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Timely and unbiased evaluation of Autism Spectrum Disorder (ASD) is essential 
for providing lasting benefits to affected individuals. However, conventional 
ASD assessment heavily relies on subjective criteria, lacking objectivity. 
Recent advancements propose the integration of modern processes, 
including artificial intelligence-based eye-tracking technology, for early ASD 
assessment. Nonetheless, the current diagnostic procedures for ASD often 
involve specialized investigations that are both time-consuming and costly, 
heavily reliant on the proficiency of specialists and employed techniques. To 
address the pressing need for prompt, efficient, and precise ASD diagnosis, 
an exploration of sophisticated intelligent techniques capable of automating 
disease categorization was presented. This study has utilized a freely accessible 
dataset comprising 547 eye-tracking systems that can be used to scan 
pathways obtained from 328 characteristically emerging children and 219 
children with autism. To counter overfitting, state-of-the-art image resampling 
approaches to expand the training dataset were employed. Leveraging deep 
learning algorithms, specifically MobileNet, VGG19, DenseNet169, and a hybrid 
of MobileNet-VGG19, automated classifiers, that hold promise for enhancing 
diagnostic precision and effectiveness, was developed. The MobileNet model 
demonstrated superior performance compared to existing systems, achieving an 
impressive accuracy of 100%, while the VGG19 model achieved 92% accuracy. 
These findings demonstrate the potential of eye-tracking data to aid physicians 
in efficiently and accurately screening for autism. Moreover, the reported results 
suggest that deep learning approaches outperform existing event detection 
algorithms, achieving a similar level of accuracy as manual coding. Users and 
healthcare professionals can utilize these classifiers to enhance the accuracy 
rate of ASD diagnosis. The development of these automated classifiers based on 
deep learning algorithms holds promise for enhancing the diagnostic precision 
and effectiveness of ASD assessment, addressing the pressing need for prompt, 
efficient, and precise ASD diagnosis.
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1 Introduction

Autism Spectrum Disorder (ASD) is a neurological condition that 
involves complications in both spoken and non-spoken 
communication, as well as challenges in social interaction. It is also 
marked by monotonous and stereotyped behaviors (1). The intensity 
of indicators and the impact of ASD differ from one circumstance to 
another. As to the Centers for Disease Control and Prevention (CDC), 
the commonness of ASD is assessed to be  1  in 54 children. This 
condition affects individuals from diverse racial, ethnic, and 
socioeconomic backgrounds. Furthermore, the prevalence of ASD in 
boys is four times higher than in girls. Additionally, girls with ASD 
often have fewer observable symptoms compared to boys (2). Autism 
is a persistent and enduring condition that remains present throughout 
a person’s whole life (3). Hence, it is of utmost importance to identify 
ASD at an early stage, since individuals who are identified with ASD 
during early infancy can greatly benefit from suitable therapies, 
leading to a favorable long-term result (4).

Facial expressions communicate a wealth of personal, emotional, 
and social information from early infancy. Even in a short interaction, 
people may effortlessly focus on and rapidly comprehend the intricate 
details of a person’s face, accurately identifying their emotional state 
and social situation, and frequently recalling their face later (5). 
Neuroimaging research has indicated that eye interaction can 
stimulate brain movement in parts of the brain associated with social 
interactions. Additionally, studies on human development have 
provided evidence that infants and young children have a natural 
inclination to pay attention to and comprehend faces that make direct 
eye contact. Increasing evidence suggests that ASD is related with an 
aberrant design pattern of eye tracking conduct (6, 7). Therefore, it is 
widely accepted that autism is characterized by impairments in facial 
handling. Nevertheless, the precise attributes of these discrepancies 
and the correlations among atypical face processing and deviant socio-
emotional function in ASD remain inadequately comprehended.

Eye tracking, a non-invasive and straightforward measurement 
technique, has garnered the attention of scientists in recent years 
(8–11). The use of eye tracking in ASD research is justified by the 
correlation between ASD and different attention patterns, which differ 
from those seen in typical development (12–15). Hence, the use of eye 
tracking based system to quantify eye activities and gaze designs 
should assist in understanding the aberrant behavior associated with 
persons diagnosed with ASD, as well as distinguishing individuals 
with ASD from typically developing (TD) individuals. Eye tracking is 
a method used by certain computational systems to aid in the 
identification of mental problems (16, 17). Eye tracking technology is 
beneficial in addressing ASD, a neurodevelopmental disease marked 
by challenges in social communication and repetitive activities. An 
early indication of ASD is the absence of visual engagement, namely 
the lack of eye contact. This trait is seen in infants as early as six 
months old, irrespective of the cultural context in which they are 
raised. Eye-tracking technology is essential in diagnosing ASD 
through the analysis of visual patterns (18). A device based on 
eye-tracking framework classically comprises a high-determination 
digital camera device and a sophisticated technique based machine 
learning algorithm that accurately determines the coordinates of eye 
gaze when persons watch films or pictures. This technology’s eye gaze 
data may help customize therapy to ASD patients’ social issues (19). 
To further understand how eye-tracking biomarkers might 

discriminate ASD subgroups, we should explore the effects of closely 
related mental illnesses such as attention deficit hyperactivity disorder 
(ADHD), nervousness, and attitude complaint. We  may better 
understand how these variables may affect our ability to distinguish 
different groups in a medical setting by doing this. Research indicates 
that children who having the cases of Autism ASD and ADHD tend 
to have shorter periods of focused attention on faces while looking at 
static social cues that are not very complex, compared to children who 
simply have ASD and those with TD (20).

Research has shown that eye-tracking data can be  utilized as 
medical indicators that can be applied in medical health domain to 
identify ASD in children at an initial state (18). Biomarkers, sometimes 
referred to as biological markers, are quantifiable and impartial signs 
that offer insights around a patient’s apparent organic state. Bodily 
fluids or soft tissue biopsies are frequently employed to assess the 
efficacy of handling for a disease or medicinal disorder.

A crucial element of social interaction is maintaining eye contact, 
a skill that individuals with ASD often find challenging. Eye tracking 
technology may be applied to measure the length of time someone 
maintains eye interaction and the occurrence and track of their eye 
movements. This provides measurable signs of difficulties in social 
interactions. Individuals with ASD may also exhibit other irregularities 
in pictorial processing, including heightened focus on specific details, 
sensory hypersensitivity, and difficulties with complex visual tasks. 
Hence, the sophisticated deep learning algorithms, namely MobileNet, 
VGG19, DenseNet169, and the hybrid of MobileNet-VGG19, were 
applied for the early-stage recognition of ASD. The primary 
contributions of this research article are as follows:

 • This work introduces a new method for creating eye-tracking 
event detectors using a deep learning methodology.

 • The research asserts that it has attained accuracy (100%) in 
identifying ASD by employing the MobileNet algorithm. This 
indicates that the DenseNet169 and hybrid of MobileNet-VGG19 
model that was created has demonstrated encouraging outcomes 
in accurately differentiating persons with ASD from those who 
do not have ASD, using eye tracking data.

 • The proposed methodology was compared with different existing 
systems that used the same dataset; it is observed that our model 
achieved high accuracy because we  have used a different 
preprocessing approach from improving dataset.

 • This work presents an innovative artificial intelligence (AI) 
technique for the diagnosis of ASD. Its objective is to differentiate 
persons with autism from those without utilizing deep learning 
models, relying on publicly accessible eye-tracking datasets. The 
suggested approach was evaluated against other existing systems 
that utilized the same dataset. It was found that the proposed 
system achieved a high accuracy rate of 100% when compared to 
one of the deep learning models.

2 Background

ASD can be detected by early screening techniques utilizing DL 
algorithms. These approaches have become more prominent because 
of their accuracy rate and capability to grip large volumes of data. It 
assists experts in automating the diagnostic procedure and reducing 
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the time spent on tests (21, 22). AI techniques are used in the 
rehabilitation process to lessen symptoms of ASD. This research 
analyzes the utilization of DL approaches in the past five years for 
diagnosing ASD through the application of eye tracking techniques.

Fang et al. (23) introduced a novel method for identifying children 
with ASD based on stimuli that include the ability to follow someone’s 
gaze. Individuals with ASD exhibited typical patterns of visual 
attention, especially while observing social settings. The scientists 
developed a novel deep neural network (DNN) method to abstract 
distinctive characteristics and categorize children with ASD and 
healthy controls based on individual images.

Elbattah et al. (24) developed a machine learning (ML)-based 
approach to aid in the diagnosing process. This approach relies on 
acquiring knowledge of sequence-oriented patterns in action eye 
motions. The primary philosophy was to represent eye-tracking data 
as written documents that analyze a sequence of rapid eye movements 
(saccades) and periods of gaze fixation. Therefore, the study utilized 
the natural language processing (NLP) technique to transform the 
unorganized eye-tracking information.

Li et al. (25) introduced an automated evaluation framework for 
detecting typical intonation patterns and predictable unique phrases 
that are important to ASD. Their focus was on the linguistic and 
communication difficulties experienced by young children with 
ASD. At first, the scientists utilized the Open SMILE toolkit to extract 
high-dimensional auditory characteristics at the sound level. They also 
employed a support vector machine (SVM) backend as the standard 
baseline. Furthermore, the researchers suggested many DNN 
arrangements and structures for representing a shared prosody label 
derived directly from the audio spectrogram after the constant 
Q transform.

Identification and intervention for ASD have enduring effects on 
both ASD children as well as their families, necessitating informative, 
medical, social, and economic assistance to enhance their overall well-
being. Professionals have problems in conducting ASD assessments 
due to the absence of recognized biophysiological diagnostic 
techniques (25, 26). Therefore, the diagnosis is often determined by a 
thorough evaluation of behavior, using reliable and valid standardized 
techniques such as the Autism Diagnostic Observation Schedule 
(ADOS) (27) and the Autism Diagnostic Interview-Revised (ADI-R) 
(28). These tools, widely approved in investigation and research 
domains, are considered the most reliable method for diagnosing ASD 
in medical situations (29, 30). However, using them involves the use 
of many materials, a significant amount of time, and is somewhat 
expensive (25, 26). Furthermore, the diagnostic technique necessitates 
the involvement of skilled and knowledgeable interviewers, who have 
the potential to influence the process. This is accompanied by the 
inclusion of intricate clinical procedures (25, 31). Collectively, these 
difficulties frequently contribute to a postponed identification, leading 
to a delay in the initiation of early intervention (26). Research indicates 
that early treatments for children with ASD before the age of five result 
in a much higher success rate of 67%, compared to a success rate of 
just 11% when interventions begin after the age of 5 (32).

Eye-tracking technology is regarded as a beneficial method for 
doing research on ASD since it allows for the early detection of autism 
and its characteristics (33, 34) in a more objective and dependable 
manner compared to traditional assessments (35). There has been a 
significant rise in the amount of eye-tracking research focused on 
autism in the past period. This increase can be attributed to improved 

accessibility to eye-tracking technology and the development of 
specialized devices and software that make recording eye-tracking 
data easier and more cost-effective.

Machine learning and eye-tracking devices are often used 
together. Data-driven machine learning uses sophisticated 
mathematics learning, statistical estimates, and information theories 
(36, 37). This method trains a computer program to examine data 
and find statistical trends (36–39). Machine learning may improve 
autism investigation studies by giving an unbiased and 
reproduceable second evaluation (18), including initial autism 
detection (40), analysis (41), behavior (16), and brain activity (17). 
Machine learning may also be a viable biomarker-based tool for 
objective ASD diagnosis (42). ASD is diagnosed via machine 
learning in IoT systems (43). By helping ASD youngsters learn, 
assistive technology may improve their lives. This method is backed 
by studies (44).

Various studies have utilized artificial neural network (ANN) to 
classify cases of ASD. For example, in ref. (18), the authors investigated 
the integration of eye-tracking technologies with ANN to assist in the 
detection of ASD. Initially, other approaches that did not use neural 
networks were used. The precision achieved by this ensemble of 
models was adequate. Subsequently, the model underwent testing 
using several ANN structures. According to the results, the model 
with a single layer of 200 neurons achieves the maximum level of 
accuracy. In ref. (45), researchers examined ASD children’s visual 
attention when observing human faces. They extract semantic 
characteristics using DNN. When viewing human faces, ASD feature 
maps differ from those without ASD. These feature maps are combined 
with CASNet features. They contrasted CASNet to six different deep 
learning based techniques. CASNet has outdone all other models in 
every situation. The scientists used eye movement patterns to classify 
children with TD and ASD (46). They combined CNNs with LSTMs. 
CNN-LSTM extracted features from saliency maps and scan route 
fixation points. SalGAN pretrained prediction model preprocessed 
and input network data. The validation dataset accuracy of the 
proposed model is 74.22%.

Akter et al. (47) proposed a method that uses transfer learning to 
identify ASD by analyzing face features. They developed an improved 
facial recognition system using transfer learning, which can accurately 
identify individuals with ASD.

Raj and Masood (48) utilized several machine and deep learning 
techniques with the aim of identifying ASD in youngsters. They 
utilized three publicly available datasets obtained from the 
UCI Repository.

Xie et al. (49) proposed a two-stream deep learning network for 
the detection of visual attention in individuals with ASD. The 
suggested framework was built using two VGGNets that were derived 
from the VGG16 architecture and were similar to each other.

3 Methods

This section presents in depth the planned methodology applied 
to develop ASD detection system using deep learning techniques 
capable to detect ASD from eye tracking images based features. This 
methodology includes dataset collection, data preprocessing, deep 
learning classification model, evaluation metrics and results analysis. 
The framework of this methodology is shown in Figure 1.
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3.1 Dataset

The dataset was obtained from a public repository that contains 
eye-tracking images. The collection presently comprises 547 images. 
The default images dimensions were established at 640 × 480. More 
precisely, there were 328 images for the people without ASD, and 219 
images for the persons diagnosed with ASD. Figure 2 shows samples 
of eye-tracking images that were used for examining the 
proposed methodology.

3.2 Data preprocessing

It is an important step in making the images dataset for training 
machine learning models. We  applied various data preprocessing 
methods to make certain the dataset is suitable for model training 
which are discussed as follows.

 • Image Resize: The first step in data preprocessing encompasses 
resizing all images in the dataset to a standard size of 640 × 480 
pixels. This ensures uniformity in image measurements and 
facilitates effective processing during model training.

 • Image Enhancement: For all images in the dataset used, we applied 
a specific preprocessing step by improving their resolution by 
20% using the Image Enhance module. This enhancement aims 
to enhance the quality and clarity of the images data, particularly 
for those where it’s considered necessary.

 • Vectorization: After resizing and enhancing the images, 
we converted them into numerical arrays using vectorization 
techniques. This step includes transforming each image into a 
multi-dimensional array of pixel values, making it compatible 
with computational operations and deep learning algorithms.

 • Normalization: after transformation to numerical arrays, 
we normalized the pixel values to fall within the range of [0, 1]. 
Normalization ensures that the pixel values are scaled appropriately, 
facilitating more stable and efficient model training by preventing 
issues related to large variations in input images data.

 • Splitting Data: Once the images are preprocessed and 
converted into numerical arrays, we divide the dataset into 

three sets namely training, validation, and testing. This step is 
essential for evaluating model results, as it allows us to train 
the model on one subset of data, validate its performance on 
another subset, and finally test its generalization ability on a 
separate unseen subset.

 • Data Augmentation: To increase the diversity and robustness of 
the training dataset, data augmentation techniques, using the 
Image Data Generator module, was applied. This method involve 
rotation, shifting, and flipping of images, introducing variations 
that help avoid overfitting and enhance the model’s capability to 
be generalized to new, unseen images data.

3.3 Improving the deep leaning algorithms

3.3.1 The VGG19 model
The VGG19 model (50) is a sequential model architecture 

constructed in this study for the purpose of detecting ASD based on 
eye-tracking features. Initially, the model incorporates the pre-trained 
VGG19 architecture, with the weights initialized from the ImageNet 
dataset, excluding the fully connected layers, and specifying the input 
shape to match the dimensions of the input images with size of (640, 
480). Subsequently, a GlobalAveragePooling2D layer is added to 
obtain a condensed representation of the features extracted by VGG19. 
Following this, several dense layers are appended to the model, 
comprising 1,024, 128, and 64 neurons, each activated by the rectified 
linear unit (ReLU) function, to facilitate the learning of intricate 
patterns within the data. Lastly, a Dense layer with 2 units and a 
softmax activation function are employed for binary classification, 
enabling the model to predict the probability of ASD presence. 
Figure 3 shows the VGG1 model structure.

Upon compiling the model, utilizing the sparse categorical 
cross-entropy loss function and RMSprop optimizer with a 
learning rate of 0.0001, data augmentation approach is adopted 
throughout training process to improve the model’s generality 
competences. Through this architecture, the model aims to 
effectively discern the presence of ASD based on the provided 
eye-tracking features, leveraging the robustness of the VGG19 

FIGURE 1

Structure of the proposed methodology.
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convolutional neural network. Table 1 outlines the parameters of 
VGG19 model.

3.3.2 The MobileNet model
The MobileNet (51) model architecture has a sequential model 

structure, which allows for the systematic building of a neural 
network layer by layer. The MobileNet pre-trained convolutional 
neural network (CNN) is used as the basis model in this 
methodology, which is prepared with learnt representations from the 
ImageNet dataset. However, the fully connected layers of the 
MobileNet are excluded to facilitate transfer learning. Following 
integration of the MobileNet base model, a Global Average Pooling 
2D layer is used to compress the three-dimensional spaces of the 
feature maps formed by the convolutional layers. The pooling layer 
calculates the mean value of each feature map over all spatial 
locations, resulting in a fixed-size vector representation of the input 
image, regardless of its size.

Successively, many dense (completely linked) layers are added to 
capture more complex characteristics and perform classification tasks. 
The dense layers are composed of 1,024, 128, and 64 neurons, 
respectively, each of which is activated using the ReLU activation 
function. The ReLU activation function is selected for its capacity to 
introduce non-linearity, hence improving the complexity of the model 
and the efficiency of training.

The classification layer of the model that is named as output layer 
consists of a dense layer with 2 units, representing the two classes for 
binary classification (ASD or TD). These units are activated using the 
softmax function. This function generates probability for every class. 
This model architecture seeks to utilize the data obtained by 
MobileNet and conduct classification based on these features. It then 
proceeds to fine-tune the dense layers to suit the particular purpose 
of ASD detection using eye-tracking features. The MobileNet 
architecture is presented in Figure 4 and model’s parameters are listed 
in Table 2.

FIGURE 3

Structure of the VGG19 model.

FIGURE 2

Sample of images: (A) ASD (B) TD.
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3.3.3 The DenseNet169 model
We also applied the DenseNet169 (52) model as the base, which is 

tailored for ASD detection based on eye-tracking features. Utilizing 
pre-trained weights from the ImageNet dataset, the model excludes 
the fully connected layers for transferring learning tasks. After 
integrating a Global Average Pooling 2D layer to condense feature 
maps, dense layers capture higher-level features. Dropout layers 
mitigate overfitting, and the output layer, activated by softmax, 
produces class probabilities. With frozen base model layers, the model 
is compiled with appropriate functions and benefits from learning rate 
scheduling. Data augmentation enhances training, aligning with the 
ASD detection task’s needs. Figure  5 displays the structure of 
DenseNet169 model, and Table 3 outlines the parameters used in 
DenseNet169 model.

3.3.4 The hybrid model
The framework of this a combination model employs the 

capacities of two solidified convolutional neural network (CNN) 

structures, VGG19 (46) and MobileNet (51) models, to enhance its 
efficacy in recognizing ASD using eye-tracking features. At first, the 
model provides in the pre-trained VGG19 and MobileNet structures, 
although without their completely connected layers. It then freezes all 
layers to maintain their learnt representations. Global Average Pooling 
2D layers are subsequently employed to acquire feature representations 
from the output of each model. These representations are merged to 
develop a united feature vector, which is then handled through 
numerous robust layers to capture complicated data patterns. 
Following that, the model is collected utilizing acceptable loss and 
optimization functions, while data augmentation approaches are 
employed during training to improve its generalization capability. This 
hybrid model aims to improve classification accuracy in the ASD 
detection task by combining the features learned by VGG19 and 
MobileNet. By using the capabilities of both architectures, it seeks to 
attain heightened accuracy. Table 4 summarizes the parameters used 
in the hybrid VGG19-MobileNet model, and Figure 6 displays the 
structure of hybrid model.

3.4 Evaluation metrics

Assessing the performance and testing results obtained by the 
proposed deep learning models namely MobileNet, VGG19, 
DenseNet169 and hybrid of MobileNet-VGG19 are crucial for 
gauging the effectiveness of the models. The evaluation measures 
provide an alternative perspective on the model’s advantages and 
disadvantages. There are several matrices used to quantify 
performance, including accuracy, recall (sensitivity), specificity, 
and F1-score. These evaluation matrices, expressed by 
Equations (1–4), can be calculated from the confusion matrix.

 
Accuracy TP TN

FP FN TP TN
=

+
+ + +

×100
 

(1)

 
Recall Sensitivity

TP
TP FP

= =
+

×100%
 

(2)

TABLE 1 Parameters of the VGG19 model.

Parameter Description

Architecture Sequential

Base model VGG19 (pre-trained on ImageNet)

Input shape (640, 480, 3)

Global pooling layer Global Average Pooling 2D

Dense layers 1,024, 128, 64 neurons with ReLU activation

Output layer
Dense layer with 2 units, softmax activation (binary 

classification)

Loss function Sparse categorical cross-entropy

Optimizer RMSprop with learning rate of 0.0001

Metrics Accuracy

Data augmentation Applied during training using Image Data Generator

Training batch size 16

Validation batch size 32

Number of epochs 100

FIGURE 4

Structure of the MobileNet model.
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Specificity TN

TN FN
=

+
×100%

 
(3)

 
F score precision Recall

precision Recall
1 2 100− = ∗

×
+

× %

 
(4)

where TP, TN, FP, and FN stand for true positives, true negatives, false 
positives, and false negatives, respectively.

4 Results

This section focuses on the gained testing results of each model 
for spotting ASD using eye-tracking characteristics. The testing 

process included evaluation of four separate deep learning models: 
MobileNet, VGG19, DenseNet169, and a combination of VGG19 and 
MobileNet called the hybrid model.

4.1 Models’ configuration

The efficacy of the advanced deep learning algorithm was evaluated 
in a specific environment to identify ASD using an eye-tracking 
method. Table 5 presents the environment of the DL models.

4.2 Splitting dataset

The dataset was segregated into three subsets: training, testing, 
and validation. Table 6 displays the specific division that was employed 
in the proposed method for diagnosing ASD.

4.3 The test classification results of the 
MobileNet model

The MobileNet model demonstrated outstanding performance in all 
parameters, attaining perfect precision, recall, and F1-score for both 
ASD and non-ASD classes. This indicates that the model accurately 
categorized all cases of ASD and non-ASD without any incorrect positive 
or negative predictions, resulting in a remarkable overall accuracy of 
100%. Table 7 presents the testing classification results of MobileNet.

The impressive performance of MobileNet underscores its efficacy 
in accurately recognizing instances of ASD through the utilization of 
eye-tracking characteristics. Figure 7 depicts the confusion matrix, 
which reveals that 33 images were correctly identified as true 
negatives (TN), 22 images were correctly classified as true positives 
(TP), and there were no instances of false positives (FP) or false 
negatives (FN). Based on the empirical data, it has been determined 
that the MobileNet model obtained a high level of accuracy.

Figure 8 displays the performance of the MobileNet model. The 
model’s accuracy exhibited a progressive increase in validation 

TABLE 2 Parameters of the MobileNet model.

Parameter Description

Architecture Sequential

Weights Image net

Input shape (640, 480, 3)

Pooling layer 0.5

Dense 256

Output layer
Dense layer with 2 units, softmax activation (binary 

classification)

Loss function Sparse categorical cross-entropy

Optimizer adam with learning rate of 0.0001

Metrics Accuracy

Data augmentation Applied during training using Image Data Generator

Training batch size 16

Validation batch size 32

Number of epochs 100

FIGURE 5

Structure of the DenseNet 169 model.
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performance, starting at 50% and reaching 100%. In contrast, the 
accuracy in training performance had a smoothing effect, starting at 
65% and also reaching 100%. The decline in the MobileNet starting and 

validation performance has resulted in a fall of 1.6% to reach 0.0. This 
confirms that the MobileNet model has achieved a high 
percentage score.

FIGURE 6

Structure of the hybrid model of VGG19 and MobileNet.

TABLE 3 Parameters of the DenseNet169 model.

Parameter Description

Base model DenseNet169 pre-trained CNN initialized with ImageNet weights, excluding fully connected layers

Global Average Pooling 2D Condenses spatial dimensions of feature maps

Dense layers 512 and 256 neurons with ReLU activation, capturing higher-level features

Dropout layers Dropout rate of 0.5 for regularization, preventing overfitting

Output layer Dense layer with 2 units for binary classification, activated by softmax

Frozen base model layers Retains learned features during training

Loss function Sparse categorical cross-entropy

Optimizer RMSprop with learning rate of 0.0001

Learning rate scheduler Reduces learning rate based on validation loss

Data augmentation Applied during training to improve generalization

TABLE 4 Parameters of the hybrid model.

Parameter Description

Pre-trained models VGG19 and MobileNet are used as pre-trained CNN architectures.

Trainable layers All layers in both VGG19 and MobileNet models are frozen

Output layers Global Average Pooling 2D layers are added to the output of each model

Concatenated output The outputs of both models are concatenated to create a fused feature vector

Dense layers Several dense layers with ReLU activation functions: 1024, 128, and 64 units

Output activation Softmax activation function is used for the output layer

Loss function Sparse categorical cross entropy loss function is used

Optimizer RMSprop optimizer with a learning rate of 0.0001 is employed

Data augmentation Image data augmentation techniques are applied during training

Training epochs The model is trained for 100 epochs

Batch size Batch size is set to 16 for training and 32 for validation
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4.4 Testing results of the VGG19 model

This subsection introduces the testing classification results gained 
by the VGG19 model which achieved an accuracy of 87%, its recall, 

precision and F1-score for the ASD class were pointedly lower than 
those for the non-ASD class. This suggests that although the model 
demonstrated good performance in appropriately categorizing 
individuals without ASD, it encountered difficulties in correctly 
identifying individuals with ASD, resulting in a greater incidence of 
false negatives. Table 8 summarizes and presents the testing results of 
VGG19 model.

Further modification or improvement of the VGG19 design 
may be  required to enhance its effectiveness in diagnosing 
ASD. Figure 9 depicts the confusion matrix of the VGG19 model 
used to categorize Autism Spectrum Disorder (ASD) using an 
eye-tracking method. The VGG19 model correctly identified 31 
images as true negatives (TN) and 19 images as true positives (TP). 
However, it misclassified 3 images and incorrectly classified 2 
images as false negatives (FN).

Figure 10 illustrates the process of validating and training the 
VGG19 model. The VGG19 model achieved a validation accuracy of 
87%. The VGG19 model attained an accuracy rate of 89% in 
diagnosing Autism Spectrum Disorder (ASD) using the eye-tracking 
dataset during training. The loss of the VGG19 model decreased to 0.3.

4.5 Testing classification results of the 
hybrid VGG19-MobileNet model

The hybrid VGG19-MobileNet model exhibited strong 
performance, with a 91% accuracy with well-balanced precision, 
recall, and F1-score for both ASD and non-ASD categories. The 
hybrid model successfully utilized the advantageous qualities of both 
VGG19 and MobileNet architectures, leading to enhanced 
classification performance. Table 9 presents the testing classification 
results obtained by the hybrid VGG19-MobileNet model.

TABLE 5 Environment of the proposed DL.

GPU GPU T4 Χ 2 Kaggle

Memory 4GB

Language Python

TensorFlow

Keras

Panda

TABLE 6 Dataset.

Training set 77.78%

Validation set 22.22%

Testing set 10%

TABLE 7 Testing classification results of the MobileNet model.

Class Precision 
(%)

Recall 
(%)

F1-
score 

(%)

Support 
(%)

Accuracy 
(%)

Non 

ASD
100 100 100 33

100ASD 100 100 100 22

Macro 

average
100 100 100 55

FIGURE 7

Confusion matrix of the MobileNet model.
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The model’s ability to accurately differentiate between cases of 
ASD and non-ASD highlights its potential utility in clinical settings 
for diagnosing ASD based on eye-tracking features. Figure 11 presents 
the confusion matrix of the hybrid VGG19-MobileNet model. In this 
hybrid model, 31 images were accurately labeled as TD and 19 images 
were accurately classified as ASD (autism spectrum disorder). The 
hybrid model correctly classifies 3 images as FP and incorrectly 
classifies 2 images as FN.

The results performance of the VGG19-MobileNet model is 
depicted in Figure  12. The VGG19-MobileNet model obtained a 

validation accuracy of 91% and a training accuracy of 92%. The hybrid 
model had a reduction from 0.6 to 0.4.

4.6 Testing results of the DenseNet169 
model

The DenseNet169 model attained an accuracy of 78%, exhibiting 
superior precision, recall, and F1-score for the non-ASD class in 
comparison to the ASD class. This indicates that although the model 

FIGURE 8

The MobileNet model: (A) Accuracy; (B) Loss.

TABLE 8 Testing results of the VGG19 model.

Class Precision (%) Recall (%) F1-score (%) Support (%) Accuracy (%)

Non ASD 82 100 90 33

87ASD 100 68 81 22

Macro average 91 84 86 55

FIGURE 9

Confusion matrix of the VGG19 model.
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performed well in accurately categorizing those without ASD, its 
ability to identify individuals with ASD was comparatively less 
effective. Table 10 summarizes the testing classification results of the 
DenseNet169 model.

The elevated rate of false negatives in ASD cases highlights 
possible opportunities for enhancing the model’s ability to detect 
ASD-related characteristics. In general, although all models 
demonstrated potential in detecting ASD, there is a need for more 

improvement and optimization of model structures to boost the 
accuracy and precision of ASD diagnosis using eye-tracking data.

5 Discussion

ASD is a neurodevelopmental condition marked by enduring 
difficulties in social interaction, communication, and restricted or 

FIGURE 10

The VGG19 model: (A) Accuracy; (B) Loss.

TABLE 9 Testing results of the hybrid model.

Class Precision (%) Recall (%) F1-score (%) Support (%) Accuracy (%)

Non ASD 91 94 93 33

91ASD 90 86 88 22

Macro average 91 90 90 55

FIGURE 11

Confusion matrix of the hybrid model.
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repetitive behaviors. People with Autism Spectrum Disorder (ASD) 
can display a diverse array of symptoms and levels of functioning, 
resulting in significant variation within the spectrum. Eye-tracking 
technology is the technique of observing and documenting the 
movement of a person’s eyes in order to examine different aspects of 
visual attention, perception, and cognitive processing. Eye-tracking 
studies in individuals with ASD commonly examine gaze fixation 
patterns, saccades (quick eye movements), and pupil dilation to 
explore disparities in visual processing and social attention between 
individuals with ASD and those who are typically developing.

The experimental results presented in this study demonstrate 
the efficacy of several convolutional neural network (CNN) models 
in detecting and predicting Autism Spectrum Disorder (ASD) by 
utilizing eye-tracking features. The classification accuracy, 
precision, recall, and F1-score of each model offer valuable insights 
into their efficacy in detecting ASD cases using eye 
movement patterns.

The MobileNet model exhibited outstanding performance, 
attaining flawless precision, recall, and F1-score for both ASD and 
non-ASD categories. This indicates that MobileNet successfully 
diagnosed all cases of ASD and non-ASD, demonstrating its potential 
usefulness in diagnosing ASD using eye-tracking data.

Although the VGG19 model achieved an accuracy of 87%, its 
precision, recall, and F1-score for the ASD class were somewhat lower, 
suggesting a higher occurrence of false negatives. This implies that 
VGG19 might have difficulties in reliably detecting cases of ASD solely 
based on eye movement patterns.

The DenseNet169 model attained an accuracy of 78%, exhibiting 
superior precision, recall, and F1-score for the non-ASD class in 
comparison to the ASD class. This disparity suggests possible 

constraints in the model’s ability to detect ASD-related eye movement 
characteristics, resulting in an increased occurrence of incorrect 
negative diagnoses for individuals with ASD.

The hybrid VGG19-MobileNet model exhibited strong 
performance, with a 91% accuracy with well-balanced precision, 
recall, and F1-score for both ASD and non-ASD categories. This 
suggests that the hybrid model successfully utilized the advantages of 
both VGG19 and MobileNet architectures to enhance ASD 
identification using eye-tracking features.

Figure 13 displays the receiver operating characteristics (ROC) 
findings of the proposed deep learning (DL) model. The MobileNet 
model earned a high accuracy score of 100%, while both the 
VGG19 and hybrid models achieved the same accuracy 
score of 96%.

In summary, the experimental results highlight the capability of 
CNN models, specifically MobileNet and the hybrid VGG19-
MobileNet model, to accurately detect ASD cases using eye-tracking 
data. However, additional study is required to optimize the design of 
models and increase their ability to detect patterns in eye movements 
associated to ASD. This will ultimately lead to better accuracy in 
diagnosing and treating ASD. The proposed system was compared to 
several current eye-tracking systems (46–48), as seen in Table 11 and 
Figure 14. Our enhanced MobileNet model achieved a perfect score 
of 100%, surpassing all other current systems.

6 Conclusion

Eye tracking is a commonly used method for detecting ASD 
in both young children and adults. Research including eye 

FIGURE 12

The Hybrid model: (A) Accuracy; (B) Loss.

TABLE 10 Testing results of the DenseNet169 model.

Class Precision (%) Recall (%) F1-score (%) Support (%) Accuracy (%)

Non ASD 74 97 84 33

78ASD 92 50 65 22

Macro average 83 73 74 55
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FIGURE 13

ROC of: (A) MobileNet model; (B) VGGA19 model; (C) Hybrid model.

TABLE 11 Results of the proposed eye-tracking diagnosis system compared with other systems.

Authors, years Dataset Approach Accuracy %

Akter et al., 2021 (47) Same DT, SVM, LR, KNN, and MLP Accuracy (87%), and AUC (79%)

Cilia et al., 2021 (53) Same CNN 90%

Elbattah et al., 2021 (54) Same Variational Autoencoder (VAE) 79%

This proposed model Same MobileNet Accuracy (100%), and ROC (100%)
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FIGURE 14

Accuracy of the proposed eye-tracking diagnostic system compared with other systems.
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tracking has revealed that individuals with autism have distinct 
gaze patterns compared to normally developing individuals. 
Various diagnostic procedures have been considered for the 
diagnosis of ASD, such as parent interviews, homogenous 
behavioral appraisals, and neurological examinations. 
Eye-tracking technology has gained significance for supporting 
the study and analysis of autism. This research presents a 
methodology that utilizes advanced deep learning algorithms, 
including MobileNet, VGG19, DenseNet169, and a hybrid of 
MobileNet-VGG19, to analyze and display the eye-tracking 
patterns of persons diagnosed with ASD. The study specifically 
focuses on children and adults in the initial phases of growth. The 
primary concept is to convert the movement patterns of the eye 
into a visual depiction, allowing for the use of image-based 
methods in activities connected to diagnosis. The visualizations 
generated are freely accessible as an image collection for use by 
other studies seeking to explore the capabilities of eye-tracking in 
the setting of Autism ASD. The collection consists of 547 images, 
with 328 images representing persons without ASD and 219 
images representing those diagnosed with ASD. The MobileNet 
model scored high accuracy 100%, the proposed methodology was 
compared with different with existing ASD model, it is investigated 
that our model out performance.

An important avenue for future study is to expand the sample size 
by include a wider range of participants, including a greater number 
of persons with ASD and TD individuals. By increasing the size of the 
sample, researchers might potentially uncover additional patterns and 
subtleties in the data.
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