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randomization study
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Liping Yao2*

1Department of Neurology, Hunan Provincial People’s Hospital, The First A�liated Hospital of Hunan

Normal University, Changsha, China, 2Department of Neurology, The Third Hospital of Changsha,

Changsha, China

Background: Observational research has highlighted a potential relationship

between rheumatoid arthritis (RA) and neurodegenerative diseases (NDs).

However, the confirmation of a causal connection is impeded by the inherent

limitations of such studies, including vulnerability to confounding factors and

the possibility of reverse causality. This study employs a two-sample Mendelian

randomization (MR) approach to assess the causal impact of RA on three NDs,

including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic

lateral sclerosis (ALS).

Methods: We aggregated data from genome-wide association studies (GWASs)

targeting RA or NDs within populations of European descent. Single nucleotide

polymorphisms (SNPs) with robust associations to RA were identified as

instrumental variables (IVs). To estimate the association between RA and AD,

PD, and ALS, we utilized the inverse variance weighted (IVW) method in our

univariable MR (UVMR) analysis. Validation of the IVW results ensued through

supplementary analyses using MR-Egger and weighted median methods. The

multivariable MR (MVMR) analysis was conducted, adjusting for body mass index

(BMI), alcohol drinking, and type 2 diabetes mellitus (T2DM).

Results: The UVMR analysis, based on the IVW method, revealed a significantly

positive causal association between RA and late-onset (LO) AD (OR [95% CI]

= 1.084 [1.020–1.153]; p = 9.980 × 10−3), while suggesting a possible inverse

relationship with PD (OR [95% CI] = 0.727 [0.563–0.938]; p = 0.014). Our study

did not detect any causal connections between RA and early-onset (EO) AD,

atypical or mixed (AM) AD, and ALS (all p > 0.05). The MVMR analysis results

indicated that after adjusting for alcohol drinking, RA remains a risk factor for

LOAD (OR [95% CI] = 1.094 [1.024–1.169]; p = 0.008). However, MVMR analysis

revealed no causal connections between RA and PD after adjustments for BMI,

alcohol drinking, or T2DM (all p > 0.05). Sensitivity analyses showed no evidence

of heterogeneity and horizontal pleiotropy.

Conclusions: This research provides genetic evidence indicating that RA

potentially causes an increased risk of developing LOAD and PD. Such a

revelation underscores the importance for individuals su�ering from RA to be

vigilant about the potential emergence of LOAD and PD. Ongoing monitoring
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and prompt detection are essential for successfully managing and intervening in

this possible risk.

KEYWORDS

rheumatoid arthritis, Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral

sclerosis, Mendelian randomization

1 Introduction

Neurodegenerative diseases (NDs) represent a diverse and

complex category of diseases marked by the progressive loss of

neurons and degeneration across various sectors of the nervous

system, exhibiting an escalating incidence (1). NDs are increasingly

becoming a prevalent source of both morbidity and mortality,

especially among the elderly. Among these, Alzheimer’s disease

(AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis

(ALS) stand out as significant NDs (2). Currently, AD impacts

an estimated 35 million individuals worldwide, with projections

suggesting a tripling of this figure by 2060 (3, 4). PD is observed

in approximately 1% of those over the age of 65, with predictions

indicating a fourfold increase by 2040 (5, 6). ALS has a global

prevalence of about 4.42 per 100,000 individuals, with both

prevalence and incidence rates expected to rise with the aging

population (7, 8). Despite extensive research conducted on these

major NDs, their pathophysiological mechanisms remain largely

uncharted. The lack of clarity regarding their pathogenesis means

that, to date, no effective cures have been identified. Consequently,

NDs continue to place significant health, societal, and financial

strains on communities across the globe.

Unraveling the complex mechanisms that drive disease is

a cornerstone objective in contemporary medical science. The

emergence of NDs typically stems from neurologic malfunctions

and the demise of brain cells (9). However, the origins of NDs

are multifaceted, with numerous critical elements contributing

to their development (10). Presently, there is strong evidence

to suggest that both inflammatory processes and immune

responses are significant in the development of NDs (11,

12), and there is documented comorbidity with autoimmune

conditions (13, 14). Rheumatoid arthritis (RA), the most prevalent

autoimmune disease, is characterized by excessive inflammatory

and immune reactions (15). RA primarilymanifests with symptoms

of joint rigidity, swelling, and reduced mobility, but it can

also involve extra-articular organs including the eyes, lungs,

skin, and the central nervous system (16). Epidemiological

investigations into the association between RA and NDs have

yielded conflicting outcomes. Conventionally, RA has been

correlated with a heightened risk of PD in East Asian populations

(17), attributed to heightened inflammatory and immune activity

(18). Recent observational research, however, has identified an

inverse association, indicating a lower risk of PD among individuals

with RAwithin the European population, a discovery that contrasts

with previous findings (19). Moreover, observational study in East

Asia have demonstrated an increased incidence of AD among

individuals with RA, in comparison to those without the condition

(20). Simultaneously, research conducted in Europe suggested that

people with arthritic conditions, especially RA, might encounter

cognitive decline in their later years (21). Conversely, investigation

in the United States has proposed that RA may impart a protective

effect against AD, noting a reduced occurrence of AD among those

with RA (22). Furthermore, epidemiological research revealed that

that having certain autoimmune diseases, notably RA, does not

correlate with a heightened risk of ALS (23).

However, the reliability of these observational studies is

compromised by the potential for confounding variables, such

as the administration of nonsteroidal anti-inflammatory drugs

(NSAIDs) (19). The presence of various confounding elements in

these studies often leaves the true causal link between RA and

NDs ambiguous. The challenge in drawing causal conclusions

from observational research lies in the vulnerability to biases,

including reverse causation and the presence of confounders (24),

which dilute our comprehension of the direct connection between

RA and NDs. Mendelian randomization (MR) represents a novel

analytical approach designed to investigate the causative links

between exposures and outcomes (25). In MR analyses, genetic

variants with a known association to the exposure of interest are

leveraged as instrumental variables (IVs), thereby providing an

estimation of causal effects. The advantage of genetic variants lies

in their imperviousness to modification by external environmental

or behavioral factors, representing a stable exposure variable over

time. Through the application of MR, it is possible to circumvent

the confounding (non-genetic components such as nutrition,

lifestyle, environmental exposures, etc.) (26, 27) and reverse

causation that often beset observational studies (28). In present

study, we performed a two-sample univariable and multivariable

MR analysis to explore the potential causative associations between

RA and the incidence of three NDs (AD, PD, and ALS), aiming to

provide novel possibilities for future therapeutic approaches.

2 Methods

2.1 Study design

Our investigation employed a two-sample univariable and

multivariable MR technique to thoroughly evaluate the causal

links between RA and AD, PD, and ALS. IVs, based on genetic

variants-specifically single nucleotide polymorphisms (SNPs)-that

have a strong correlation with RA, were employed in MR analysis.

The validity of our MR methodology relied on meeting three

fundamental criteria: (1) A robust association between the IVs and

the exposure variable is necessary; (2) The selected SNPs must not

be related to any confounding variables; (3) The IVs’ influence

on the outcomes was required to be mediated exclusively through
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FIGURE 1

Study design diagram and three assumptions of Mendelian randomization. SNPs, single nucleotide polymorphisms; LD, linkage disequilibrium; AD,

Alzheimer’s disease.

the exposure pathway (29). Figure 1 encapsulated a schematic

representation of our MR analytical process. Our methodological

execution conformed meticulously to the STROBE-MR guidelines,

ensuring the precision of our reported findings (30). Since the

data for our analysis was sourced from pre-existing studies that

had already secured ethical clearance, the requisition for additional

ethical approval and informed consent was deemed unnecessary for

this study.

2.2 Data sources

Genetic associations with RA were analyzed using data

from the IEU Open genome-wide association study (GWAS)

database (https://gwas.mrcieu.ac.uk/), encompassing a cohort of

417,256 participants. This dataset included 8,255 RA patients

and 409,001 control subjects (31). The FinnGen consortium

(https://r9.finngen.fi/), which pools genetic information from

individuals of European descent who have provided informed

consent, contributed with the genetic datasets for AD. This

consortium integrates genetic and health data from the Finnish

Biobank and National Health Registry, recording 1,314 instances

of early-onset (EO) AD, 6,489 of late-onset (LO) AD, and 2,044 of

atypical or mixed (AM) AD, with a comparison group of 170,429

individuals. For PD, we leveraged genetic summary data from the

UK Biobank, which offers publicly accessible summary statistics

for a cohort of 456,348 individuals of European lineage, including

294 PD cases and 456,054 controls (32). Furthermore, genetic

information pertaining to ALS was sourced from the research

conducted by Nicolas et al., which included data on 20,806 ALS

patients and 59,804 control subjects (33).

Our research entailed the utilization of the PhenoScanner

database (http://www.phenoscanner.medschl.cam.ac.uk/) to

discern potential confounders, including body mass index (BMI),

alcohol drinking, and type 2 diabetes mellitus (T2DM), as indicated

by earlier studies (34, 35). We extracted summary data for these

traits from research utilizing the UK Biobank, which included

407,609 British-ancestry participants for BMI analysis (36), 232,585

individuals of European descent for examining alcohol drinking

(32), and 468,298 European-ancestry participants for T2DM

analysis (37). Comprehensive details of these GWAS datasets were

delineated in Table 1.

2.3 Instrumental variable selection

In the process of selecting genetic variants relevant to the

exposure of RA, we followed a standardized protocol. The criterion

for statistical significance was established at a p < 5 × 10−8 for

RA exposure. To identify independent IVs, we applied linkage

disequilibrium (LD) clumping techniques, setting an r2 threshold

of 0.001 and a clumping window of 10,000 kb, based on LD

information from the 1,000 Genomes Project. Subsequently, the

variants with the lowest p-values were selected as the independent

IVs (38). Furthermore, we evaluated SNPs for their association

with RA by calculating the F-statistic, considering IVs with an

F-value >10 to be robust (39). We then consulted the GWAS

catalog (https://www.ebi.ac.uk/gwas/) to check for any associations

between our selected SNPs and known confounders. Any SNPs

that exhibited an association with the exposure and a direct link

to the outcomes, with a p-value below 5 × 10−8, were excluded.

Ultimately, we integrated the data from the exposure and outcomes,
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TABLE 1 The GWAS data source details in our study.

Phenotype Cases Controls Sample size nSNP Ethnicity PMID Data source

Exposures

RA 8,255 409,001 417,256 24,175,266 European 34594039 IEU Open GWAS

Adjustments

BMI 407,609 British ancestry individuals 10,783,680 European 34017140 GWAS catalog

Alcohol drinking 232,585 European ancestry individuals 11,831,135 European 34737426 GWAS catalog

T2DM 468,298 European ancestry individuals 12,004,440 European 29892013 GWAS catalog

Outcomes

AD (EO) 1,314 170,429 171,743 20,156,258 European NA FinnGen

AD (LO) 6,489 170,429 176,918 20,157,421 European NA FinnGen

AD (AM) 2,044 170,429 172,473 20,156,474 European NA FinnGen

PD 294 456,054 456,348 11,831,294 European 34737426 GWAS catalog

ALS 20,806 59,804 80,610 9,481,886 European 29566793 GWAS catalog

RA, Rheumatoid arthritis; BMI, body mass index; T2DM, type 2 diabetes mellitus; AD, Alzheimer’s disease; EO, Early onset; LO, Late onset; AM, Atypical or mixed; PD, Parkinson’s disease;

ALS, Amyotrophic lateral sclerosis; NA, not available.

carefully excluding any palindromic sequences to guarantee the

uniformity of allele effects.

2.4 MR analysis

To clarify the causal association between RA and AD, PD,

and ALS, we adopted the inverse variance weighted (IVW)

technique as our primary tool for univariable MR (UVMR)

analysis. This method computes weighted summary effects in

relation to the inverse of the variance, presuming all IVs are

reliable. The IVW technique consolidates Wald ratios from

individual SNPs, resulting in a comprehensive causal estimate

(40). To corroborate the robustness of our results and to

uncover any potential pleiotropic effects, we undertook additional

analyses using MR-Egger regression and the weighted median

method. MR-Egger regression, through its intercept, can identify

pleiotropic influences, enabling adjustments in causal estimates,

albeit potentially reducing statistical power (41). The weighted

median method integrates information from multiple genetic

variants, generating a robust causal estimate (42). We further

refined our analysis using multivariable MR (MVMR) method,

incorporating factors such as BMI, alcohol drinking, and T2DM to

account for potential confounding variables. This included the use

of multivariable IVW, multivariable MR-Egger, and multivariable

median methods (43). Our findings attained statistical significance

with p < 0.01 (0.05/5), following the application of the Bonferroni

correction to adjust formultiple testing. A p-value between 0.01 and

0.05 was considered indicative of potential statistical significance.

2.5 Sensitivity analysis

The Cochran’s Q test was applied to assess the heterogeneity

among the genetic variance estimates. A p < 0.05 from the

Cochran’s Q test indicated the necessity for a random-effects

model in subsequent MR analysis. In contrast, a p-value above

this cutoff suggested that a fixed-effects model was more suitable

(44). The MR-Egger intercept was used to evaluate the presence

of horizontal pleiotropy, with p-values exceeding 0.05 signifying

an absence of pleiotropy (41). To identify and mitigate the impact

of outliers on causal inferences, the study incorporated the MR

pleiotropy residual sum and outlier (MR-PRESSO) technique (45).

Additionally, a leave-one-out strategy was employed to identify IVs

that could potentially influence the estimation of causal effects,

by sequentially excluding each SNP and observing the impact

on the remaining set. The associations between RA and AD,

PD, and ALS were illustrated through scatter plots and forest

plots. To confirm the robustness of our findings, funnel plot

analysis was also undertaken. All statistical analyses were carried

out using R software 4.3.1, employing the “TwoSampleMR” and

“MendelianRandomization” packages.

3 Results

3.1 Selection of instrumental variables

In our initial evaluation, we identified 25 candidate SNPs to

serve as IVs for RA. However, rs6679677 was eliminated from

consideration due to its pronounced association with type 1

diabetes (p < 8 × 10−24), posing a risk of confounding. Similarly,

rs34536443 was eliminated because of its significant linkage to both

type 1 and type 2 diabetes (p< 2× 10−11). Additionally, rs3093017

was excluded due to its palindromic nature and intermediate allele

frequencies. Following the stringent selection process, we identified

19 SNPs for AD, 21 for PD, and 21 for ALS to be utilized as IVs

in the MR analyses. The robustness of these chosen SNPs was

validated by F-statistics exceeding 10, indicating the absence of

weak instrument bias. Detailed information on these SNPs can be

found in Supplementary Tables 1–6.
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FIGURE 2

MR analysis of the causal e�ect of RA on AD, PD, and ALS. AD, Alzheimer’s disease; EO, Early-onset; LO, Late-onset; AM, Atypical or mixed; PD,

Parkinson’s disease; ALS, Amyotrophic lateral sclerosis.

3.2 UVMR analysis of RA on AD, PD, and
ALS

In the present research, we probed the relationships between

RA and AD, PD, and ALS, with the results depicted in Figure 2.

Through the application of the IVW method, we identified a

significant positive association between RA and LOAD (OR [95%

CI] = 1.084 [1.020–1.153]; p = 9.980 × 10−3). This association

was further substantiated by subsequent MR analyses using both

MR-Egger (OR [95% CI]= 1.110 [1.011–1.219]; p= 0.043) and the

weighted median approach (OR [95% CI]= 1.112 [1.033–1.196]; p

= 0.005), thereby strengthening the evidence of a positive causal

connection. In contrast, the IVW method suggested a possible

protective effect of RA against developing PD (OR [95% CI] =

0.727 [0.563–0.938]; p = 0.014), which was also supported by

results from the weighted median approach (OR [95% CI] = 0.694

[0.517–0.932]; p = 0.015). However, our study failed to uncover

any significant relationship between RA and EOAD (OR [95% CI]

= 1.009 [0.877–1.162]; p = 0.898), AMAD (OR [95% CI] = 1.096

[0.979–1.228]; p = 0.112), or ALS (OR [95% CI] = 0.982 [0.929–

1.037]; p = 0.504), with neither the MR-Egger nor the weighted

medianmethod showing significant results (all p> 0.05). The forest

plots in Figure 3 presented the estimated causal effects between RA

and these NDs. Additionally, Figure 4 showed scatter plots with

MR intercepts close to zero, indicating a negligible influence of

horizontal pleiotropy in the analyses conducted.

3.3 MVMR analysis of RA on AD, PD and ALS

In the MVMR analysis, the multivariable IVW method did not

reveal any significant associations between RA and EOAD, AMAD,

and ALS after adjustments for BMI, alcohol drinking, or T2DM

(all p > 0.05). These non-significant findings were also obtained

from multivariable MR-Egger and median methods (all p > 0.05).

However, the MVMR analysis demonstrated a significant positive

relationship between RA and LOAD using multivariable IVW (OR

[95%CI] = 1.094 [1.024–1.169]; p = 0.008) and MR–Egger (OR

[95%CI]= 1.126 [1.039–1.221]; p= 0.004) methods after adjusting

for alcohol drinking. In contrast, after adjustment for alcohol

drinking, MVMR analysis suggested that RA could potentially

decrease the risk of PD based on multivariable MR–Egger (OR

[95%CI] = 0.710 [0.541–0.931]; p = 0.013) and MVMR median

(OR [95%CI]= 0.700 [0.512–0.958]; p= 0.026) methods; however,

this potential protective relationship was not corroborated by the

multivariable IVW method (OR [95%CI] = 0.799 [0.635–1.004];

p = 0.054). When adjustments for BMI or T2DM were made, no
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FIGURE 3

Forest plots of RA on AD, PD, and ALS. (A) Early-onset Alzheimer’s disease; (B) Late-onset Alzheimer’s disease; (C) Atypical or mixed Alzheimer’s

disease; (D) Parkinson’s disease; (E) Amyotrophic lateral sclerosis.

correlation was discovered between RA and either LOAD or PD

(all p > 0.05) (Table 2).

3.4 Sensitivity analyses

Results from the MR sensitivity assessment was detailed in

Tables 2, 3. The employment of heterogeneity tests, leveraging

Cochrane’s Q statistics, resulted in p-values surpassing 0.05. This

suggests a lack of heterogeneity among the genetic variants

analyzed. Moreover, the intercept obtained from the MR-Egger

regression analysis, a tool designed to assess the potential for

horizontal pleiotropy, did not reveal significant evidence of

pleiotropy. This conclusion of no significant horizontal pleiotropy

received further support from the results of the MR-PRESSO

analysis. The leave-one-out sensitivity test identified the genetic

variant rs35139284 as having a potential impact on the statistical

relevance concerning LOAD and PD, whereas rs35511257 seemed

to influence the significance of the findings related to PD. The

detailed findings from the leave-one-out sensitivity test are depicted

in Figure 5. Moreover, the funnel plots, as depicted in Figure 6,

did not demonstrate any noticeable bias, thereby reinforcing the

credibility and robustness of our research outcomes.

4 Discussion

Utilizing a substantial volume of publicly accessible genetic

information, our research delved into the causal associations
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FIGURE 4

MR analysis scatter plots of RA on AD, PD, and ALS. (A) Early-onset Alzheimer’s disease; (B) Late-onset Alzheimer’s disease; (C) Atypical or mixed

Alzheimer’s disease; (D) Parkinson’s disease; (E) Amyotrophic lateral sclerosis.

between RA and three NDs. Through UVMR analysis, our study

established a significant increase in the risk of LOAD due to RA,

a finding that contradicts the MR results of Li et al. (46). Further

MVMR analysis suggested that RA remained a risk factor for

LOAD only after adjustment for alcohol drinking. However, when

adjustments were made for BMI or T2DM, no association between

RA and LOAD was observed. Moreover, our findings also revealed

that RA may be a protective factor for PD, aligning with previous

research conclusions (47). Nonetheless, this potential protective

correlation was not deemed significant after making adjustments

for BMI, alcohol drinking, or T2DM.

AD is categorized into EOAD and LOAD, distinguished by an

age threshold of 65 years, with EOAD comprising about 4–6% of

all AD instances (48). A multitude of preclinical investigations,

systematic reviews, and meta-analyses have underscored the role

of RA in the etiology of LOAD. Recent experimental findings

demonstrated that inducing arthritis in APP/PS1 mice (a widely

recognized model for AD) resulted in increased glial activation

and aggravated amyloid deposition (49). Furthermore, a broad-

based cohort study indicated that individuals with RA have a

higher prevalence of AD and other dementia-related conditions

compared to the general population (20). This observation was

corroborated by a separate nested case-control study involving over

8.5 million adults, which confirmed the disparity of AD incidence

across both young adults (mean age 42.1 years) and the elderly (65

years and older) (50). Actually, the existence of any inflammatory

joint disease, particularly RA, is strongly correlated with later-

life AD-related cognitive decline (21). Neuropsychiatric symptoms

are also more common among RA patients (59.5%) than in their

age-similar counterparts (17.1%) (51). A recent comprehensive

analysis reiterated these results, revealing that patients with RA

demonstrate markedly reduced performance in areas of attention,

memory, and verbal abilities compared to controls matched

for age (52). The aggregation of these data, in conjunction

with our findings regarding the positive correlation between RA

and LOAD, suggests a potential temporal link between chronic

inflammation in RA and the initiation and worsening of cognitive

impairment in AD. These findings facilitate the identification

of RA patients with heightened susceptibility to LOAD, thereby

enhancing monitoring and early intervention strategies to mitigate

their risk. Additionally, clinicians can consider more proactive RA

management approaches for RA patients, particularly those with

a familial history of LOAD, to further diminish the likelihood of

developing LOAD.

The underlying mechanisms by which RA increases the

risk of LOAD are currently unclear. AD is pathologically

typified by the extracellular build-up of amyloid-β plaques

and the intracellular aggregation of tau neurofibrillary tangles,

both of which result in a gradual, time-dependent neuronal

degradation and consequent functional loss (4). Some theories

propose a connection between systemic inflammatory disorders

and neuroinflammation, attributable to common biological

mechanisms. RA exemplifies such an autoimmune condition with

elevated inflammatory activity. In RA patients, specific biomarkers

become detectable in the serum, including amyloid A protein,

anti-cyclic citrullinated peptide, rheumatoid factor, C-reactive

protein and calgranulin (53). The existence of amyloid structures

is particularly intriguing, given that light chain amyloidosis of

transthyretin and immunoglobulins leads to amyloid deposition

in soft tissues (54). Furthermore, chronic systemic peripheral

inflammation impacts the neurodegenerative processes inherent

in AD. Inflammatory cytokines such as interleukin-6 (IL-6),

interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-

α), interleukin-12 (IL-12), and interleukin-18 (IL-18), and
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TABLE 2 Multivariable Mendelian randomization (MVMR) analysis of rheumatoid arthritis with neurodegenerative diseases.

Outcomes Adjustments Methods nSNP OR 95% CI p value Egger Intercept p value

AD (EO) BMI Inverse variance weighted 435 0.950 0.796–1.133 0.570 −0.002 0.465

MR-Egger 435 0.996 0.802–1.239 0.972

MVMRmedian 435 0.920 0.742–1.141 0.448

Alcohol drinking Inverse variance weighted 39 1.017 0.892–1.158 0.799 −0.010 0.432

MR-Egger 39 1.057 0.899–1.242 0.505

MVMRmedian 39 0.930 0.775–1.116 0.435

T2DM Inverse variance weighted 93 0.975 0.817–1.164 0.782 0.012 0.095

MR-Egger 93 0.875 0.703–1.087 0.226

MVMRmedian 93 0.931 0.735–1.182 0.560

AD (LO) BMI Inverse variance weighted 435 1.035 0.921–1.162 0.562 −0.002 0.448

MR-Egger 435 1.068 0.927–1.232 0.362

MVMRmedian 435 1.108 0.984–1.250 0.090

Alcohol drinking Inverse variance weighted 39 1.094 1.024–1.169 0.008 −0.007 0.224

MR-Egger 39 1.126 1.039–1.221 0.004

MVMRmedian 39 1.075 0.996–1.160 0.065

T2DM Inverse variance weighted 93 1.089 1.000–1.186 0.051 0.003 0.429

MR-Egger 93 1.062 0.955–1.181 0.268

MVMRmedian 93 1.070 0.944–1.214 0.291

AD (AM) BMI Inverse variance weighted 435 1.035 0.891–1.201 0.657 0.002 0.397

MR-Egger 435 0.988 0.822–1.186 0.895

MVMRmedian 435 1.096 0.908–1.324 0.340

Alcohol drinking Inverse variance weighted 39 1.058 0.960–1.164 0.260 0.004 0.683

MR-Egger 39 1.042 0.924–1.174 0.503

MVMRmedian 39 1.041 0.920–1.177 0.525

T2DM Inverse variance weighted 93 1.114 0.971–1.278 0.123 0.005 0.311

MR-Egger 93 1.058 0.893–1.254 0.516

MVMRmedian 93 1.112 0.906–1.365 0.311

PD BMI Inverse variance weighted 466 0.964 0.736–1.260 0.785 0.005 0.362

MR-Egger 466 0.895 0.654–1.223 0.484

MVMRmedian 466 1.390 0.887–2.177 0.151

Alcohol drinking Inverse variance weighted 41 0.799 0.635–1.004 0.054 0.033 0.130

MR-Egger 41 0.710 0.541–0.931 0.013

MVMRmedian 41 0.700 0.512–0.958 0.026

T2DM Inverse variance weighted 93 0.785 0.598–1.031 0.083 −0.009 0.491

MR-Egger 93 0.831 0.605–1.143 0.257

MVMRmedian 93 0.780 0.491–1.239 0.291

ALS BMI Inverse variance weighted 482 1.005 0.947–1.066 0.867 <0.001 0.803

MR-Egger 482 1.011 0.938–1.090 0.775

MVMRmedian 482 0.972 0.897–1.054 0.492

Alcohol drinking Inverse variance weighted 40 0.980 0.930–1.035 0.477 −0.003 0.438

MR-Egger 40 0.997 0.931–1.068 0.936

MVMRmedian 40 0.994 0.927–1.066 0.871

T2DM Inverse variance weighted 92 0.977 0.923–1.036 0.440 −0.002 0.313

MR-Egger 92 0.999 0.931–1.073 0.980

MVMRmedian 92 0.981 0.898–1.071 0.668

AD, Alzheimer’s disease; EO, Early onset; BMI, body mass index; T2DM, type 2 diabetes mellitus; LO, Late onset; AM, Atypical or mixed; PD, Parkinson’s disease; ALS, Amyotrophic

lateral sclerosis.
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TABLE 3 Sensitivity analysis of the MR analysis results of rheumatoid arthritis with neurodegenerative diseases.

Exposures Outcomes Heterogeneity test Pleiotropy test MR-PRESSO

Cochran’s Q test p Egger intercept p Global test (p)

Rheumatoid arthritis AD (EO) 24.122 0.151 −0.031 0.139 0.197

AD (LO) 15.236 0.646 −0.006 0.525 0.627

AD (AM) 22.395 0.215 0.029 0.082 0.269

PD 27.196 0.130 0.013 0.758 0.185

ALS 26.372 0.154 −0.014 0.063 0.203

AD, Alzheimer’s disease; EO, Early onset; LO, Late onset; AM, Atypical or mixed; PD, Parkinson’s disease; ALS, Amyotrophic lateral sclerosis.

transforming growth factor beta (TGF-β) exhibit increased activity

in AD patients relative to healthy individuals (55). Researchers are

studying these cytokines and their effects in the pathogenesis of

both AD and RA, given that an overactive immune response is a

commonality in these conditions. It is worth mentioning that the

blood-brain barrier (BBB) serves as a mediator between RA and

AD. Empirical research suggested that RA patients exhibit altered

BBB permeability. BBB dysfunction is also linked to NDs, including

AD (56). However, our analysis indicated no association between

RA and LOAD when adjusted for BMI or T2DM, suggesting that

BMI and T2DM might be confounding factors influencing RA and

LOAD. Obesity is a known proponent of systemic inflammation,

which can precipitate insulin resistance, β-cell dysfunction, and

eventually T2DM, with these conditions being implicated in

the pathophysiology of both AD and RA (57). In light of these

findings, the intricate physiological interactions between RA

and AD warrant further investigation to elucidate their potential

mechanistic links.

While our research indicated that individuals with RA exhibit a

lower likelihood of developing PD, the precise reasons behind this

protective influence remain largely undetermined. This observation

stands in contrast to earlier theories suggesting that sustained

inflammation and an excess of pro-inflammatory molecules in

autoimmune conditions could potentiate microglial activation and

neuronal degeneration, potentially heightening PD susceptibility

(19, 58). Notably, an increasing body of research highlights

the significance of lysosomal malfunction in both autoimmune

diseases and NDs (59). Specifically, in PD, diminished activity of

lysosomal enzymes can result in the buildup of α-synuclein and

the creation of Lewy bodies, a critical pathological feature of PD

(60, 61). Furthermore, the study has demonstrated that heightened

expression of lysosomal proteases, such as cathepsin D, can

mitigate α-synuclein aggregate formation in murine models (62).

Remarkably, autoimmune conditions, including RA, often exhibit

increased lysosomal enzyme activities (59, 63). This is evidenced

by elevated concentrations of various lysosomal cathepsins in

the serum and synovial fluid of RA sufferers, a stark contrast

to the reduced enzyme activity seen in PD (64). Thus, the

lysosome pathway may offer a protective mechanism against PD

in RA patients, meriting further investigation. Nonetheless, our

MVMR analysis found no significant association between RA and

PD once adjustments were made for BMI, alcohol drinking, or

T2DM. Obesity has been reported to be associated with lysosomal

dysfunction. Excess body weight might lead to the increase of

intracellular lysosome burden and affect its normal function.

Additionally, obesity is frequently accompanied by chronic low-

grade inflammation of adipose tissue, a condition that may

alter lysosomal activity and protein expression (65). Moreover,

long-term excessive drinking can damage liver cells and impair

lysosomal function. Harmful substances (such as acetaldehyde)

produced in the process of alcohol metabolism may damage

lysosomal membrane and affect its normal function (66, 67).

Insulin resistance, a hallmark of T2DM, has been linked to

lysosomal dysfunction, with the study suggesting that lysosomes

play a pivotal role in insulin signaling and glucose metabolism

(68). Therefore, it can be speculated that the connection between

obesity, alcohol intake, and T2DM with lysosomal dysfunction

could obscure the potential link between RA and PD. Furthermore,

robust epidemiological data have consistently shown that T2DM

augments both the risk and progression rate of PD (69).

Additionally, T2DM prevalence is notably higher in RA patients

compared to healthy counterparts (70). There is a well-documented

association between obesity and PD, with evidence pointing to

a relationship between increased BMI, systemic inflammation,

and the severity of PD (71–74). Recent findings also indicated

that individuals with RA have a higher incidence of low lean

mass and sarcopenic obesity compared to the general population

(75). Lifestyle habits, such as alcohol use, could also influence

PD development. It was reported that compared to moderate

drinkers, abstainers and heavy drinkers face a heightened risk

of developing Hoehn and Yahr stage 3 PD (76). Given that RA

patients are more susceptible to obesity and T2DM, and may

alter their alcohol consumption following an RA diagnosis, these

factors could partially obscure RA’s direct protective impact on

PD. It is imperative to conduct further research into the complex

interplay of factors influencing the relationship between RA and

PD. Should further studies validate the protective impact of RA on

PD, it would enable the development of more precise treatment and

prevention strategies, tailored to the patient’s genetic background

and disease characteristics.

Our study is the first to explore the causal relationship

between RA and ALS. Both UVMR and MVMR results suggested

no causal associations between RA and ALS. The origins

of ALS remain largely enigmatic, with ongoing debate about

whether autoimmune processes contribute to its development

or if there is a connection with inflammatory or autoimmune

conditions such as RA. Reports of RA patients developing

ALS are scarce, and epidemiological studies that investigate the

simultaneous occurrence of these conditions are limited (77–

79). Prior research has determined that the incidence of ALS
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FIGURE 5

Leave-one-out analysis of RA on AD, PD, and ALS. (A) Early-onset Alzheimer’s disease; (B) Late-onset Alzheimer’s disease; (C) Atypical or mixed

Alzheimer’s disease; (D) Parkinson’s disease; (E) Amyotrophic lateral sclerosis.

among individuals with RA aligns with that observed in the

general population, once adjusted for age and gender, suggesting

that ALS and RA are likely distinct conditions with minimal,

if any, shared etiological factors (80). To further clarify the

relationship between RA and ALS onset, as well as to uncover the

mechanisms underlying this relationship, extensive cohort studies

are required.

The present study is not without its limitations. First, the

GWAS summary statistics utilized were derived exclusively

from European cohorts, which poses questions about the

generalizability of our results to ethnically diverse groups.

Further research is needed to compare the findings from

this European cohort with those from other ethnic groups,

such as East Asians, to elucidate the global association

between RA and NDs. Second, the GWAS dataset for PD

employed in MR analysis comprised a relatively small

number of PD cases, somewhat constraining the reliability

and robustness of the findings. Further research is needed
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FIGURE 6

Funnel plots of the results from MR analysis of RA on AD, PD, and ALS. (A) Early-onset Alzheimer’s disease; (B) Late-onset Alzheimer’s disease; (C)

Atypical or mixed Alzheimer’s disease; (D) Parkinson’s disease; (E) Amyotrophic lateral sclerosis.

to validate these results in a larger cohort of PD patients.

Third, our exploration of the association between RA and

specific subtypes of PD or ALS was constrained by the

paucity of SNP data in the existing database. Fourth, akin

to all MR analyses, our methodology cannot completely

dismiss the influence of latent pleiotropy, which may

skew our findings. This underlines the necessity for more

comprehensive research to elucidate the connections between RA

and NDs.

5 Conclusion

In summary, our analyses utilizing UVMR and MVMR with

adjustment for alcohol drinking provide evidence supporting

a significant causal effect of RA on elevating the risk of

LOAD, thereby identifying RA as a potential risk factor

for LOAD. Simultaneously, our UVMR analysis suggested a

potential inverse correlation between RA and PD, suggesting a

potential protective role of RA against PD. It is of paramount

importance to validate these results with extensive prospective

research and to explore the biological mechanisms underlying

these relationships.
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