the initial (p = 0.008) and follow-up CT 
(p = 0.048) compared to that of the nonfibrotic group (Figure 5).

3.5 Predictive value of quantitative CT 
parameters versus CT score for fibrotic 
ILAs

The findings from the ROC curve analysis and the optimal cutoff 
values for all CT parameters are shown in Supplementary Table S4.

The univariate logistic regression analysis (Supplementary Table S5) 
showed that age over 68.5 years (p < 0.001), being male (p = 0.0497), 
severe/critical clinical type (p <  0.001), anemia (p <  0.001), and 
increased hsCRP (p = 0.02) at the initial visit were associated with a 
greater likelihood of fibrotic ILAs.

Using these variables as covariates, a multivariate logistic 
regression analysis was performed for each CT parameter. Table 4 
shows the multivariate outcomes that indicated that PV (adjusted OR 
3.28, 95% CI: 1.20–9.31, p = 0.02), CV (adjusted OR 3.77, 95% CI: 
1.37–10.75, p =  0.01), GV (adjusted OR 3.38, 95% CI: 1.26–9.38, 
p =  0.02), the CT score (adjusted OR 12.06, 95% CI: 3.15–58.89, 
p < 0.001), and PM (adjusted OR 3.58, 95% CI: 1.28–10.46, p = 0.02) 
were independent predictors for fibrotic ILAs at their respective cutoff 
values. Conversely, BV5% at its cutoff value, despite showing a 
negative association with fibrotic ILAs in the initial univariate logistic 
regression analysis (OR 0.33, 95% CI: 0.16–0.70, p = 0.004), was not 
an independent predictor in the subsequent multivariate models after 
adjustment for the above confounders (p = 0.50).

The ROC curves of the PV, PM, CV, GV, and the CT score are 
shown in Figure  6A. As detailed in Supplementary Table S4, CV 
demonstrated the highest AUC value (0.80, 95% CI: 0.72–0.88) 
compared with PV (0.79, 95% CI: 0.71–0.86), GV (0.78, 95% CI: 

TABLE 2 Group comparison of initial CT features.

CT features All cohort Nonfibrotic cohort Fibrotic cohort p

Number of cases 122 54 68 /

GGO 113 (92.62) 45 (83.33) 68 (100.00) 0.002*

consolidation 51 (41.80) 15 (27.78) 36 (52.94) 0.009*

CT score

LUL (median [IQR]) 2.00 [1.00, 3.00] 1.00 [1.00, 2.00] 2.00 [1.00, 3.00] <0.001*

LLL [median (IQR)] 2.00 [2.00, 3.00] 2.00 [1.00, 3.00] 3.00 [2.00, 4.00] <0.001*

RUL [median (IQR)] 2.00 [1.00, 3.00] 1.00 [0.00, 2.00] 2.00 [2.00, 3.00] <0.001*

RML [median (IQR)] 2.00 [0.00, 3.00] 1.00 [0.00, 2.00] 2.50 [1.75, 3.00] <0.001*

RLL [median (IQR)] 2.00 [2.00, 4.00] 2.00 [1.00, 2.00] 3.00 [2.00, 4.00] <0.001*

Total [median (IQR)] 9.50 [6.25, 15.00] 7.00 [3.00, 9.75] 14.00 [7.75, 17.00] <0.001*

Lober number [median (IQR)] 5.00 [4.00, 5.00] 4.50 [2.00, 5.00] 5.00 [4.00, 5.00] 0.005*

Quantitative CT parameters

PV [median (IQR)]/ml 182.10 [44.25, 578.07] 72.81 [14.12, 194.55] 337.11 [113.45, 858.41] <0.001*

CV [median (IQR)]/ml 49.08 [12.87, 146.80] 18.36 [2.67, 48.78] 99.53 [38.23, 293.41] <0.001*

GV [median (IQR)]/ml 133.53 [28.47, 344.33] 52.41 [10.41, 134.38] 225.96 [73.63, 500.65] <0.001*

PM [median (IQR)]/g 100.75 [25.22, 330.27] 42.29 [7.90, 103.04] 193.15 [67.14, 527.08] <0.001*

BV5% [mean (SD)] 39.90% (11.07%) 43.25% (10.65%) 37.24% (10.74%) 0.003*

PA [median (IQR)]/HU
−397.23 [−439.79, 

−355.83]
−423.30 [−461.94, −358.31] −385.00 [−432.68, −355.96] 0.11

Except where indicated, the data are the numbers of patients, with percentages in parentheses. GGO, ground-glass opacity; LUL, left upper lobe; LLL, left lower lobe; RUL, right upper lobe; 
RML, right middle lobe; RLL, right lower lobe; PV, pneumonia volume; CV, consolidation volume; GV, ground-glass opacity volume; PM, pneumonia mass; BV5%, the percentage of the 
volume of blood contained in vessels with a cross-sectional area lower than 5 mm2; PA, mean attenuation of pneumonia; IQR, Interquartile range. *Denotes p < 0.05.
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0.70–0.86), PM (0.79, 95% CI: 0.71–0.87), and the CT score (0.77, 95% 
CI: 0.69–0.85). However, there was no significant difference among 
the AUC values of these AI-derived CT parameters and the CT score 
examined by the Delong test (all p > 0.05). In addition, the CT score 
had the lowest sensitivity (0.54) relative to these AI-derived 
quantitative CT parameters (PV: 0.69, CV: 0.75, GV: 0.68, PM: 0.69).

3.6 Validation of the predictive role of 
quantitative CT parameters for fibrotic ILAs

As detailed in Supplementary Table S6, the validation dataset 
revealed that 26 out of 45 patients developed de Novo fibrotic ILAs in 
follow-up CT scans.

The ROC curve analysis and optimal cutoff values for all CT 
parameters are presented in Supplementary Table S7. Univariate 
logistic regression analysis (Supplementary Table S8) identified that 
the severe/critical clinical type (p = 0.03), elevated WBC (p = 0.01), and 
increased neutrophil count (p = 0.01) at the initial visit were 
significantly associated with a higher likelihood of developing 
fibrotic ILAs.

Building on these findings, multivariate logistic regression 
analyses were conducted using these variables as covariates for each 
CT parameter. The results, shown in Supplementary Table S9, indicate 
that PV, CV, GV, PM, PA, BV5%, and the CT score are all independent 
predictors of fibrotic ILAs at their respective cutoff values (all adjusted 
p < 0.05).

The ROC curves depicted in Figure 6B demonstrate the AUC 
values for various CT parameters: PV (0.86, 95% CI: 0.76–0.97), CV 

(0.90, 95% CI: 0.82–0.99), GV (0.83, 95% CI: 0.71–0.95), PM (0.88, 
95% CI: 0.78–0.98), PA (0.83, 95% CI: 0.71–0.95), BV5% (0.68, 95% 
CI: 0.52–0.84), and the CT score (0.85, 95% CI: 0.73–0.97). Despite 
the differences in AUC values, the DeLong test indicated no significant 
statistical differences among these AI-derived CT parameters and the 
CT score (all p > 0.05).

4 Discussion

This retrospective study revealed that 55.74% patients exhibited 
fibrotic ILAs in the 3-month follow-up. Patients with fibrotic ILAs 
tended to be  older, were more likely initially classified as severe/
critical, and had a higher incidence of pre-existing comorbidities, 
compared to those without fibrotic ILAs. Moreover, anemia and 
elevated levels of hsCRP at the initial visit were more commonly 
observed in the fibrotic ILAs group. Independent predictors of fibrotic 
ILAs included PV, CV, GV, and PM as well as the initial CT score, with 
validation confirmed in the subsequent dataset. Based on the ROC 
analysis, the AUC values among these five parameters did not show 
significant differences. In addition, there was a notable redistribution 
of the pulmonary blood volume in the follow-up CT, as evidenced by 
an increased BV5% and a Decreased BV10%. Additionally, patients 
with fibrotic ILAs were observed to have a consistently lower BV5% 
at both the initial and follow-up CT compared to those who did not 
develop fibrotic ILAs.

The proportion of patients with fibrotic changes post COVID-19 in 
our study was higher than that in some studies (ranging from 1.6 to 
28.4%) (22, 23, 26–28). This discrepancy could be attributed to varying 

TABLE 3 Comparison of CT Findings and scores between the initial and follow-up.

CT features Baseline CT Follow-up CT p

Number of cases 122 122 /

GGO (%) 113 (92.62) 103 (84.43) 0.07

Consolidation (%) 51 (41.80) 15 (12.30) <0.001*

CT score

LUL (median [IQR]) 2.00 [1.00, 3.00] 1.00 [0.00, 2.00] 0.01*

LLL (median [IQR]) 2.00 [2.00, 3.00] 2.00 [0.00, 3.00] 0.01*

RUL (median [IQR]) 2.00 [1.00, 3.00] 1.00 [0.00, 2.00] 0.01*

RML (median [IQR]) 2.00 [0.00, 3.00] 1.00 [0.00, 2.00] 0.002*

RLL (median [IQR]) 2.00 [2.00, 4.00] 2.00 [1.00, 3.00] 0.007*

Total (median [IQR]) 9.50 [6.25, 15.00] 6.00 [2.00, 13.00] 0.002*

Lober number(median [IQR]) 5.00 [4.00, 5.00] 4.00 [2.00, 5.00] 0.002*

AI derived CT features

PV (median [IQR])/ml 182.10 [44.25, 578.07] 49.41 [4.49, 173.18] <0.001*

CV (median [IQR])/ml 49.08 [12.87, 146.80] 9.63 [1.05, 37.51] <0.001*

GV (median [IQR])/ml 133.53 [28.47, 344.33] 37.16 [3.84, 136.85] <0.001*

PM (median [IQR])/g 100.75 [25.22, 330.27] 25.22 [2.38, 93.45] <0.001*

BV5% (mean [SD]) 40.94% [31.86, 48.77%] 47.12% [35.91, 54.42%] <0.001*

PA (median [IQR])/HU 133.53 [28.47, 344.33] 37.16 [3.84, 136.85] <0.001*

Except where indicated, the data are the numbers of patients, with percentages in parentheses. IQR, Interquartile range; GGO, ground-glass opacity; LUL, left upper lobe; LLL, left lower lobe; 
RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; PV, pneumonia volume; CV, consolidation volume; GV, ground-glass opacity volume; PM: pneumonia mass; BV5%: the 
percentage of the volume of blood contained in vessels with cross-sectional areas less than 5 mm2; PA, the attenuation of pneumonia. *Denotes p < 0.05.
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definitions of fibrotic changes on CT. Some studies have limited the 
definition of fibrosis to the occurrence of volume loss and traction 
bronchiectasis and/or bronchiolectasis (27), which led to a lower 
incidence of fibrotic ILAs. Also, these different results May have been 
related to the younger age of their population, compared with our 
older population of patients who had a higher rate of pre-existing 
comorbidities (23). In addition, most patients in our study had no 
prior exposure to the virus, making them more severe at baseline.

Previous studies have demonstrated that the CT score correlates 
with inflammation Markers and outcomes, serving as an indicator of 
lung inflammation severity (29). While the precise mechanism of fibrotic 
ILAs post-COVID-19 remains unclear, it is thought to be driven by 
persistent, severe inflammation and the release of fibrosis-promoting 
factors such as TGF-β (30). This suggests that the baseline CT score May 
also be  a predictive Marker for post-COVID fibrosis, which was 
confirmed by recent researches (13, 31). In our study, the PV, CV, GV, 
PM, and the CT score were all independent predictors of fibrotic ILAs. 
Based on the ROC curve analysis, the AI-derived quantitative CT 
parameters matched the predictive capacity of the CT score for fibrotic 

ILAs. Furthermore, the sensitivities of these AI-derived parameters were 
all higher than the CT score, suggesting that the AI-derived parameters 
May be more sensitive predictors relative to the CT score. In addition, 
AI tools can offer the potential for faster, more stable, and more objective 
assessments. The predictive performance of the proposed AI-derived 
quantitative CT parameters was further validated in COVID-19 patients 
from a later time period in a broader clinical setting to demonstrate its 
generalizability within a single center.

In our study, the AI-based pulmonary segmentation tool was 
utilized for the first time to longitudinally evaluate changes in the 
pulmonary blood volume distribution after COVID-19. A significant 
increase in BV5% and a Decrease in BV10% were observed in the 
follow-up CT, suggesting a post-infection recovery of microcirculation 
dysfunction. However, recently, Mohamed I et al. reported that 87.4% 
patients exhibited perfusion abnormalities in the 6-month follow-up 
dual-energy CT (DECT) angiography, which suggested that lung 
microcirculation dysfunction can persist up to 6 months following 
COVID-19 infection (32). Also, Kuchler et al. found that persistent 
endothelial dysfunction was related to ongoing symptoms in patients 

FIGURE 5

Alterations in the distribution of the pulmonary vascular volume are presented as follows. (A) The bar plot illustrates variations in the proportion of 
blood volume across the three distinct groups at the initial and follow-up CT scans. The three groups included BV5 for blood volume in vessels with 
cross-sectional areas less than 5  mm2, BV5–10 for those with cross-sectional areas between 5 and 10  mm2, and BV10 for those with cross-sectional 
areas larger than 10  mm2. (B) The boxplot depicts the percentage of blood volume in vessels with cross-sectional areas less than 5  mm2 relative to the 
total pulmonary blood volume (BV5%) in the non-fibrotic and fibrotic groups in the initial and follow-up CT. *Denotes p  < 0.05; **denotes p  < 0.01; 
***denotes p  < 0.001.

TABLE 4 Univariate and multivariate logistic regression analysis of CT quantitative parameters and CT score.

CT features Unadjusted model (n  =  122) Adjusted model (n  =  122)

Odd ratio 95%CI p Odd ratio 95%CI p

PV > cutoff 6.39 2.88–14.19 <0.001* 3.28 1.20–9.31 0.02*

CV > cutoff 7.12 3.2–15.88 <0.001* 3.77 1.37–10.75 0.01*

GV > cutoff 6.59 2.95–14.74 <0.001* 3.38 1.26–9.38 0.02*

CT score > cutoff 14.92 4.85–45.94 <0.001* 12.06 3.15–58.89 <0.001*

PM > cutoff 7.06 3.14–15.85 <0.001* 3.58 1.28–10.46 0.02*

BV5% > cutoff 0.33 0.16–0.70 0.004* 0.72 0.29–1.87 0.50

PA > cutoff 2.58 1.22–5.47 0.01* 1.88 0.75–4.77 0.18

Adjusted models used age > 68.50, sex, clinical type, and abnormal laboratory tests (anemia and elevated high-sensitivity C-reactive protein level (hsCRP)) as covariates. The median of age, 
68.50 years, was used as the age cutoff value. PV, pneumonia volume; CV, consolidation volume; GV, ground-glass opacity volume; PM, pneumonia mass; BV5%, the percentage of the volume 
of blood contained in vessels with cross-sectional areas less than 5 mm2; PA, the attenuation of pneumonia. *Denotes p < 0.05.
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after COVID-19 infection (33). Correspondingly, in our study, the 
BV5% in patients with fibrotic ILAs was lower than that in patients 
without fibrotic ILAs at the follow-up CT, suggesting persistent 
microcirculation dysfunction in patients with fibrotic ILAs. However, 
the relationship between persistent microcirculation dysfunction and 
fibrotic ILAs has not yet been investigated.

Our study had several limitations. First, the study was 
performed in a single-center setting with a small number of study 
participants. Second, a correlative analysis of the temporal changes 
on the CT scans with symptoms and lung function was not 
performed. Third, a longer period of monitoring is required to 
estimate whether the fibrotic changes and microcirculation 
dysfunction were irreversible.

In conclusion, our study demonstrated that quantitative CT 
parameters, including PV, CV, GV, and PM, were independent 
predictors for fibrotic ILAs with predictive capabilities comparable to 
the CT score. In addition, the vascular segmentation results showed 
ongoing microcirculation dysfunction in patients with fibrotic ILAs, 
which suggests a potential correlation between BV5% and fibrotic 
ILAs. Thus, our results indicate that an AI-based CT quantitative 
analysis might be an effective and important tool in the management 
of post-COVID-19 sequel.
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