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Introduction: Alzheimer’s disease (AD) is a neurodegenerative disorder and the

most prevailing cause of dementia. AD critically disturbs the daily routine, which

usually needs to be detected at its early stage. Unfortunately, AD detection using

magnetic resonance imaging is challenging because of the subtle physiological

variations between normal and AD patients visible on magnetic resonance

imaging.

Methods: To cope with this challenge, we propose a deep convolutional

generative adversarial network (DeepCGAN) for detecting early-stage AD in this

article. The DeepCGAN is an unsupervised generative model that expands the

dataset size in addition to its diversity by utilizing the generative adversarial

network (GAN). The Generator of GAN follows the encoder-decoder framework

and takes cognitive data as inputs, whereas the Discriminator follows a structure

similar to the Generator’s encoder. The last dense layer uses a softmax classifier

to detect the labels indicating the AD.

Results: The proposed model attains an accuracy rate of 97.32%, significantly

surpassing recent state-of-the-art models’ performance, including Adaptive

Voting, ResNet, AlexNet, GoogleNet, Deep Neural Networks, and Support Vector

Machines.

Discussion: The DeepCGAN significantly improves early AD detection accuracy

and robustness by enhancing the dataset diversity and leveraging advanced

GAN techniques, leading to better generalization and higher performance

in comparison to traditional and contemporary methods. These results

demonstrate the ecacy of DeepCGAN in enhancing early AD detection, thereby

potentially improving patient outcomes through timely intervention.

KEYWORDS
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative condition primarily affecting the

elderly, characterized by memory, behavioral, and cognitive impairments that disrupt

daily life (1). This devastating disease is projected to have a staggering impact on

global health in the coming decades. Epidemiological studies indicate a disturbing trend,

with expectations of a fourfold surge in the worldwide prevalence of AD by 2050,
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potentially exceeding 100 million cases (2). The impending

prevalence of AD raises critical concerns for individuals, families,

and healthcare systems worldwide. The burden of AD extends

beyond the individual, affecting the very fabric of society. Some

studies employ mathematical modeling to forecast the trends

and growth of AD, considering factors such as increasing life

expectancy, shifting mortality patterns, and the prevalence

of cardiovascular diseases. Unfortunately, these projections

collectively suggest a growing proportion of the population will be

impacted by AD in the future (3).

Detecting AD in its early stages is of paramount importance

for effective intervention and treatment. AD diagnosis is a complex

endeavor, demanding the accurate identification of different

dementia subtypes (4). While the challenges are substantial, recent

research highlights the central role of AD in dementia cases,

constituting approximately two-thirds of all diagnoses (5). One

of the pressing issues in AD management is the lack of effective

pharmacological treatments in clinical practice. This shortfall has

prompted a paradigm shift in therapeutic strategies, emphasizing

the early-stage detection of AD as a promising avenue for

intervention (6, 7). Identifying individuals in the early stages of

cognitive decline or Mild Cognitive Impairment, whether stable

or progressive, is pivotal for understanding high-risk populations

and potentially delaying AD progression. The combination of the

increasing prevalence of AD and the complexity of its diagnosis

underscores the urgent need for advancements in early detection

methods and comprehensive care strategies to address the growing

global challenge of AD.

The AD research landscape has shifted significantly due to deep

learning (DL) models, including stacked auto-encoders, recurrent

neural networks, support vector machines, and convolutional

neural networks (CNN). The bi-directional gated recurrent units

(BiGRUs) layers consist of 2,048 units, with 1,024 units in

each direction. The BiGRUs capture long-term temporal cues

from the cognitive data, which is crucial for identifying patterns

and changes indicative of early AD which have emerged as

potent tools in this endeavor (8). However, limitations exist in

feature quality, especially from image processing (9), requiring DL

models adaptable to diverse data types. Simultaneously, generative

adversarial networks (GANs), (which is a class of machine

learning frameworks where two neural networks, a generator, and

a discriminator, compete against each other to produce more

accurate results) originally designed for images, have found their

place in AD classification (9). DL models with GANs are proficient

in classifying AD states and enhancing image-based AD tasks,

like denoising images and precise brain segmentation (10, 11).

These advances drive understanding, detection, and treatment

of AD, a pressing neurodegenerative disease. Although, these

architectures have made sufficient advancement in AD detection;

however, these existing AD detection models have primarily

focused on neuroimaging data, resulting in the underutilization

of critical cognitive features. Moreover, temporal information,

which is highly relevant for understanding AD progression, has

been largely neglected in the literature. Additionally, the well-

known challenge of training instability in these models remains a

significant concern.

Existing models often struggle with limited dataset sizes and

lack diversity, leading to overfitting and poor generalization.

Traditional GAN-based methods, primarily designed for image

data, fail to leverage cognitive data crucial for early AD detection.

This article introduces a groundbreaking method for the early

detection of AD—the deep convolutional generative adversarial

network (DeepCGAN), which is an unsupervised generative model

designed to leverage cognitive (clinical) data for AD detection.

DeepCGAN addresses these issues by using a deep convolutional

GAN framework to expand and diversify the dataset, generating

high-quality synthetic data that improves detection accuracy and

robustness. DeepCGANs generate high-quality synthetic medical

images, crucial for augmenting limited datasets like MRI and PET

scans and enhancing model generalization. They create diverse

synthetic samples, augmenting training data in medical imaging

where labeled data is scarce, improving model performance.

DeepCGANs’ convolutional layers learn complex features for

accurate early Alzheimer’s detection, and their flexibility across

imaging modalities makes them versatile beyond disease detection,

which makes DeepCGANs a powerful and effective choice for early

AD detection.

To address the aforementioned gaps, the proposed model

effectively incorporates and analyzes cognitive data, offering amore

comprehensive understanding of AD. Also, the proposed model

integrates temporal information using BiGRUs to capture long-

term patterns and introduces mechanisms like gradient penalty

and relativistic average loss to stabilize training, thereby enhancing

the stability and reliability of AD detection with GANs. Operating

through a dual structure, the Generator follows an encoder-

decoder framework that takes cognitive data as input, while the

Discriminator mirrors the architecture of the Generator’s encoder.

Moreover, the proposed model employs two distinct loss functions,

Wasserstein and Relativistic loss, ensuring stable training and

improved performance. The pivotal component of the model is the

last dense layer, employing a softmax classifier to detect AD labels.

The proposed DeepCGAN undergoes comprehensive training

using cognitive data, demonstrating promising results in the early

prediction of AD, achieving a remarkable 97.32% accuracy on

cognitively labeled data from the ADNI dataset, surpassing recent

state-of-the-art models. The contributions of this article include:

1. For detecting early-stage AD, this article proposes a

DeepCGAN, an unsupervised generative model that extends the

cognitive features of the data and its diversity by utilizing the

GAN framework.

2. To optimize the detection performance of DeepCGAN, a novel

convolutional encoder-decoder-based GAN is proposed and

trained on the cognitive features.

3. Our comprehensive experiments on the ADNI dataset show

that the proposed DeepCGAN performs better in detecting

early-stage AD compared to start-of-the-art models.

The remainder of this article is structured as follows: Section 2

reviews related work. Section 3 presents the proposed DeepCGAN.

Section 4 describes the experimental setup, and Section 5 discusses

the evaluation of the proposed model. Finally, Section 6 concludes

the article.
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2 Related work

The current gold standard for detecting and prognosing

neurodegenerative AD relies on clinical assessments of symptoms

and their severity. However, early disease detection before clinical

symptoms manifest is critical for effective disease management and

timely therapeutic intervention. Research indicates that analyzing

structural and functional changes in patients during the early

stages of AD can provide valuable insights (12). Machine learning

approaches offer a rapid and robust means to interpret medical

examinations, aiding in the early detection of AD. Early detection

is paramount, allowing for proactive intervention and potentially

improving patient outcomes. Machine learning enhances the

diagnostic process by uncovering subtle patterns and anomalies

that may precede clinical symptoms. It transcends the limitations of

conventional clinical assessments, which often rely on symptomatic

markers that become evident at later disease stages. Integrating

machine learning into AD detection represents a paradigm shift,

emphasizing the significance of early and accurate diagnosis in

transforming AD research and treatment strategies.

CNNs are deep learning models (13) known for their

ability to extract complex patterns (14–16). They excel in

body part segmentation, surpassing traditional methods like

logistic regression and support vector machines (17). CNN-

based computer-aided diagnosis (CAD) systems are effective

in neurodegenerative disease detection (18). In AD detection,

methods combining the dual-tree complex wavelet transform with

neural networks show promise (19). Architectures like GoogleNet

and ResNet deliver strong results in distinguishing healthy

subjects from those with AD and mild cognitive impairment

(20). LeNet-5 has been effectively employed for AD vs. normal

control (NC) brain classification (21). Hosseini et al. extended

previous work by proposing a Deeply Supervised Adaptive 3D-

CNN (DSA-3D-CNN) for AD prediction (22). They trained this

model on the CAD-Dementia dataset without skull stripping

preprocessing and rigorously evaluated its performance through

10-fold cross-validation. In addition to CNNs, ensemble learning

(EL) has proven invaluable in the detection and prognosis of

neurodegenerative diseases. Given the often limited availability

and the inherent 3D nature of medical imaging data, training

classifiers can be a challenge (23). EL offers a promising

solution by combining the strengths of multiple trained models,

making it particularly useful for classification tasks involving

heterogeneous datasets. To harness the power of ensemble learning,

individual classifiers are trained on various subsets of the data

and subsequently combined. EL with bootstrapping techniques

becomes especially beneficial when relevant data is scarce, such

as cognitive features. Additionally, when dealing with limited

data, common practices include data augmentation to enhance

the performance of ensemble models. This combined approach

of CNNs and ensemble learning offers a robust and adaptable

framework for tackling the complexities of neurodegenerative

disease detection and prognosis.

GANs are a prominent method for enhancing imaging data by

creating synthetic data that competes with a discriminator aiming

to distinguish real from synthetic data (24). When generative

networks excel, they can replicate data based on the inherent

structure of real data. In the field of medical imaging, GANs

have found success in tasks like MRI and CT reconstruction and

unconditional image synthesis (25, 26). Furthermore, GANs exhibit

a wide array of applications in AD-related image processing. They

are proficient in denoising low-dose positron emission tomography

(PET) scans to yield high-quality images (10, 11, 27). Accurate

brain image segmentation, facilitated by GANs, aids in locating

features critical for AD diagnosis and research across various

image modalities (28–30). Despite the promise of GANs in AD

image processing, the existing models for detecting AD have

predominantly centered around neuroimaging data, leading to

the insufficient utilization of vital cognitive features. Furthermore,

the valuable temporal dimension, crucial for comprehending the

progression of AD, has been notably overlooked in the existing

literature. Additionally, the persisting issue of training instability

in these models continues to pose a noteworthy challenge.

3 Materials and methods

The DeepCGAN model, proposed in this study, is designed

for AD detection. It leverages a Generative Adversarial Network

architecture, specifically tailored to the analysis of cognitive features

and temporal information, which are often overlooked in existing

AD detection models.

3.1 Generative adversarial networks

GAN is a fundamental architecture in machine learning,

composed of two primary components: the Generator G(z)

and the Discriminator D(x), as shown in Figure 1. The GAN

framework is designed for generative tasks, aiming to produce

synthetic data that closely resembles real data distributions.

The Generator G(z) is responsible for creating new data

samples. It takes random noise N(z) as input, typically

drawn from a uniform or normal distribution. Through

a learned transformation process, the Generator generates

data that mimics real training data. This process relies on

adjusting internal parameters to produce data samples that are

increasingly realistic.

The Discriminator D(x) acts as an adversary to the Generator.

Its primary role is to differentiate between genuine data from

the training set and data generated by the Generator. The

Discriminator evaluates each input and assigns a probability score,

indicating the likelihood of the input being real. If an input is

genuine, D(x) approaches 1, whereas if it is generated, D(x) tends

toward 0. The GAN operates as a two-player minimax game,

optimizing the value function V(G,D). The objective function is

given in Equation 1:

min
G

max
D

V(G,D) = Ex∼Pdata(x)[logD(x)]

+Ez∼Pz(z)[log(1− D(G(z)))] (1)

Here, D(·) provides the probability that a given sample belongs

to the training data X. The Generator aims to minimize log(1 −

D(G(z))), making D(G(z)) as high as possible, essentially fooling
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FIGURE 1

GAN framework with generator and discriminator.

the Discriminator into considering G(z) as real data. Conversely,

the Discriminator seeks to maximizeD(X) and 1−D(G(z)), driving

its optimal state toward P(x) = 0.5. In practice, GANs continually

refine the Generator to produce data that is indistinguishable

from real data, representing a powerful framework for generating

synthetic data in various domains.

3.2 DeepCGAN for AD detection

The architecture of our proposed GANmodel for AD detection

is illustrated in Figure 2. This model is carefully designed to

effectively utilize cognitive features in the detection process. The

Generator component of our model is based on an encoder-

decoder framework, optimized for processing cognitive features

as inputs. The encoder in our model is designed to extract

meaningful features from the input data through a series of

convolutional layers. The encoder comprises five 2-D convolutional

layers, strategically placed to extract local correlations within the

input features. A reshape layer is employed to appropriately format

the encoded features. These layers progressively downsample

the input, capturing local correlations and essential patterns.

Each convolutional layer is followed by batch normalization

and Leaky Rectified Linear Unit (ReLU) activation functions

to stabilize training and introduce non-linearity. Positioned in

the middle of the Generator architecture, the BiGRU layers

are crucial for capturing long-term dependencies and temporal

dynamics in the cognitive features. Each BiGRU layer consists

of 2,048 units (1,024 in each direction), enabling the model to

learn bidirectional temporal patterns that are significant for early

Alzheimer’s detection.

The decoder mirrors the encoder’s structure but performs

the inverse operation. It utilizes deconvolutional (transposed

convolution) layers to reconstruct the input data from the encoded

features. The skip connections between corresponding layers of

the encoder and decoder facilitate fine-grained feature integration,

enhancing the model’s ability to preserve important information

during reconstruction. The Generator’s primary function is to

produce synthetic data that closely resembles the real cognitive

feature data. By transforming random noise inputs through the

encoder-BiGRU-decoder pipeline, the Generator learns to create

realistic data samples that help augment the training set and

improve the robustness of the Discriminator. The input to our

DeepCGAN model consists of cognitive features derived from the

ADNI dataset. The input to themodel is a three-dimensional tensor

with a batch size of 32, 50-time steps, and 128 features. Thus, the

input shape is [32, 50, 128], specifically tailored to capture the

temporal and cognitive aspects critical for Alzheimer’s detection.

The data preprocessing steps include normalization and

sequence padding to ensure uniform input dimensions. The

preprocessing steps include: Normalization: The cognitive features

are normalized to ensure consistent scales and improve model

training stability. Padding: Sequences are padded to a fixed length

(e.g., 50 time steps) to ensure uniform input dimensions across

different samples. Handling Missing Values: Features with more

than 40% missing values are removed. For the remaining features,

missing values are imputed using appropriate statistical methods

(e.g., mean imputation). In addition, two BiGRUs layers are

thoughtfully inserted in the middle of the Generator architecture,

which enhances the model’s ability to capture long-term temporal

cues from the cognitive data. This integration addresses a critical

gap in existing models that primarily focus on neuroimaging data,

thereby improving the detection of early AD. The decoder of

our model mirrors the encoder’s structure and consists of five 2-

D deconvolutional layers, also known as transposed convolution

layers. Batch normalization is consistently applied following each

convolutional and deconvolutional operation. ReLU functions are

used as activation functions within the hidden layers, while a

sigmoid activation function is applied to the output layer. To

facilitate fine-grained feature integration, we have incorporated

skip connections within the Generator. These skip connections

concatenate the outputs of each convolutional layer in the encoder

with the corresponding inputs of the deconvolutional layers in
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FIGURE 2

Proposed CNN-based GAN model (DeepCGAN).

the decoder. This design element enhances the model’s ability to

capture intricate feature cues effectively.

The Discriminator component, denoted as D, shares a

similar structure with the encoder of the Generator. However,

a flattened layer is introduced after the fifth convolutional layer

to streamline feature processing. Finally, a fully connected dense

layer with softmax activation is integrated into the Discriminator

to enable classification tasks. Notably, the Discriminator provides

two types of outputs, D(y) and Dk(y), with D(y) representing

sigmoidal output and Dk(y) signifying linear output, linked by the

sigmoid non-linearity function λ(Dk(y)) = D(y). The proposed

GAN model for AD detection leverages cognitive features and

exhibits a sophisticated architecture, comprising convolutional,

deconvolutional, and recurrent layers, skip connections, and a

dual-output Discriminator. These design innovations collectively

contribute to the model’s efficacy in AD detection. Most AD

detection models predominantly focus on neuroimaging data,

neglecting cognitive features. Our model efficiently incorporates

and exploits these underutilized data sources. By including

BiGRUs, our model accounts for long-term temporal cues, a

crucial aspect often overlooked in AD progression analysis. The

Discriminator’s architecture, featuring dual output types and

skip connections, introduces novel enhancements to improve the

model’s performance in distinguishing real and synthetic data.

The Discriminator is designed to differentiate between real

and synthetic data. It shares a similar structure with the encoder

and includes an additional fully connected layer with softmax

activation for classification. The dual outputs of the Discriminator,

D(y) and Dk(y), provide sigmoidal and linear outputs, respectively,

enhancing the model’s ability to distinguish between genuine

and generated data. The DeeCGAN model is specifically tailored

for Alzheimer’s detection by focusing on cognitive features and

temporal information, which are often underutilized in traditional

models. By leveraging the strengths of DeeCGANs in generating

realistic synthetic data and incorporating bidirectional GRUs for

temporal analysis, our model is able to achieve high accuracy in

early Alzheimer’s detection.

3.3 Loss function

In the realm of GANs, choosing appropriate loss functions

plays a pivotal role in achieving stable training and optimal

performance. Our proposed GAN model incorporates and

thoroughly investigates two distinct loss functions to determine the

one that yields superior results.

3.3.1 Wasserstein loss
The Wasserstein loss, denoted as LD for the Discriminator and

LG for the Generator, offers significant advantages in stabilizing and

enhancing the robustness of GAN models (18). The Wasserstein

loss function is used to train the DeepCGANmodel due to its ability

to provide a smoother gradient, leading to more stable training.

This stability is crucial for AD detection, as it ensures that the

model effectively learns from the subtle and complex patterns in the

cognitive data. These loss functions are defined in Equations 2–4:

LD = −Ey∼P(y)[Dk(y)]+ Ex∼P(x)[Dk(G(x))], (2)
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LG = −Ex∼P(x)[Dk(G(x))], (3)

LGP = Ey∼y,ỹ

[

(
∥

∥∇yDk(ỹ)
∥

∥

2
− 1

)2
]

, (4)

where ∇yDk(ỹ) represents the gradient of the Discriminator output

with respect to y.

3.3.2 Relativistic loss
The second loss function incorporated into our GAN model

is the Relativistic loss. It computes the probability of real data

features being classified as real and the probability of synthetic data

features being classified as real. This is achieved by considering

the difference between the Discriminator’s outputs for real and

synthetic input features. The loss functions for the Discriminator

and Generator are given by Equations 5, and 6, respectively.

LD = −E(x,y)∼P(x,y)

[

(x, y)
[

log(υDk(y)− Dk(G(x)))
]]

, (5)

LG = −E(x,y)∼pdata(x,y)

[

log(νkD(G(x))− Dk(y))
]

(6)

However, the the Relativistic loss in Equations 5 and 6

exhibits high variance, primarily when the Generator significantly

influences the Discriminator. To address this, we consider the

average loss functions for the Discriminator and Generator are

given by Equations 7, and 8, respectively.

LD = −Ey∼P(y)y
[

log(Dȳ(y))
]

−Ex∼P(x)x
[

log(1− D ¯G(x)(x))
]

, (7)

LG = −Ex∼P(x)x
[

log(D ¯G(x)(x))
]

−Ex∼P(x)x
[

log(1− Dȳ(y))
]

, (8)

where Dȳ(y) and D ¯G(x)(x) represent the relativistic Discriminator

outputs for real and synthetic data, respectively. Thus, our

GAN model incorporates both Wasserstein and Relativistic loss

functions, each with its distinct advantages. These loss functions

are carefully chosen and utilized to optimize the model’s training

stability and performance in AD detection.

We selected the Wasserstein loss and Relativistic loss due

to their efficacy in stabilizing GAN training and enhancing the

quality of generated data. The Wasserstein loss addresses mode

collapse and provides meaningful gradients for GAN convergence.

The Relativistic loss improves the model’s discriminative power

by comparing real and generated data in a relativistic manner,

aligning with the goal of distinguishing subtle differences in

medical data. These loss functions balance sensitivity and specificity

in Alzheimer’s detection, with the Wasserstein loss ensuring high-

quality synthetic data and the Relativistic loss enhancing the

discriminator’s accuracy and robustness.

4 Experiments

This section provides insights into the dataset, experimental

settings, and an evaluation of the proposed model.

4.1 Dataset

We utilized the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) dataset (20), consisting of three distinct stages. The

ADNI dataset encompasses cognitive test scores and records of

5,013 instances, corresponding to 819 different AD patients. The

cognitive features selected for this study include memory recall

tests, attention assessments, and executive function evaluations,

which are clinically relevant as they have been shown to be

significant indicators of early cognitive decline associated with

AD. Patients visited the clinic multiple times during clinical trials,

resulting in new cognitive test scores generated and stored as

additional records in the dataset for each visit. Among these

records, there are 1,643 belonging to cognitively normal individuals

and 3,370 related to AD patients. However, the dataset exhibited

missing values and underwent initialization through an Iterative

Imputer technique to impute the missing values using a round-

robin method. This ensures that the most clinically significant

features are retained and accurately represented in the dataset.

The irrelevant features were removed during the data cleaning and

preprocessing.

In the ADNI1 dataset, each record comprises 113 features.

The data includes various cognitive assessments (e.g., MMSE

scores, ADAS-Cog scores), biomarkers (e.g., cerebrospinal fluid

biomarkers, amyloid-beta levels), and potentially neuroimaging

features (e.g., MRI and PET scan data). These features are

chosen for their relevance in assessing cognitive decline and AD

progression. The input data is organized as a temporal sequence,

capturing changes in cognitive features over time. This is crucial for

modeling the progression of AD, which involves gradual cognitive

decline. The dataset was divided into 80% for training and 20% for

testing, resulting in 5,000 samples for training and 1,250 samples

for testing. Some of these features had excessive missing values,

prompting the removal of those with more than 40% missing

values. The remaining features underwent initialization through

an Iterative Imputer technique to impute the missing values

using a round-robin method. After preprocessing, the final dataset

comprised 4,500 samples. Additionally, the dataset contained

features with varying value ranges, which were normalized to a

range of 0–1 using the min-max scaling method. Primary filtering

of cognitive features was performed using Pearson’s correlation

coefficient to identify those most correlated with AD diagnosis.

Features with a correlation coefficient above a predefined threshold

were selected for further analysis. Performance evaluation utilized

metrics including Accuracy, Sensitivity, and F1-Score, which are

computed by Equations 9, 10, and 11, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Sensitivity =
TP

TP + FN
(10)

F1− Score =
2TP

2(TP + FP + FN)
(11)

Here, TP represents True Positives, TN stands for True

Negatives, FP is False Positives, and FN represents False Negatives.
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4.2 Network settings

The DeepCGAN model architecture for AD detection

incorporates carefully chosen parameters to optimize performance

across multiple metrics. The feature maps in the Generator’s

encoder are structured with fixed sizes of 16, 32, 64, 128, and

256 in successive convolutional layers, with specific kernel sizes

and strides tailored to enhance feature extraction efficiency. The

kernel size is set to (1,3) for the first 2D-Conv layer and (2,3)

for subsequent layers, all with a stride of (1,2). Convolutional

layers are utilized for their strength in extracting local patterns

and hierarchical features from the cognitive data, which are

essential for distinguishing subtle differences between normal and

AD-affected individuals.Similarly, the BiGRU layers are configured

with 2,048 units, with 1,024 units in each direction, split into

forward and backward directions, operating over a fixed time

step of 50. The BiGRUs were selected for their ability to capture

long-term dependencies and temporal patterns in cognitive data,

which are crucial for accurately modeling the progression of

AD over time. For the Generator’s decoder, these parameters

are inversely set to reconstruct the input features faithfully.

Moreover, the Discriminator (D) employs deconvolutional

layers with gradually increasing feature maps from 4 to 64,

designed to discriminate between real and generated samples

effectively. The proposed AD detection models, incorporating

these two distinct losses, undergo training and optimization

using the Adam optimizer for 1,000 epochs, with a learning rate

of 0.005 and a batch size of 32 samples. The combination of

convolutional layers and BiGRUs in the DeepCGAN architecture

leverages both spatial and temporal features, providing a robust

framework for early AD detection by capturing complex patterns

in cognitive data that simpler architectures might miss. This

setup ensures robust optimization and convergence of the

DeepCGAN model. To assess the performance of our proposed

model, we conducted a comprehensive comparison with several

other models, including DeciTree, RanForest, KNN, Linear

Regression (LR), SVM, DNN, AdaBoost, and Adaptive Voting,

utilizing various metrics such as Accuracy, Precision, Recall,

and F1-Score.

5 Results and analysis

In this section, we present the results of our

experiments and provide a comprehensive analysis of

the findings.

5.1 Model performance comparison

Table 1 displays the results obtained from our proposed

DeepCGAN model along with other DL models trained on

similar cognitive features for detecting cognitive normal and AD.

We measure the model’s performance using Accuracy, Precision,

Recall, and F1-Score as evaluation metrics. Notably, the results

demonstrate that our proposed DeepCGAN outperforms all other

competing models in terms of these metrics. The DeepCGAN

achieved an Accuracy of 97.32%, Precision of 95.31%, Recall of

TABLE 1 Performance analysis using various measures for ADNI cognitive

features dataset.

DL model Acc. (%) Pre. (%) Rec. (%) F1-S. (%)

DeciTree 88.93 88.93 88.93 88.93

RanForest 90.33 90.30 90.33 90.31

KNN 85.14 85.40 85.14 85.24

LR 82.05 81.83 82.05 81.45

SVM 85.84 85.68 85.84 85.71

DNN 90.53 90.67 90.53 90.59

AdaBoost 86.64 86.61 86.64 86.31

AdapVoting 93.92 93.89 93.92 93.89

DeepCGAN 97.32 95.31 95.43 95.61

95.43%, and F1-Score of 95.61%, respectively. In contrast, the

lowest-performing model, linear regression, achieved only 82.05%

Accuracy, 81.83% Precision, and 81.45% F1-Score.

To highlight the improvements made by our proposed model,

we chose linear regression as a reference model. DeepCGAN

substantially improved Accuracy by 15.27%, Precision by 13.48%,

and F1-Score by 14.16% compared to linear regression. Moreover,

when compared to the second-best model, Adaptive Voting,

DeepCGAN showed a 3.40% improvement in Accuracy. It also

outperformed DNN and Random Forest by 6.79 and 6.99% in

Accuracy, respectively, which is a significant performance gain.

Furthermore, our DeepCGAN model demonstrated substantial

improvements in Recall and F1-Score compared to competing

models. The Recall increased from 88.93% (DeciTree) to 95.43%

with DeepCGAN, and the F1-Score increased from 86.31%

(AdaBoost) to 95.61%. These results signify the superior ability of

DeepCGAN to correctly identify AD cases while minimizing false

negatives. The errors are vastly improved over other models. To

highlight the effectiveness of the proposed model, we present the

overall improvements depicted in Figure 3. The linear regression

is the reference model that has achieved the lowest performance

among DL models. Figure 3 indicates the best performance of the

proposed DeepCGAN.

5.2 Loss function analysis

Our DeepCGAN model was trained and optimized using

two different loss functions: Wasserstein and Relativistic loss.

The Wasserstein loss function was chosen for its ability to

provide a smoother gradient, thereby stabilizing the training

process. This stability is particularly important for AD

detection, where the model must accurately learn from subtle

variations in cognitive data. Figure 4 presents the confusion

matrices for both losses, revealing that the Wasserstein loss

function results in better performance. Figure 4A illustrates

the predicted labels when trained with Wasserstein loss, while

Figure 4B shows the outcomes with Relativistic loss. It is evident
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FIGURE 3

Percentage improvements in accuracy, precision, recall, and F1-score with linear regression as reference lowest model.

FIGURE 4

Confusion matrix heat-map for DeepCGAN. (A) Wasserstein loss. (B) Relativistic loss.

that the model trained with Wasserstein loss provides more

accurate predictions.

To further assess the performance, we compared the

model’s Accuracy on training and validation data. The

Wasserstein loss outperformed the relativistic loss by a

significant margin, indicating faster convergence and better

Accuracy. Figure 5 displays the loss curves over 1,000 epochs,

illustrating the superior performance of the DeepCGAN

model in achieving its detection task. We also evaluated

the Area Under the Curve (AUC), which measures the

model’s ability to differentiate between labels. DeepCGAN

exhibited higher AUC values compared to models trained with

relativistic loss, further confirming its superior discriminatory

capability. Figure 6 illustrates the AUC curves for both

loss functions.

5.3 Comparison against state-of-the-art
models

In this subsection, we compare our proposed DeepCGAN

model with state-of-the-art (SOTA) models in the literature,

including AlexNet (31), VGG-16 (32), GoogleNet (33), and

ResNet (34), using cognitive features from the ADNI dataset. This

comparison aims to benchmark the performance of DeepCGAN

under similar experimental settings and datasets. Table 2 presents

the results in terms of Accuracy, Precision, Recall, F1-scores, and

AUC.

DeepCGAN surpassed all SOTA models in terms of Accuracy,

achieving an Accuracy of 97.32%, which is a 5.59% improvement

over GoogleNet. Similarly, Precision improved from 90.20%

(GoogleNet) to 95.31%, reflecting a 5.11% boost in Precision.
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FIGURE 5

Loss curves for DeepCGAN. (A) Wasserstein loss. (B) Relativistic loss.

FIGURE 6

AUC curves for DeepCGAN.

TABLE 2 Performance analysis (in %) for SOTA using ADNI Cognitive features dataset.

Model Accuracy Precision Recall F1-score AUC

AlexNet 93.75 94.98 92.28 93.61 93.68

VGG-16 94.96 94.02 95.43 94.97 94.96

GoogleNet 91.73 90.20 93.50 91.82 91.79

ResNet 94.96 93.00 97.15 95.03 94.98

DeepCGAN 97.32 95.31 95.43 95.61 99.51

When compared to AlexNet, DeepCGAN demonstrated a 3.57%

increase in Accuracy. Furthermore, DeepCGAN achieved the

highest AUC among all models, with a 99.51%AUC, outperforming

ResNet by 4.53% and VGG-16 by 4.55%, highlighting its

superior discriminatory power. Regarding Recall, DeepCGAN

exhibited substantial improvements over SOTA models except

for ResNet, where the results were marginally lower. Specifically,

the Recall increased from 92.28% (AlexNet) to 95.43% with

DeepCGAN. The F1-Score achieved with GoogleNet was 91.82%.

DeepCGAN’s superior performance can be attributed to its
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TABLE 3 Performance comparison of the proposed model on ADNI

dataset cognitive features.

Model Records Accuracy AUC

Gill et al. (35) 600 81.80% 79.0%

AdaptiveVoting 5013 93.92% 99.3%

DeepCGAN 5013 97.32% 99.5%

novel architecture, which combines convolutional layers for

effective feature extraction and BiGRUs for capturing temporal

dependencies. This dual approach enables the model to detect

subtle changes and patterns in cognitive data more accurately

than models that rely solely on neuroimaging data or simpler

architectures. Additionally, the use of GANs for data augmentation

increases the dataset’s size and diversity, enhancing the model’s

generalizability and robustness. The core innovation lies in

expanding the cognitive features dataset and enhancing its diversity

through GANs.

DeepCGANs significantly enhance Alzheimer’s detection

due to their ability to generate realistic synthetic images,

crucial for augmenting limited MRI and PET scan datasets.

Their deep convolutional layers extract complex features,

improving diagnostic accuracy by capturing subtle disease

indicators. Adversarial training refines synthetic images iteratively,

ensuring they closely resemble real patient data. DCGANs’

adaptability across imaging modalities and superior performance

in comparative evaluations underline their transformative

role in improving diagnostic accuracy and clinical outcomes

for AD.

5.4 Comparison with existing techniques

In this section, we compare our proposed DeepCGAN model

with a recently reported technique by Gill et al. (35) that used

cognitive features for AD detection. Both studies utilized the

same ADNI dataset, and the results are presented in Table 3. Our

proposed DeepCGANmodel outperformed the model proposed by

Gill et al. (35) and Adaptive Voting using cognitive features from

the ADNI dataset. DeepCGAN achieved the highest Accuracy of

97.32%, representing a 15.52% improvement over Adaptive Voting

and a 3.4% improvement over Gill et al.’s technique for early

AD detection. This improvement is due to its ability to generate

synthetic data that closely resembles the actual cognitive features,

thus reducing overfitting and improving the model’s ability to

generalize to new, unseen data.

6 Conclusion

In this study, we propose a novel convolutional encoder-

decoder-based GAN for early AD detection using cognitive

features. This model leverages a Generator module with Conv2D

and Deconv2D layers in an encoder-decoder architecture to

optimize Accuracy, Precision, Recall, F1-Score, and AUC metrics.

Our experimental results demonstrate the superior performance of

DeepCGAN, which significantly advances early AD detection, and

outperforms several state-of-the-art models and benchmarks across

various measures, achieving an outstanding 97.32% Accuracy

compared to most other DL models in this study’s SOTA

comparison. Moreover, We find that using the Wasserstein loss

is superior for training the proposed GAN. While our GAN

excels, it is important to acknowledge the potential of SOTA

DL models for early AD detection, which offer advantages

over non-DL techniques like Gill’s study. These DL models can

expedite diagnosis, making them valuable tools in the detection

of neurodegenerative diseases like Alzheimer’s. The unique

contribution of DeepCGAN lies in its novel use of GANs to enhance

the dataset’s size and diversity, coupled with a sophisticated

architecture that integrates convolutional layers and BiGRUs. This

approach significantly improves accuracy, precision, and overall

performancemetrics in detecting AD at early stages, demonstrating

the model’s superior capability in distinguishing subtle cognitive

changes indicative of early AD. In the future, we aim to develop

even more robust and streamlined DL models for detecting

early and various stages of AD. Our proposed DeepCGAN

model significantly advances early AD detection by leveraging

a convolutional encoder-decoder-based GAN with Wasserstein

loss, achieving superior performance metrics compared to SOTA

models such as AlexNet, VGG-16, GoogleNet, and ResNet.

This novel approach enhances the diversity and richness of

cognitive features, resulting in a remarkable improvement in

accuracy, precision, and discriminatory power, as demonstrated

through comprehensive comparisons with existing techniques

and models.
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