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Hepatocellular carcinoma (HCC) is the most common primary liver cancer. 
Surgery has been the major treatment method for HCC owing to HCC’s poor 
sensitivity to radiotherapy and chemotherapy. However, its effectiveness is 
limited by postoperative tumour recurrence and metastasis. Systemic therapy 
is applied to eliminate postoperative residual tumour cells and improve the 
survival of patients with advanced HCC. Recently, the emergence of various 
novel targeted and immunotherapeutic drugs has significantly improved the 
prognosis of advanced HCC. However, targeted and immunological therapies 
may not always produce complete and long-lasting anti-tumour responses 
because of tumour heterogeneity and drug resistance. Traditional and patient-
derived cell lines or animal models are used to investigate the drug resistance 
mechanisms of HCC and identify drugs that could reverse the resistance. This 
study comprehensively reviewed the established methods and applications 
of in-vivo and in-vitro HCC drug resistance models to further understand the 
resistance mechanisms in HCC treatment and provide a model basis for possible 
individualised therapy.
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1 Introduction

Primary liver cancer is a common digestive system malignancy with extremely high rates 
of incidence and mortality, ranking sixth and fourth, respectively (1). Primary liver cancer 
includes hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma and combined 
hepatocellular cholangiocarcinoma, with HCC as the most common, accounting for almost 
90% of cases (1). Surgery remained the most important treatment method for HCC over the 
years owing to HCC’s poor sensitivity to chemotherapy. However, postoperative patients show 
a high risk of recurrence or metastasis. Moreover, many HCC patients are diagnosed with 
advanced tumours and have lost the opportunity for surgery. In recent years, with the gradual 
popularisation of new treatment techniques, such as radiofrequency, microwave, freezing and 
TACE, and the development of numerous targeted and immunotherapeutic drugs, the 
progression-free and overall survival rates of HCC have greatly improved. However, primary 
and acquired drug resistance to these medications remains the most critical challenge in HCC 
treatment. This study reviewed original articles about drug resistance of HCC published in the 
last 5 years. The drug resistance models that were employed are presented, as well as a detailed 
introduction to some of the major drug resistance mechanisms that were discovered utilising 
the drug resistance models.
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2 Traditional in vitro and in vivo drug 
resistance models

2.1 Establishment methods of traditional 
drug resistance models

Most studies have used traditional commercial HCC cell lines to 
establish drug resistance models. In-vitro models involve exposing 
parental HCC cells to medications at either a continuous high or a 
progressively increasing concentration for 3–6 months or 20–30 
generations for the cells to develop drug-specific resistance. For 
in-vivo drug resistance models, drug-resistant RCC cells can directly 
be  implanted subcutaneously or orthotopically into nude mice. 
Furthermore, parental RCC cells may be injected subcutaneously or 
orthotopically into nude mice, followed by prolonged oral drug 
feeding to acquire drug resistance. Figure 1 presents the establishment 
methods of traditional drug resistance models. Table  1 presents 
studies on HCC drug resistance using traditional in-vitro and in-vivo 
models. Briefly, HepG2, Huh7, SMMC-7721, MHCC97H, MHCC97L, 
Hep3B, BEL-7402, PLC/PRF/5 and SK-Hep-1 are commonly used to 
induce acquired drug resistance. Traditional chemotherapy drugs, 
such as cisplatin, oxaliplatin, 5-FU and doxorubicin, and TKIs, 
including sorafenib, lenvatinib and regorafenib, are major research 

topics. Numerous signalling pathways may be involved in resistance 
to a single agent. A specific drug that could reverse the drug resistance-
associated signalling may present its potential as an alternative or 
combined treatment.

2.2 Drug-resistant mechanisms based on 
traditional models

Li et  al. (3) established sorafenib-resistant HCC (HepG2 and 
Huh7) cell lines and mouse models. To help Huh7-SR cells maintain 
their sorafenib-resistant ability, mice injected with Huh7-SR cells 
subcutaneously underwent daily treatment of sorafenib at a dose of 
10 mg/kg. SR-HCC cells showed higher levels of lncRNA SNHG1 
expression, miR-21 expression and Akt pathway activation than 
parental cells. SNHG1 activates the Akt pathway by regulating 
SLC3A2. Akt pathway inactivation induced by SNHG1 inhibition 
significantly increased the sensitivity of SR-HCC cells to sorafenib. 
Additionally, sorafenib induced the transfer of miR-21 to the nucleus, 
and miR-21 could continue to induce SNHG1 expression. Using the 
in-vitro and in-vivo sorafenib-resistant models, they found that 
LncRNA SNHG1 caused sorafenib resistance through activation of the 
Akt pathway. Reiter et al. (8) created a sorafenib-resistant HCC cell 

FIGURE 1

Hepatocellular carcinoma traditional drug resistance models.
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TABLE 1 Researches on HCC drug resistance using traditional in-vitro and in-vivo models.

Year Model Primary/ 
secondary

Resisted 
drug

In vitro/ 
vivo

Core molecule Combined 
drug

Reference

2019 HepG2 Secondary Cisplatin In vitro PKA/ PP2 A/ IKK 

pathway

Andrographolide (2)

2019 HepG2, Huh7 Secondary Sorafenib In vitro, vivo LncRNA SNHG1 – (3)

2019 SMMC-7721 Secondary Sorafenib In vivo M2 macrophage – (4)

2019 HepG2, HUH7 Secondary Sorafenib In vitro miR-150-5p lncRNA FOXD2-AS1 (5)

2019 HepG2, Huh7, 

SMMC-7721

Secondary Oxaliplatin In vitro Connexin 32 – (6)

2019 MHCC97H, 

Hep3B

Secondary Oxaliplatin In vitro, vivo CCN2/ MAPK/ Id-1 – (7)

2019 HepG2 Secondary Sorafenib In vitro Rb, p16 Ribociclib (8)

2019 HA22T Secondary Apicidin, SAHA In vitro, vivo PP1, eIF2α Fisetin (9)

2019 BEL-7402 Secondary 5-FU In vitro – AC10364 (10)

2019 HepG2 Secondary Cisplatin In vitro PARP1, HMGB1 Morin hydrate (11)

2019 BEL-7402 Secondary 5-FU In vitro, vivo YAP – (12)

2019 HuH7 Secondary Sorafenib In vitro, vivo miR-16, 14–3-3η – (13)

2019 HepG2, PLC/

PRF/5, JHH-6

Secondary Everolimus In vitro MiR-375 Vitamin D (14)

2019 BEL-7402 Secondary 5-FU In vitro PLCβ3 – (15)

2019 Hep3B, Huh7 Secondary Sorafenib In vitro EGFR, KLF4 – (16)

2019 BEL-7402 Secondary 5-FU In vitro MDR1, ABCC1, 

ABCG2

Parthenolide-5-FU 

conjugate

(17)

2019 HepG2 Secondary Sorafenib In vitro Vimentin – (18)

2019 Ba/F3, Hep3B Secondary Fisogatinib In vitro, vivo On-target FGFR4 

kinase domain 

mutations

Gatekeeper-agnostic, 

pan-FGFR inhibitor

(19)

2019 Hep3B Secondary Paclitaxel In vitro P-gp Achillin (20)

2019 HepG2, Huh7 Secondary Sorafenib In vitro, vivo STAT-3 Phloretin (21)

2019 HepG2 Secondary Sorafenib In vitro, vivo Hypoxic 

microenvironment

Plantamajoside (22)

2019 Hep3B, HuH7 Secondary Sorafenib In vitro, vivo α-fetoprotein, glypican 

3, survivin

Compound 9a (23)

2019 Hep3B, HepG2 Secondary Sorafenib In vitro DNMT3b, OCT4 – (24)

2019 MHCC97H Secondary Oxaliplatin In vitro, vivo HSCs remodeling – (25)

2019 MHCC97H, 

Hep3B

Secondary Oxaliplatin In vitro, vivo HSF1, AMPKα2 – (26)

2020 MHCC97L, 

Hep3B

Secondary Oxaliplatin, 

saracatinib

In vitro Wnt-ABCG1 signalling – (27)

2020 HepG2 Secondary Sorafenib In vitro, vivo Apoptosis BEZ235 (28)

2020 Huh7, SMMC-

7721

Secondary Sorafenib In vitro, vivo EZH2 – (29)

2020 HuH7, Hep3B Secondary Sorafenib In vitro LncRNA DANCR – (30)

2020 Hep3B Secondary Paclitaxel In vitro FOXO6 – (31)

2020 Bel7402 Secondary 5-FU In vitro Amyloid precursor 

protein

– (32)

2020 Huh1, Huh7 Secondary Sorafenib In vitro, vivo Capicua – (33)

(Continued)
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TABLE 1 (Continued)

Year Model Primary/ 
secondary

Resisted 
drug

In vitro/ 
vivo

Core molecule Combined 
drug

Reference

2020 Mahlavu, Hep3B, 

Huh7

Secondary Radiotherapy In vitro PDK1 – (34)

2020 Bel7402 Secondary 5-FU In vitro 89 methylation forms – (35)

2020 HuH-7 Secondary Sorafenib In vitro, vivo EphA2 – (36)

2020 HepG2, HuH-7 Secondary Sorafenib In vitro HANR – (37)

2020 HepG2, SMMC-

7721

Secondary Sorafenib In vitro, vivo LncRNA MALAT1 – (38)

2020 HepG2 Secondary Oxaliplatin In vitro CircFBXO11 – (39)

2020 HepG2, HuH-7 Secondary Sorafenib In vitro circRNAs – (40)

2020 HuH-7 Secondary Sorafenib In vitro LRP8 – (41)

2020 SK-Hep-1, 

HepG2

Secondary Sorafenib In vitro, vivo miR-486-3p – (42)

2020 Hep3B Secondary Sorafenib In vitro, vivo SNGH16 – (43)

2020 Bel7402 Secondary 5-FU In vitro Rab27B – (44)

2020 HuH7, HepG2 Secondary Doxorubicin, 

Sorafenib

In vitro AMPK TFAM (45)

2020 HuH7, Hep3B Secondary Sorafenib In vitro – BA-5 (46)

2020 SK-HEP-1, 

HepG2

Secondary Adriamycin In vitro, vivo CircFoxo3 – (47)

2020 HepG2, MCF-7 Secondary Adriamycin In vitro JNK2 GL-V9 (48)

2020 HUH7, RIL175 Secondary Sorafenib In vitro, vivo Mitochondrial 

dysfunction

Tigecycline (49)

2020 SMCC-7721, 

MHCC97

Secondary Regorafenib In vitro, vivo SphK2 – (50)

2020 SK-Hep1, Huh7 Secondary Sorafenib In vitro, vivo Jagged2, Notch1 Valproic acid (51)

2020 HepG2 Secondary Doxorubicin In vitro HCSP4-Lipo-DOX-

miR101

– (52)

2020 HCCLM3, Huh7 Secondary Sorafenib In vitro, vivo LncRNA HEIH – (53)

2020 HepG2, Huh7 Secondary TRAIL In vitro, vivo C-Met, cyclin

B1

– (54)

2020 SMMC7721 Secondary Sorafenib In vitro HDAC11 – (55)

2020 Huh7 Secondary Sorafenib In vitro, vivo JAK/STAT, PI3K/AKT, 

ERK/MAPK

Fostamatinib (56)

2020 SK-HEP-1,  

Huh-7

Secondary Sorafenib In vitro KCNQ1OT1 – (57)

2020 Huh7, Hep3B Secondary Sorafenib In vitro mTORC2-AKT-BAD 

pathway

Torin2 (58)

2020 HepG2, Huh7 Secondary Sorafenib In vitro, vivo miR-30a-5p, CLCF1 – (59)

2020 HepG2, Huh7 Secondary Sorafenib In vitro PD-L1 – (60)

2020 HepG2, Huh7 Secondary Sorafenib In vitro, vivo KIF14 – (61)

2020 HepG2, LM3, 

Huh7, SKhep1

Secondary Sorafenib In vitro, vivo CircRNA-SORE – (62)

2020 HepG2 Secondary Sorafenib In vitro, vivo circFN1 – (63)

2020 PLC/PRF/5 Secondary Cisplatin and 

doxorubicin

In vitro, vivo NRF2, SHH – (64)

2021 HCCLM3 Secondary Sorafenib In vitro PI3K/AKT ITE (65)

(Continued)
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TABLE 1 (Continued)

Year Model Primary/ 
secondary

Resisted 
drug

In vitro/ 
vivo

Core molecule Combined 
drug

Reference

2021 Huh-7, Hep3B Secondary Doxorubicin In vitro LncRNA MALAT1 – (66)

2021 Huh7, PLC/

PRF/5

Secondary Sorafenib In vitro, vivo NF-κB CYP1A2 (67)

2021 HepG2, Huh7 Secondary Lenvatinib In vitro, vivo VEGFR2 Sophoridine (68)

2021 HA22T Secondary HDACi In vitro Cofilin-1 Platycodin D (69)

2021 Huh7, PLC Secondary Sorafenib In vitro, vivo CBX4 – (70)

2021 HepG2 Secondary Sorafenib In vitro, vivo Midkine UsLNPs (71)

2021 Bel7402 Secondary 5-FU In vitro, vivo CDK1, cyclin B CHC (72)

2021 HepG2, Huh7 Secondary Sorafenib In vitro CircFOXM1 – (73)

2021 HepG2, Huh7 Secondary Sorafenib In vitro YAP – (74)

2021 HepG2 Secondary Sorafenib In vitro, vivo NgBR Artesunate (75)

2021 HepG2 Secondary Doxorubicin In vitro Mitochondrial fuel 

dependence on 

glutamine

– (76)

2021 HCCLM3 Secondary Sorafenib In vitro, vivo TAK1 – (77)

2021 SMMC-7721, 

Huh7

Secondary Lenvatinib In vitro, vivo MT1JP – (78)

2021 HCCLM3, SK-

Hep-1, HepG2

Secondary Sorafenib In vitro, vivo UBQLN1 – (79)

2021 HepG2 Secondary Sorafenib In vitro ZFAS1 – (80)

2021 HuH6, HepG2 Secondary Doxorubicin In vitro, vivo USP8 – (81)

2021 Huh7 Secondary Sorafenib In vitro BAFF, NFκB – (82)

2021 Huh-7, HCC-

LM3, Li-7

Secondary Sorafenib In vitro WDR4 – (83)

2021 Huh7, Hep3B Secondary Sorafenib In vitro, vivo HIF1α – (84)

2021 HepG2 Secondary Doxorubicin In vitro, vivo – NO-DOX@PDA-

TPGS-Gal

(85)

2021 HepG2 Secondary Oxaliplatin In vitro LINC01134 – (86)

2021 PLC/PRF/5, 

Huh7

Secondary Sorafenib In vitro, vivo HDAC4, MEF2D – (87)

2021 HepG2215, 

Hep3B

Secondary Sorafenib In vitro, vivo YAP, IGF-1R – (88)

2021 Huh7 Secondary Sorafenib In vitro FcRn – (89)

2021 Huh7 Secondary Regorafenib In vitro Wnt and TGF-β 

Signalling

– (90)

2021 HepG2 Secondary Doxorubicin In vitro, vivo TGF-β, Smad AANG (91)

2021 MHCC-LM3, 

MHCC-97H, 

Hep3B, HepG2, 

Huh7

Secondary Sorafenib In vitro, vivo RCN1 – (92)

2021 Huh7, Hep3B, 

HLE

Secondary Sorafenib In vitro, vivo YAP, TAZ, ATF4 – (93)

2021 Huh7 Secondary Sorafenib In vitro STAT3 – (94)

2021 HepG2 Secondary Doxorubicin, 

sorafenib, 

lenvatinib

In vitro, vivo – PS-ZL-7c aptamer (95)

(Continued)
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TABLE 1 (Continued)

Year Model Primary/ 
secondary

Resisted 
drug

In vitro/ 
vivo

Core molecule Combined 
drug

Reference

2022 MHCC97H, 

MHCC97L

Secondary Ionizing radiation In vitro, vivo Integration of glucose 

and cardiolipin 

anabolism

– (96)

2022 Huh7 Secondary Sorafenib In vitro ZFAS1 – (97)

2022 MHCC97L Secondary Sorafenib In vivo ETS1/miR-23a-3p/

ACSL4 signalling

– (98)

2022 Huh7 Secondary Sorafenib In vitro, vivo – DBPR114 (99)

2022 SNU-449, Hep3B Secondary Sorafenib In vitro USP22, ABCC1 – (100)

2022 Huh-7, HepG2 Secondary Sorafenib In vitro miR-10b-3p – (101)

2022 PLC/PRF/5, 

MHCC-97H

Secondary Sorafenib In vitro, vivo SCAP – (102)

2022 Hep3B Secondary Sorafenib In vitro Autophagy Fingolimod (103)

2022 Huh7, Hep3B, 

HepG2

Secondary Sorafenib In vitro Ets1 – (104)

2022 HepG2 Secondary Sorafenib In vitro, vivo EGFR Fucoidan (105)

2022 HuH7, PLC/

PRF/5, Hep1-6

Secondary Lenvatinib In vitro, vivo EGFR – (106)

2022 HepG2 Secondary Sorafenib In vitro – Ruthenium (107)

2022 HuH-7, MHCC-

97H

Secondary Sorafenib In vitro MCM2 – (108)

2022 Huh7, HepG2 Secondary Sorafenib In vitro, vivo HDLBP – (109)

2022 MHCC97H, 

Hep3B, Hepa 1–6

Secondary Oxaliplatin In vitro, vivo PD-L1, PMN-MDSC – (110)

2022 Hepa1-6 Secondary Anti-PD-L1 In vivo CD38 – (111)

2023 Huh7, PLC/

PRF/5, Hep3B

Secondary Lenvatinib In vitro, vivo METTL1 – (112)

2023 7,404 Secondary Cisplatin In vitro – Gal-NP@TPt (113)

2023 Huh7 Secondary Oxaliplatin, 5-FU In vitro, vivo 5-hmC – (114)

2023 Huh7 Secondary Sorafenib In vitro XPO1 – (115)

2023 Huh-7, PLC Secondary Lenvatinib In vitro Curcumin – (116)

2023 Huh7 Secondary Lenvatinib In vitro, vivo METTL3 – (117)

2023 HepG2 Secondary Cisplatin In vitro, vivo – AR-NADR (118)

2023 Huh7, Hep3B Secondary Lenvatinib, 

Sorafenib

In vitro, vivo CAF-derived SPP1 – (119)

2023 HCCLM3, Huh7 Secondary Sorafenib In vitro, vivo Mitophagy MenSCs (120)

2023 Huh7 Secondary Sorafenib In vitro, vivo CSNK1A1 – (121)

2023 MHCC97H, 

PLC/PRF/5

Secondary Sorafenib In vitro, vivo PLEKHG5 – (122)

2023 Huh7 Secondary Sorafenib In vitro MEX3A – (123)

2023 MHCC97H, 

MHCC97L

Secondary Ionizing radiation In vitro, vivo Hexokinase 2 – (124)

2023 Huh7, SK-Hep-1, 

Hep3B, HepG2

Secondary Sorafenib In vitro, vivo Glycolysis-lactate 

metabolism

β-HB (125)

2023 HUH7, PLC/

PRF/5

Secondary Sorafenib In vitro, vivo HSPB1 MiR-654-5p (126)

2023 HepG2 Secondary Apatinib In vitro RB1 – (127)

(Continued)
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line to investigate the effect of ribociclib on the treatment of sorafenib-
resistant HCC. HepG2 cells that were continuously incubated with 
sorafenib at escalating concentrations for 8 months, up to a final 
sorafenib concentration of 4 μM, were used as sorafenib-resistant cells 
and maintained in the medium with 4 μM sorafenib. They discovered 
that ribociclib reduced Rb expression and induced G1 cell cycle arrest 
in SR-HepG2 cells with Rb-high/p16-low protein expression profiles, 
indicating that ribociclib may be a good choice for the treatment of 
certain sorafenib-resistant HCC. Qiu et al. (13) established sorafenib-
resistant HuH7 cells and xenograft mouse models and examined a 
group of patients with advanced, recurrent HCC to evaluate the 
clinical significance of sorafenib therapy. They found that high 14-3-3η 
expression and low miR-16 expression were related to sorafenib 
resistance and poor prognosis of HCC. Moreover, Chen et al. (36) 
initiated secondary sorafenib-resistant HuH-7 cells and xenograft 
mouse models. EphA2 was recognised as a crucial molecule in 
sorafenib resistance by quantitative phosphoproteomic analysis. It has 
been confirmed in in vivo animal models that sorafenib resistance can 
be successfully treated by concurrently inhibiting EphA2. Yang et al. 
(63) established sorafenib-resistant HepG2 cells and analysed the 
expression differences of circRNAs between sorafenib-sensitive and 
sorafenib-resistant HepG2 cells. CircFN1 was upregulated in 
sorafenib-resistant HepG2 cells and induced sorafenib resistance 
through the miR-1205/E2F1 signalling pathway. Zhao et  al. (70) 
created sorafenib-resistant in-vitro and in-vivo models to explore the 
role of CBX4 in sorafenib resistance of HCC. CBX4 was upregulated 
in sorafenib-resistant Huh7 and PLC cells. Tumour growth could 
be suppressed by CA3- and UNC3866-mediated YAP1 and CBX4 
inhibition in vivo. Younis et  al. (71) designed an ultra-small lipid 
nanoparticle encapsulating sorafenib and midkine-siRNA and 
examined the effect of the new nanoparticles on treating sorafenib-
resistant HCC with sorafenib-resistant cell-derived (HepG2) xenograft 
mouse models. The tumours in the xenograft models were eradicated 
by 70% using the nanoparticles, demonstrating the potential of this 
new approach in HCC treatment with sorafenib resistance. Xu et al. 

(79) constructed sorafenib-resistant in-vitro and in-vivo models to 
explore the role of UBQLN1 in HCC sorafenib resistance. For the 
sorafenib-resistant HCC mouse model, 100 million HCCLM3 cells 
were initially implanted into the flank of a BALB/c mouse. The formed 
tumours were re-implanted into 4-week-old BALB/c nude mice and 
fed with sorafenib (30 mg/kg/day). The mice that survived after 
8 weeks of treatment were regarded as sorafenib-resistant mice. The 
ROS levels decreased in sorafenib-resistant HCC cells. However, 
sorafenib-resistant cells have better mitochondrial function and 
integrity with less mitochondrial content and respiratory capacity. 
Mechanically, these phenomena may be  achieved by UBQLN1 
through PGC1β inhibition in HCC. Fang et  al. (96) established 
radiation-resistant HCC cell lines and xenograft mouse models to 
investigate the resistant mechanism of HCC to radiotherapy. 
MHCC97L cells were exposed to 8 Gy IR every 2 days for 5 fractions, 
and MHCC97H cells were exposed to 2 Gy IR daily for 25 fractions. 
After 4 weeks of recovery time, cells were again exposed to 10 Gy 
IR. MHCC97L IR-R cells were xenografted into nude mice and 
exposed to IR (8 Gy × 2 F) to establish radiation-resistant in-vivo 
models. Subsequent functional experiments demonstrated that the 
integration of glucose and cardiolipin anabolism was crucial for the 
radiation resistance of HCC. Zhou et al. (97) performed single-cell 
RNA sequencing in parental and sorafenib-resistant Huh7 cells using 
the 10X Genomic Chromium System. Huh7-R cells presented 
upregulations of stemness markers, EMT-related genes and Notch 
signalling-related genes, indicating that Notch signalling activation 
may be crucial for the induction of tumour stemness/EMT traits and 
acquired sorafenib resistance. Moreover, ZNFX1 antisense RNA 1 
(ZFAS1), a new regulator IncRNA, had the highest upregulation in 
Huh7-R cells. Mechanically, the knockdown of ZFAS1 caused the 
downregulation of various mRNAs related to stemness and notch 
signalling pathways, indicating the critical role of this noncoding RNA 
in HCC sorafenib resistance. Huang et al. (112) created lenvatinib-
resistant HCC cell lines and cell-derived xenograft mouse models. The 
two essential parts of the tRNA N7-methylguanosine (m7G) 

TABLE 1 (Continued)

Year Model Primary/ 
secondary

Resisted 
drug

In vitro/ 
vivo

Core molecule Combined 
drug

Reference

2023 PLC/PRF/5, 

Huh7

Secondary Lenvatinib In vitro, vivo CDK6 – (128)

2023 Hep3B, 

MHCC97H, 

Hepa1-6

Secondary Oxaliplatin In vitro, vivo NLRP3/IL-1β – (129)

2023 SMMC7721 Secondary Sorafenib In vitro, vivo – TME-responsive 

nano-platform

(130)

2023 Huh-7 Secondary Sorafenib In vitro Galectin-1 – (131)

2023 Huh7, SMMC-

7721

Secondary Sorafenib In vitro, vivo SMYD3 – (132)

2024 Huh7, SK-Hep1 Secondary Sorafenib In vitro, vivo SIRT7 – (133)

2024 Hepa1-6 Secondary Anti-PD-1 In vivo CRKL – (134)

2024 MHCC97L Secondary Sorafenib In vitro, vivo LINC01056 – (135)

2024 HepG2 Secondary Sorafenib In vitro, vivo STAT3 STAT3 ASOs (136)

2024 HepG2 Secondary Cisplatin In vitro, vivo – Glycyrrhetinic Acid (137)

2024 BCLC-3 Primary Sorafenib In vitro, vivo Metallothionein-3 – (138)
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methyltransferase complex—methyltransferase-like protein-1 
(METTL1) and WD repeat domain 4 protein (WDR4)—were 
significantly increased in lenvatinib-resistant cells. The crucial role 
that METTL1/WDR4-mediated m7G tRNA modification plays in 
developing lenvatinib resistance in vivo was further elucidated by 
xenograft mice models. Mechanically, METTL1 genes triggered drug 
resistance by EGFR pathway activation in HCC. Yang et al. (113) 
established the Pt-resistant HCC cell line 7404DDP to evaluate the 
antitumour effect of a cascade targeted and mitochondrion-
dysfunctional nanomedicine (Gal-NP@TPt). When compared to 
cisplatin, Gal-NP@TPt caused a 9-fold increase in Pt accumulation in 
7404DDP cells. Moreover, Gal-NP@TPt caused significant DNA 
damage in 7404DDP cells. Furthermore, Gal-NP@TPt may mitigate 
platinum resistance as the ratio of IC50 for 7404DDP to that for 7,404 
dropped from 6.34 for cisplatin to 0.71 for Gal-NP@TPt. Kim et al. 
(133) established secondary sorafenib-resistant HCC cells and cell-
derived mouse models to investigate the role of SIRT7 in sorafenib 
resistance. In Huh7SR and SK-Hep1SR cells, hyperactivated pERK1/2 
was seen in conjunction with increased SIRT7 expression. In-vivo 
tumour development was suppressed by inhibiting SIRT7. 
Mechanically, SIRT7 inhibition eliminates sorafenib resistance by 
decreasing ERK1/2 phosphorylation via the DDX3X-mediated 
NLRP3 inflammasome in HCC.

3 Patient-derived drug resistance 
models

3.1 Establishment methods of 
patient-derived drug resistance models

The use of patient-derived HCC cell lines and xenograft mouse 
models has increased in the study of HCC drug resistance. New drug-
resistant cell lines may be created using primary cultures of HCC 
tissues from patients who have developed drug resistance. The 
resected tumour tissue samples may endure tissue digestion, cell 
separation and purification and primary cell culture to form a stable 
cell line. Patient-derived xenografts (PDXs) from patients with drug 
resistance could be directly implanted in nude mice subcutaneously 
or orthotopically to establish in-vivo drug resistance models. Figure 2 
presents the establishment methods of patient-derived drug resistance 
models. The patient-derived drug resistance models better reserve 
individual molecular signature, including DNA copy number 
alterations, mutations and gene expression levels. The patient-derived 
drug resistance models may have additional advantages over the 
traditional models in the investigation of drug resistance mechanisms 
and individualised treatment as they can more accurately imitate the 
pathophysiological features of individual patients.

3.2 Drug-resistant mechanisms based on 
patient-derived models

Hu et al. (139) established sorafenib-resistant and sorafenib-
sensitive PDX mouse models and examined the expression pattern 
differences between them. KPNA3 was found overexpressed in the 
sorafenib-resistant PDX models and was further confirmed to 
induce EMT and sorafenib resistance of HCC cells through 

KPNA3-AKT-ERK-TWIST signalling. Wang et al. (140) used HCC 
patient-derived organoid models to investigate the functions of 
Hedgehog signalling and CD44 in sorafenib resistance. In CD44-
positive HCC, GANT61 dramatically reduced Hedgehog signalling 
to reverse sorafenib resistance, demonstrating that sorafenib with 
Hedgehog signalling inhibitors may be a useful therapeutic strategy 
for HCC patients with elevated CD44 levels. Hashiba et al. (33) 
revealed a patient-derived sorafenib-resistant HCC cell line (HCC-
SR). The single-cell suspensions obtained from post-sorafenib 
HCC tissues were subcutaneously injected in nonobese diabetic, 
severe combined immunodeficient (NOD/SCID) mice, and the 
subcutaneous tumours were harvested to establish the new cell 
line. Sorafenib treatment induced higher cell proliferation of 
HCC-SR than other HCC cell lines, showing the resistance of 
HCC-SR to sorafenib. CIC S1595P missense mutation was detected 
in HCC-SR by whole-exome sequence analysis, revealing the 
potential function of this gene on HCC sorafenib resistance. 
Prawira et al. (141) established infigratinib-resistant PDX mouse 
models to explore the function of ribociclib in overcoming 
infigratinib resistance in HCC. SCID mice were subcutaneously 
implanted with four HCC PDX tumours with high FGFR1-4 
expression, administered infigratinib (15 mg/kg per day) and 
sacrificed when tumours were 1800 mm3. Infigratinib-resistant 
tumours were re-implanted into SCID mice, and nine treatment 
cycles were required to maintain infigratinib resistance. Then, the 
infigratinib-resistant PDX mouse models were treated with either 
infigratinib alone or in combination with ribociclib and sacrificed 
for subsequent examination. The results showed that the combined 
inhibition of FGFR/CDK4/6 pathways is efficient in overcoming 
infigratinib resistance. Xu et al. (62) established four sorafenib-
resistant HCC cell lines (HepG2-SR, LM3-SR, Huh7-SR, and 
SKhep1-SR) and cell-derived and patient-derived sorafenib-
resistant xenograft mouse models to explore the mechanisms of 
sorafenib resistance in HCC. They found that circRNA-SORE was 
overexpressed in sorafenib-resistant HCC cells, induced sorafenib 
resistance and activated the Wnt/β-catenin pathway by sponging 
miR-660-3p and miR-103a-2-5p. Moreover, The cytoplasmic 
binding of circRNA-SORE to the master oncogenic protein YBX1 
inhibits PRP19-mediated YBX1 degradation by blocking YBX1’s 
nuclear interaction with the E3 ubiquitin ligase PRP19 (142). 
Moreover, sorafenib resistance could be  spread via exosomal 
circRNA-SORE transport (142). A local injection of circRNA-
SORE shRNA lentivirus could significantly enhance the sensitivity 
of sorafenib treatment in mouse models. Liao et  al. (143) 
investigated the potential of 17-AAG in overcoming sorafenib 
resistance using secondary sorafenib-resistant PDX mouse models. 
The HCC tissues from patients were transplanted into the armpit 
of severe NSG immunodeficient mice. Sorafenib (80 mg/kg) was 
administered orally to the mice once a day when the tumour size 
reached 100 mm3. The tumours were significantly resistant to 
sorafenib in the fourth generation. Additionally, 17-AAG 
suppressed HSP90α and reversed sorafenib resistance in vivo, 
indicating the potential of 17-AAG in overcoming sorafenib 
resistance. Leung et al. (144) created two sorafenib-resistant PDX 
mouse models, which resembled the emergence of sorafenib-
induced acquired resistance in patients with HCC. The tumours 
from two HCC patients were xenografted into the immunodeficient 
mice, which were then administered with several cycles of 

https://doi.org/10.3389/fmed.2024.1437226
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Xiang et al. 10.3389/fmed.2024.1437226

Frontiers in Medicine 09 frontiersin.org

sorafenib treatment to acquire sorafenib resistance. Two sorafenib-
resistant HCC cell lines were further developed from the above two 
PDX models, with stronger self-renewal and tumourigenicity. 
RNA-sequencing recognised EPH receptor B2 (EPHB2) as the 
most significantly upregulated kinase in sorafenib-resistant PDXs. 
Functional experiments demonstrated that EPHB2 may increase 
tumour stemness and induce sorafenib resistance through the 
EPHB2/β-catenin/TCF1 positive feedback loop. Prawira et  al. 
(145) established seven acquired infigratinib-resistant PDX models 
and developed a new infigratinib-resistant HCC cell line from one 
of these PDXs. Infigratinib-resistant tumours presented higher 

p-ErbB2, p-ErbB3 and EZH2 levels. Mechanically, EZH2 may 
promote infigratinib resistance by upregulating the ErbB family. 
Gao et al. (84) found high USP29, HIF1α and GLUT1 levels in 
sorafenib-resistant PDX tumours, and follow-up research revealed 
that USP29-induced sorafenib resistance by mediating HIF1α 
stabilisation and upregulated glycolysis. Mok et al. (146) used two 
drug-resistant tumour xenografts derived from HCC patients to 
investigate driving resistance and CSC repopulation in HCC. The 
xenografts mimicked the development of acquired resistance to 
sorafenib or lenvatinib treatment observed in HCC patients. RNA 
sequencing showed that cholesterol production was most 

FIGURE 2

Hepatocellular carcinoma patient derived drug resistance models.
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frequently elevated in the drug-resistant xenografts. Mechanically, 
the drug resistance in HCC is driven by caspase-3-induced SREBP2 
activation, which promotes cholesterol biosynthesis. Tao et  al. 
(147) constructed six PDX models from HCC patients. The 
organoids from different patients showed different IC50 values of 
sorafenib treatment, indicating their sensitivity differences to 
sorafenib. BBOX1-AS1 was significantly upregulated in the 
organoids with the highest IC50 value, indicating that BBOX1-AS1 
may be  associated with sorafenib resistance. Ruan et  al. (148) 
established a sorafenib-resistant PDX mouse model to investigate 
the function of a circular RNA, cDCBLD2. Tumour tissues from 
sorafenib-resistant HCC patients were implanted into the livers of 
NOD/SCID mice. Four weeks later, the mice were administered 
sorafenib at 30 mg/kg/d by gavage for 8 weeks to sustain sorafenib 
resistance. Then, the tissues were cut into equal pieces and 
re-implanted into the armpits of 4-week-old BALB/c nude mice, 
which were reared for subsequent in-vivo experiments. When in 
vivo grade cholesterol-conjugated si-cDCBLD2 was locally injected 
around the PDX implantation site, the sensitivity to sorafenib 
treatment was much higher than when a control siRNA was 
injected. In-vitro experiments further discovered that cDCBLD2-
mediated sorafenib resistance was achieved by sponging 
miR-345-5p binding to the TOP2A coding sequence. Zhang et al. 
(149) found that YTHDF1 enhanced CSC renewal and resistance 
to the multiple tyrosine kinase inhibitors lenvatinib and sorafenib 
by upregulating NOTCH1 in patient-derived organoids and HCC 
cell lines. Additionally, Leung et al. (150) established sorafenib-
resistant HCC cell lines and sorafenib-resistant PDX mouse models 
to evaluate the combined therapeutic effect of sorafenib and Src 
homology 2 domain-containing phosphatase 2 (SHP2) inhibitor 
on sorafenib-resistant HCC. NOD/SCID mice bearing PDX were 
orally administered sorafenib at 100 mg/kg/day for 25 days to 
acquire sorafenib resistance. SHP2 was significantly upregulated in 
sorafenib-resistant HCC cell lines and PDXs. Sorafenib combined 
with SHP2 inhibitor SHP099 showed high treatment efficacy in 
sorafenib-resistant PDX mice.

4 Direct detection of clinical 
drug-resistant samples from HCC 
patients

Peripheral blood and tumour tissues from HCC patients may 
be directly detected for gene expression levels using quantitative or 
semi-quantitative techniques such as qPCR, western blot or 
immunohistochemistry. In drug-resistant HCC samples, highly 
expressed genes are generally more likely to perform as drug resistance 
genes, whereas suppressed genes may be  able to withstand drug 
resistance. Table 2 presents research on the direct detection of clinical 
drug-resistant samples from HCC patients.

Circulating tumour DNA (ctDNA) sequencing is a minimally 
invasive method that enables the collection of repeat samples. Hatlen 
et al. (19) sequenced the ctDNA of acquired fisogatinib-resistant HCC 
patients in a fisogatinib phase I  trial. Two patients with disease 
progression had mutations in the gatekeeper and hinge-1 residues in 
the FGFR4 kinase domain. Further, subsequent experiments using 
in-vivo and in-vitro secondary fisogatinib-resistant models 
demonstrated that acquired fisogatinib resistance was related to 

FGFR4 kinase domain mutations. Yu et al. (67) examined the HCC 
tissues of patients who experienced recurrence after primary HCC 
resection and sequential sorafenib treatment and found an inverse 
expression between CYP1A2 and NF-κB p65 in the sorafenib-naïve 
primary HCC compared with its paired sorafenib-experienced 
recurrence. Moreover, Weng et al. (73) divided patients who received 
two cycles of sorafenib treatment into the sorafenib-sensitive and 
sorafenib-resistant groups. RNA sequencing showed higher 
circFOXM1 levels in sorafenib-resistant HCC tissues. Functional 
experiments revealed circFOXM1-induced sorafenib resistance by 
upregulating MECP2 expression via sponging miR-1324. Ma et al. 
(87) discovered that transcriptional factor myocyte enhancer factor 
2D (MEF2D) was overexpressed in sorafenib-resistant HCC cell lines 
and HCC specimens, indicating a poor prognosis for sorafenib-treated 
HCC patients. Mechanically, coupling HDAC4 with MEF2D may 
activate ERK by inhibiting SPRY4, causing sorafenib resistance of 
HCC. Wang et  al. (160) examined the compared tumour tissues 
(pretreatment and post-progression samples) of one HCC patient with 
acquired resistance to a combined treatment of atezolizumab and 
bevacizumab who subsequently underwent surgical resection of the 
tumour. The number of CD8+ T cells in the tumour area and PD-L1 
level in tumour-infiltrating immune cells were decreased in the drug-
resistant HCC tissue. Additionally, the drug-resistant tissue presented 
more progenitor/hepatoblast features in the gene expression profile. 
The abovementioned results show that the acquired resistance to the 
combined treatment may be caused by the immune-excluded tumour 
microenvironment and tumour dedifferentiation. Lu et al. (161) found 
that circTMEM181 expression was upregulated in puncture biopsies 
of HCC tissues from anti-PD1 antibody-resistant patients compared 
to those from anti-PD1-sensitive patients. Furthermore, a high 
exosomal circTMEM181 level was associated with immunosuppression 
of microenvironment and anti-PD1 resistance in HCC. Mechanistically, 
exosomal circTMEM181 promoted CD39 expression by sponging 
miR-488-3p in macrophages. They further created macrophage-
specific CD39 knockout mice and discovered that CD73 expression in 
HCC cells and CD39 expression in macrophages could impair the 
function of CD8 + T cells and induce anti-PD1 resistance by activating 
the eATP-adenosine pathway. Meng et  al. (170) discovered that 
CD10 + ALPL+ neutrophils were more abundant in the tumour tissues 
of anti-PD-1-resistant patients than in those of anti-PD-1-sensitive 
patients. Mechanically, tumour cells secreted NAMPT, which 
reprogrammed CD10 + ALPL+neutrophils via NTRK1, keeping them 
immature and preventing their maturation and activation. This was 
how CD10 + ALPL+neutrophils were generated. Immunosuppressive 
CD10 + ALPL+ neutrophils further mediated ongoing T-cell 
exhaustion, which increased resistance to anti-PD-1 treatment in HCC.

5 Transgenic drug resistance models

5.1 Establishment methods of transgenic 
drug resistance models

Gene-editing techniques could be used in studies on mechanisms 
of drug resistance by direct insertion or knockout of drug-resistant 
genes in cells or animal models. An RNA-guided DNA endonuclease 
derived from the type II CRISPR bacterial immune system, namely 
clustered regularly interspaced short palindromic repeats 
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TABLE 2 Researches on the direct detection of clinical drug-resistant samples from HCC patients.

Year Model Primary/ 
secondary

Resisted drug Core molecule Combined drug Reference

2019 HCC tissues of 

patients

Primary Oxaliplatin CCN2/ MAPK/ Id-1 – (7)

2019 HCC tissues of 

patients

Primary Sorafenib miR-16, 14-3-3η – (13)

2019 Circulating 

tumour DNA of 

HCC patients

Secondary Fisogatinib On-target FGFR4 kinase 

domain mutations

Gatekeeper-agnostic, 

pan-FGFR inhibitor

(19)

2020 Serum of HCC 

patients

Secondary Sorafenib MiR-30e-3p – (151)

2020 HCC tissues of 

patients

Secondary Sorafenib Capicua – (33)

2020 HCC tissues of 

patients

Primary Sorafenib HANR – (37)

2020 HCC tissues of 

patients

Primary Sorafenib SNGH16 – (43)

2020 HCC tissues of 

patients

Primary Adriamycin CircFoxo3 – (47)

2020 Clinical data of 

HCC patients

Primary Sorafenib – Apatinib (152)

2020 HCC tissues of 

patients

Primary Sorafenib KCNQ1OT1 – (57)

2020 HCC tissues and 

blood of patients

Primary TKIs Mutations in the PI3K/

MTOR pathway

– (153)

2020 HCC tissues and 

blood of patients

Primary Sorafenib CircRNA-SORE – (62)

2021 HCC tissues and 

plasma of patients

– TACE MiR-125b – (154)

2021 HCC tissues of 

patients

Primary Doxorubicin LncRNA MALAT1 – (66)

2021 HCC tissues of 

patients

Secondary Sorafenib NF-κB CYP1A2 (67)

2021 HCC tissues of 

patients

Primary Oxaliplatin UCA1 – (155)

2021 HCC tissues of 

patients

Primary Sorafenib circFOXM1 – (73)

2021 HCC tissues of 

patients

– Doxorubicin, 

sorafenib

Shc3 – (156)

2021 HCC tissues of 

patients

Primary Cisplatin LINC00173 – (157)

2021 HCC tissues of 

patients

Primary Sorafenib DDR2 – (158)

2021 cDNA samples of 

HCC patients

– sorafenib MTBP – (159)

2021 HCC tissues of 

patients

Primary Sorafenib HDAC4, MEF2D – (87)

2021 HCC tissues of 

patients

Secondary Atezolizumab, 

bevacizumab

Immune exclusion, 

tumour dedifferentiation

– (160)

2021 HCC tissues of 

patients

Primary Sorafenib RCN1 – (92)

(Continued)
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(CRISPR)-associated protein 9 (Cas9), has been extensively employed 
as a highly effective gene-editing method because of its capacity to 
target novel genes through the simple modification of single-guide 

RNA (sgRNA) sequences (176). The precise Watson–Crick base 
pairing between Cas9’s guide RNA and the target DNA region and a 
direct contact between Cas9 and a short DNA protospacer adjacent 

TABLE 2 (Continued)

Year Model Primary/ 
secondary

Resisted drug Core molecule Combined drug Reference

2021 HCC tissues of 

patients

Primary Sorafenib YAP, TAZ, ATF4 – (93)

2021 HCC tissues of 

patients

Primary Anti-PD1 antibody CircTMEM181 – (161)

2021 HCC tissues of 

patients

Primary Sorafenib STAT3 – (94)

2021 HCC tissues of 

patients

Primary Oxaliplatin lncRNA DUBR – (162)

2022 HCC tissues of 

patients

Primary Ionizing radiation Integration of glucose 

and cardiolipin 

anabolism

– (96)

2022 HCC tissues of 

patients

Primary Sorafenib USP22, ABCC1 – (100)

2022 HCC tissues of 

patients

Primary Sorafenib SCAP – (102)

2022 HCC tissues and 

blood of patients

Primary Camrelizumab MCT – (163)

2022 HCC tissues of 

patients

Primary Sorafenib HDLBP – (109)

2022 HCC tissues of 

patients

Primary Sorafenib CXCR2 – (164)

2022 HCC tissues of 

patients

Primary Oxaliplatin PD-L1, PMN-MDSC – (110)

2022 HCC tissues of 

patients

– Anti-PD1 antibody PKCα/ZFP64/CSF1 axis – (165)

2023 HCC tissues and 

blood of patients

Primary PD-1 ICB Toll-like receptors-4 Anti-Δ42PD-1 

antibody

(166)

2023 Serum of HCC 

patients

Primary Atezolizumab Plus 

Bevacizumab

VEGF-D, ANG-2 – (167)

2023 Clinical data of 

HCC patients

– Sorafenib – Regorafenib Plus PD-1 

Inhibitor

(168)

2023 HCC tissues of 

patients

Secondary Sorafenib Autophagy and 

biotransformation

– (169)

2023 HCC tissues and 

blood of patients

Primary Anti-PD1 antibody CD10 + ALPL+ 

neutrophils

– (170)

2023 HCC tissues of 

patients

Secondary Lenvatinib plus anti-

PD1 antibodies

MAIT cells – (171)

2023 HCC tissues of 

patients

Primary Cabozantinib and 

nivolumab

HCC-CAF – (172)

2024 HCC tissues of 

patients

Primary Sorafenib DUSP4 – (173)

2024 HCC tissues and 

blood of patients

– Anti-PD1 antibody Serum amyloid A – (174)

2024 HCC tissues and 

blood of patients

Primary Anti-PD1 antibody S100A9 + CD14+ 

monocytes

– (175)
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motif are critical for the targeted-sequence specificity of Cas9 (177–
180). The two Cas9 nuclease domains—HNH and RuvC—catalytically 
cleave the double-stranded DNA (179, 180). A shift in the reading 
frame caused by random insertions or deletions may result in 
mutations at the targeted locations (176). Homologous recombination 
with an introduced homologous donor DNA may be used to complete 
homology-directed repair (181, 182).

5.2 Drug-resistant mechanisms based on 
transgenic models

The transcription factor called hepatic leukaemia factor (HLF) 
is a member of the proline and acidic amino acid-rich family, which 
are known to regulate circadian rhythms (183). Xiang et al. (184) 
constructed an HLF-knockout mouse model (HLFPB/PB mouse) 
and found that sorafenib resistance requires HLF-mediated c-Jun 
activation, demonstrating that the HLF-c-Jun axis may control the 
haepatoma’s response to sorafenib. A piggyBac transposon-
encoding CAG-RFP (a red fluorescent protein sequence under the 
CAG promoter) was inserted into the HLF gene to create the 
HLFPB/PB mice. Diethylnitrosamine was injected into the 
abdomen of mice to induce haepatoma development. The mice 
were then euthanised 7, 8 or 9 months later. Haepatoma cells that 
overexpressed HLF became resistant to growth inhibition and cell 
death caused by sorafenib. The c-Jun interference eliminated 
sorafenib resistance in haepatoma cells overexpressing 
HLF. Furthermore, HLF interference weakened c-Jun activation 
due to sorafenib and made haepatoma cells more susceptible to 
sorafenib. Wei et al. (185) found phosphoglycerate dehydrogenase 
(PHGDH) to be a critical sorafenib-resistance gene by genome-
wide CRISPR/Cas9 library screening. The Human GeCKOv2A 
CRISPR knockout pooled library contains 65,386 sgRNAs targeting 
19,052 human genes and 1864 miRNAs. They constructed a stable 
Cas9-expressing HCC cell line (MHCC97L-Cas9) by lentiviral 
transfection and transfected it with the GeCKOv2A library. Mutant 
cells were selected by puromycin and treated with sorafenib and 
DMSO for a week and were collected. The sgRNAs were amplified 
by PCR for subsequent high-throughput sequencing and 
bioinformatic analysis. PHGDH targeting sgRNAs were negatively 
selected after sorafenib treatment. They further established 
CRISPR/Cas9 knockout and RNAi knockdown cell models and 
found that inhibition of PHGDH promotes HCC apoptosis by 
suppressing the synthesis pathway upon sorafenib treatment. 
Sueangoen et al. (186) developed transgenic cell models to evaluate 
the functions of seven HCC-derived EGFR mutations on erlotinib 
resistance. Seven missense mutations (K757E, N808S, R831C, 
V897A, P937L, T940A and M947T) in the kinase domain of EGFR 
were recognised and retrovirally transducted into NIH-3 T3 cells. 
T790M and L858R were used as erlotinib-resistant and erlotinib-
sensitive mutant controls, respectively. In vitro experiments showed 
that the seven EGFR mutants are dependent on EGF and resistant 
to erlotinib. Sofer et al. (187) performed a genome-wide CRISPR/
Cas9 activation screen in Huh7 and recognised hexokinase 1 as a 
critical factor in promoting regorafenib resistance in 
HCC. Moreover, Chen et  al. recognised FGF21 as a sorafenib-
resistant gene in HCC by CRISPR/CAS9 genome library screening. 
Mechanically, FGF21 induces sorafenib resistance by directly 

combining with NRF2 to prevent NRF2 ubiquitination degradation. 
Huang et al. (188) used CRISPR/CAS9 genome library screening 
and discovered that lenvatinib resistance was mediated by DUSP4 
deficiency through the activation of MAPK/ERK signalling. 
Another gene associated with lenvatinib resistance, LAPTM5, was 
identified by Pan et al. (189). MiR-3689a-3p was found to be the 
most upregulated miRNA in sorafenib-sensitive HCC by CRISPR/
Cas9 screens (190). Mechanically, miR-3689a-3p may suppress 
CCS/SOD1-dependent mitochondrial oxidative stress to regulate 
sorafenib resistance. Zhu et al. (191) used a transgenic HCC mouse 
model driven by MYC overexpression and beta-catenin (encoded 
by CTNNB1) activation (termed MYC-lucOS; CTNNB1) (192), 
which shows resistance to anti-PD-1 immunotherapy, to evaluate 
the effect of the combination of anti-PD-L1 immunotherapy and 
anti-VEGF. After 4 weeks of the combined treatment, a significant 
survival improvement and a decline in the proportion of mice with 
tumours were observed in this model, indicating the potential of 
the anti-PD-L1/anti-VEGF dual treatment in overcoming 
resistance to either of a single agent. Martin et  al. (193) used 
CRISPR/Cas9 to directionally knock out tumour suppressor genes 
in HCC cells. The p53-knockout HepG2 cells performed increased 
malignant properties and multidrug resistance to cisplatin, 
regorafenib, sorafenib and doxorubicin. Alb-R26Met mice carry a 
conditional mouse–human chimeric Met transgene into the Rosa26 
locus. The Alb-R26Met HCC is resistant to sorafenib. ADAMTSL5 
overexpression was noted at the early stages of liver carcinogenesis, 
and its upregulation was reproduced in the Alb-R26Met HCC 
model. Various oncogenic inputs associated with HCC decreased 
as a result of ADAMTSL5 abrogation, such as MET, EGFR, 
PDGFRβ, IGF1Rβ and FGFR4 receptor tyrosine kinases, which 
were all expressed and/or phosphorylated to a lesser extent, 
showing the potential role of ADAMTSL5  in HCC drug 
resistance (194).

6 Summary

To further understand drug resistance mechanisms in HCC, 
useful models must be developed. Different kinds of models have 
their own advantages and disadvantages. Traditional drug 
resistance models are easier to establish. Meanwhile, the 
corresponding experimental results have higher stability and 
reproducibility. However, individual differences in HCC gene 
expression could not be  reflected in a single cell line. Patient-
derived models maintain more individual traits, which are essential 
for studying the various drug resistance pathways related to 
distinct clinical subtypes of cancer. Despite the difficulty of the 
construction process, patient-derived models may be  a better 
choice to investigate the drug resistance mechanisms of various 
malignancies. Sometimes a direct detection of clinical drug-
resistant samples may be a simpler method to screen for drug-
resistant genes. Gene-editing methodologies can be employed to 
generate genetically engineered cell lines or animal models that 
exhibit resistance to particular pharmaceutical agents. 
Theoretically, a gene-editing cell line may be an ideal model to 
investigate the function of a specific gene on drug resistance. It has 
to be  admitted that none of the aforementioned techniques is 
flawless. In the actual research, we should choose the appropriate 
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drug resistance model according to the research purpose and the 
realistic research environment.
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