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Monkeypox, a communicable disease instigated by the monkeypox virus, 
transmits through direct contact with infectious skin lesions or mucosal 
blisters, posing severe complications such as pneumonia, encephalitis, and 
even fatality. Traditional clinical diagnostics, heavily reliant on the discerning 
judgment of clinical experts, are both time-consuming and labor-intensive, 
with inherent infection risks, underscoring the critical need for automated, 
efficient auxiliary diagnostic models. In response, we have developed a deep 
learning classification model augmented by self-attention mechanisms and 
feature pyramid integration, employing attentional strategies to amalgamate 
image features across varying scales and assimilating a priori knowledge from 
the VGG model to selectively capture salient features. Aiming to enhance task 
performance and model generalizability, we incorporated different components 
into the baseline model in a series of ablation studies, revealing the contribution 
of each component to overall model efficacy. In comparison with state-of-the-
art deep learning models, our proposed model achieved the highest accuracy 
and precision, marking a 6% improvement over the second-best model. The 
results from ablation experiments corroborate the effectiveness of individual 
module components in enhancing model performance. Our method for 
diagnosing monkeypox demonstrates improved diagnostic precision and 
extends the reach of medical services in resource-constrained settings.
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1 Introduction

Since May 2022, outbreaks of monkeypox have successively emerged in multiple countries 
worldwide, currently affecting 112 countries with over 90,000 reported cases (1). Monkeypox 
(MPX) is a zoonotic disease caused by the monkeypox virus. This virus is highly infectious 
and can be transmitted to humans through contact with the bodily fluids, blood, secretions, 
and broken skin or mucous membranes of infected animals (2). Healthcare workers involved 
in the prehospital care, transportation, and disinfection processes face a relatively high risk of 
transmission when treating infectious diseases. The primary clinical manifestations of 
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monkeypox infection include sudden onset, fever, and malaise, 
accompanied by a rash, which can be easily misdiagnosed as smallpox 
or mild chickenpox (3). This overlap in clinical presentation poses a 
significant challenge for early diagnosis of monkeypox virus infection, 
particularly in resource-limited settings where access to advanced 
laboratory diagnostic tools may be  restricted. Therefore, early 
diagnosis of monkeypox virus infection presents a significant 
challenge (4).

Current diagnostic methods, including nucleic acid testing (PCR) 
(5), antibody and antigen detection, next-generation sequencing 
(NGS) (6), viral isolation and culture, and electron microscopy, are 
highly effective but require specialized equipment and trained 
personnel. The gold standard for laboratory testing of monkeypox is 
nucleic acid testing. The optimal diagnostic specimens should 
be collected from skin lesions, or the top of liquid contents of vesicles 
and pustules, as well as dry scabs. These methods are not always 
feasible in low-resource environments where monkeypox outbreaks 
are more likely to occur. Real-time PCR, known for its high accuracy 
and sensitivity, is the preferred laboratory testing method 
recommended by the World Health Organization. However, in regions 
with limited resources lacking PCR, computer-aided diagnostics of 
monkeypox lesions presents a promising alternative. It offers the 
potential for rapid screening and diagnosis without the need for 
extensive laboratory infrastructure, facilitating the early and rapid 
screening of suspected cases and aiding healthcare workers in tracing 
and curtailing the spread of the monkeypox virus. In recent years, with 
the swift advancement of machine learning, significant achievements 
have been made in medical imaging. Medical images often present 
unique challenges due to their intricate features, specific color 
channels, and the need for precise interpretation in a clinical context. 
These complexities have driven the adoption of deep learning 
techniques in medical imaging, supported by advancements in 
hardware and software. Sitaula and Shahi (7) achieved favorable results 
using deep learning and transfer learning techniques for the automatic 
detection of monkeypox skin lesions. Following this, Jaradat et al. (8) 
proposed an improved convolutional neural network (CNN) model to 
assist in the early detection and classification of human skin lesions (9), 
utilizing advanced transfer learning (TL) algorithms and ensemble 
methods. This innovation represents a novel approach for the early 
detection of monkeypox. Haque et al. presented an ensemble of fine-
tuned deep learning models for monkeypox detection, showcasing a 
comparative study that highlights the effectiveness of such models in 
accurately identifying monkeypox cases (10). Additionally, a 
CNN-LSTM-based hybrid deep learning approach has been explored 
for sentiment analysis on monkeypox tweets, which underscores the 
versatility of deep learning methods in different applications related to 
monkeypox (11).

Despite the advancements in machine learning and medical 
imaging, existing deep learning models used for monkeypox detection 
face several limitations. These models often suffer from weak 
interpretability, which limits their clinical applicability, and insufficient 
feature extraction capabilities, which can reduce diagnostic accuracy (12, 
13). There is a clear gap in developing deep learning models that not only 
achieve high accuracy but also provide meaningful insights into the 
diagnostic process.” “To address these challenges, our study proposes a 
novel approach by integrating an Attention mechanism module and a 
multi-feature pyramid into the deep learning model. The Attention 
mechanism allows the model to focus on specific parts of the input data, 

enhancing interpretability and accuracy. Additionally, the multi-feature 
pyramid attends to feature dimensions at different scales, improving the 
model’s ability to capture intricate details of monkeypox lesions. 
Furthermore, model distillation from a classic VGG model to a 
streamlined lightweight model aims to reduce the model size and 
enhance inference speed, making it more suitable for deployment in 
resource-constrained settings. Additionally, a multi-feature pyramid is 
introduced to attend to feature dimensions at different scales (14, 15). 
Ultimately, model distillation is implemented, transferring knowledge 
from a classic VGG model to our streamlined lightweight model (16), 
aiming to reduce the model size and enhance inference speed. Ablation 
experiments on different model components were conducted, and 
comparisons with various types of image classification networks were 
made. The results indicate that the improved model adequately 
recognizes the pathological features of monkeypox, exhibiting high 
accuracy. Lastly, the model’s interpretability was enhanced through 
visualization of its attention distribution.

The remainder of this paper is organized as follows. In Section 2, 
we describe the data collection and preprocessing methods used to 
prepare the Monkeypox Skin Lesion Dataset (MSLD) for training and 
testing. Section 3 details the construction of the proposed deep 
learning model, including the integration of the Attention mechanism 
module and multi-feature pyramid, as well as the model distillation 
process. In Section 4, we present the experimental setup, including the 
ablation studies and comparative analysis with other state-of-the-art 
models. Section 5 discusses the results, highlighting the performance 
metrics, confusion matrices, and ROC curves. Finally, Section 6 
concludes the paper with a discussion on the implications of our 
findings, potential limitations, and future research directions.

The innovative aspects of this study are as follows:
 1 We utilized a network with four residual connections as the 

baseline and further enhanced the algorithm for monkeypox 
pathology classification through the integration of a multi-
feature pyramid, attention mechanism, and model distillation 
based on VGG. The aim was to achieve a lightweight and more 
precise identification of monkeypox, contributing to healthcare 
in economically underdeveloped regions.

 2 Comprehensive ablation experiments were conducted, 
sequentially incorporating each model component into the 
baseline to assess their actual performance improvements. The 
findings indicate that each model component significantly 
enhances model performance.

 3 Beyond ablation experiments, comparative studies were 
performed against several classic network architectures, such 
as Resnet50, EfficientNet, and DenseNet. The comparison 
results, visualized for clarity, demonstrated that our model 
achieves optimal performance.

2 Method

2.1 Data collection

The dataset utilized in this study is the publicly accessible 
Monkeypox Skin Lesion Dataset (MSLD) (17, 18), which was 
compiled by integrating images from a variety of sources, 
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including news portals, websites, and publicly available case 
reports. The dataset comprises 228 images, categorized into two 
groups: 102 images of monkeypox and 126 images of other types. 
An example of the dataset is presented in Figure 1. Additionally, 
the MSLD offers results from preliminary data augmentation, 
expanding the image count to 1,428 for monkeypox and 1,764 for 
other categories, thus providing support for a more comprehensive 
and robust analysis.

2.2 Data preprocessing

In our research, the image-processed Monkeypox Skin Lesion 
Dataset (MSLD), comprising 3,192 images, was utilized. To 
enhance data quality and diversity, a series of preprocessing steps 
were applied during the data cleansing phase to the original 
dataset, including reflection, cropping, hue, saturation, contrast, 
and brightness jitter adjustments. These jitter adjustments 
simulate the variations in image appearance due to changes in 
lighting and environmental conditions, thereby improving the 
model’s adaptability and generalization.

To ensure the consistency of input data, we  standardized the 
resolution of all images to 224 × 224 pixels, a common input size for 
convolutional neural networks, enhancing stability when processing 
images from varied sources. Additionally, we  performed data 
augmentation techniques such as random horizontal flips and 
rotations, fortifying the model’s robustness against rotational 
variations that might be  encountered in practical applications. 
Quantitative analysis was further conducted on the augmented images 
to ensure that the enhancement techniques did not introduce excessive 
noise or result in the loss of crucial features. The augmented set of 
images provided a more substantial and varied source of data for 
model training, covering a broader range of case variations, which 
significantly bolstered the model’s generalization capacity. This 
ensures that the model remains efficient and accurate in identifying 
monkeypox skin lesions amidst the diversity and variability of real-
world scenarios.

2.3 Model construction

2.3.1 Proposed deep learning-based model
In the medical field, classification models, particularly those based 

on deep learning, are revolutionizing the approach to diagnosis and 
disease identification. These models, by learning intricate patterns 
from medical images, can swiftly indicate the presence of diseases, at 
times matching or even surpassing the diagnostic acuity of human 
experts. For instance, convolutional neural networks (CNNs) (13), 
such as ResNet18 (12), and architectures like Vision Transformers 
(ViT) (19), have been successfully deployed for detecting and 
classifying conditions like skin cancer, diabetic retinopathy, and breast 
cancer screening. Their strength lies in the ability to process and 
analyze voluminous datasets, learning to discern complex, disease-
characteristic patterns that are indicative of various pathologies. 
However, the limitations of these models are also quite evident. They 
may perform well on one dataset but exhibit diminished performance 
when generalized to new, different datasets, often due to insufficient 
feature extraction. To address this, we propose a novel monkeypox 
classification model aimed at bolstering the generalizability of deep 
learning models and enabling multi-scale feature extraction. This 
approach is designed to enhance model robustness and accuracy 
across diverse clinical imaging datasets.

As illustrated in Figure 2, our model is a sophisticated architecture 
designed for the precise classification of monkeypox skin lesion 
images. The input images are initially processed through 3 × 3 
convolutional layers with Batch Normalization (BN) and ReLU 
activation functions, starting with 64 filters and increasing to 128, 256, 
and 512 filters in subsequent layers. These convolutional layers are 
replicated across subsequent layers, each responsible for capturing 
more abstract representations of the input data. At the core of our 
architecture is the multi-scale pyramid, enabling simultaneous 
processing of the image at various scales. This pyramid structure is 
pivotal for capturing features of different sizes and aspects, which is 
crucial for accurately identifying skin lesions with potential significant 
visual differences. Each level of the pyramid is further enhanced by an 
attention mechanism utilizing query (q), key (k), and value (v) vectors 
to selectively focus on the most informative parts of the feature map. 
An attention mechanism with 512-dimensional query (q), key (k), and 

FIGURE 1

Example image from the Monkeypox Skin Lesion Dataset (MSLD).
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value (v) vectors directs the model’s focus to critical regions. In the 
classification stage, the processed features from the pyramid and 
attention layers converge to two distinct output nodes, corresponding 
to the categories of monkeypox (Class 1: M) and non-monkeypox 
(Class 2: NM) lesions. A linear layer (Liner) is employed to map the 
high-dimensional feature data into the space of these two categories. 
Additionally, a learnable model fusion strategy is adopted, integrating 
with the classic VGG image classification network, adaptively 
adjusting the feature selection ratio.

The computational complexity of the model arises from both the 
convolutional layers and the attention mechanism integrated into the 
multi-scale pyramid structure. The convolutional layers contribute a 
complexity O N K C H W× × × ×( )2 , where N is the number of filters, 
K is the kernel size, C is the number of input channels, and H and W 
are the spatial dimensions of the feature maps. Each layer in the 
pyramid structure adds to this complexity, with varying dimensions 
and filter numbers at each scale. The attention mechanism introduces 
additional complexity with O H W d dq k× × ×( ) , where d_q and d_k 
represent the dimensions of the query and key vectors, respectively. 
As this mechanism operates across multiple scales, its complexity is 
cumulative. Overall, the model’s total complexity can be summarized as 

O N K C H W H W d dl
L

l l l l l s
S

s s q k= =∑ ∑∗ ∗ ∗ ∗( ) + ∗ ∗ ∗( )( )1
2

1 . In this 

study, a Feature Pyramid Network (FPN) (20) is employed to offer 
flexibility in adapting to skin lesions of varying sizes and shapes. The 
integration of attention mechanisms not only in each step of feature 
extraction but also across different feature hierarchy levels allows for 
inter-layer distribution of attentional tasks. In deep neural networks, 

feature representations at different levels signify different abstract 
concepts. Introducing attention mechanisms for cross-layer task 
allocation enables the model to capture interrelationships between 
different levels more effectively. The integration of VGG-16 allows the 
model to inherit and learn advanced visual feature representations 
from a classical pretrained network, thereby enhancing its accuracy 
and reliability in practical applications.

2.3.2 Comparative model
This study employed commonly used models in the field of 

medical image classification and conducted comparisons with 
EfficientNet, MobileNet, CNN, RESNet50, RESNet18, and DenseNet 
(21, 22), including our model. Here, we  introduce the relevant 
comparative models:

EfficientNet is known for its scaling strategy that balances depth, 
width, and resolution. In the field of medical imaging, EfficientNetB1 
is widely used for tasks such as histopathological image analysis due 
to its efficiency and accuracy. MobileNet, designed for mobile and 
edge devices, prioritizes speed and efficiency. Its lightweight deep 
neural network architecture enables real-time analysis in medical 
imaging applications on mobile devices, supporting rapid diagnostics. 
CNN, the core of image analysis in deep learning, automatically learns 
the hierarchical structure of spatial features through convolutional 
layers. In medical imaging, generic CNNs are extensively applied to a 
variety of tasks, from lesion classification to tumor detection. 
ResNet18 and ResNet50, networks under the ResNet architecture, 
both utilize residual connections. ResNet50 is renowned for its deep 
residual learning framework and is used in the medical imaging field 
for lesion detection in X-ray and MRI scans, while ResNet18 is 

FIGURE 2

Model architecture.
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suitable for less complex datasets or situations requiring higher model 
interpretability. DenseNet is famed for its dense connection pattern, 
which helps to maximally transfer information flow, aiding in the 
detection of minute anomalies in images.

2.4 Ablation experiment

During the ablation study, we utilized a ResNet architecture with 
four layers of residual connections as the baseline model to ascertain 
the effectiveness of various model components. The experiment was 
conducted in three phases: initially, in the first phase, we incrementally 
introduced FPN (Feature Pyramid Network) layers to evaluate the 
performance of multi-scale feature maps. Subsequently, in the second 
phase, building on the FPN layer structure, we integrated an Attention 
module to investigate its potential in enhancing model precision. In 
the final phase, we merged the classical VGG model and selected 
weight parameters through simple linear layers, aiming to optimize 
the feature distribution. The ultimate goal of the ablation study was to 
validate the effectiveness of each component upon integration into 
the model.

2.5 Experiment setup

In this study, the dataset comprises 228 images, including 102 
images of monkeypox and 126 of other categories. The data was 
partitioned in a 7:1:2 ratio for training, validation, and testing, 
respectively, allocating approximately 70% for training, 10% for 
validation, and 20% for testing. Data augmentation and preprocessing 
techniques increased the monkeypox category to 1,428 images and 
other categories to 1764 images, thereby enhancing the dataset’s 
diversity and the robustness of model training. The experimental 
setup utilized an NVIDIA GeForce RTX 3060 GPU and an Intel Core 
i5-12400F CPU, with the training environment based on Python 3.8. 
The learning rate was reduced by 70% every 10 epochs. All models 
were iterated until stable performance was achieved without 
overfitting, ensuring the reliability and effectiveness of the 
training process.

2.6 Model evaluation

In our research, we evaluated model performance using metrics 
such as accuracy, Matthews Correlation Coefficient (MCC) (23, 24), 
precision, and recall. Accuracy reflects the proportion of correctly 
identified observations across all predictions. The MCC, which can 
vary from −1 to 1, serves as a measure of binary classification 
effectiveness, with 1 denoting perfect accuracy, 0 a random guess level, 
and −1 complete disagreement between prediction and actual 
outcome. Precision quantifies the fraction of true positives among all 
positive predictions, whereas recall indicates the fraction of true 
positives out of the total actual positives. The equations for these 
metrics are detailed as follows:

3 Results

3.1 Our model result

In our study, we employed a Stochastic Gradient Descent (SGD) 
optimizer with a momentum of 0.9 and an initial learning rate of 0.001 
for model training. The batch size was set to 32, coupled with a step 
learning rate scheduler that reduces the learning rate by 30% every 10 
epochs. For model training, we  utilized both cross-entropy and 
knowledge distillation loss functions. The model was iteratively 
trained over multiple epochs, learning from the training dataset and 
evaluated on the validation set to monitor performance metrics such 
as loss and accuracy. As training progressed (25), we  generally 
observed a decrease in loss and an increase in accuracy until the 
model converged.

In our research focusing on the classification of monkeypox 
images, the newly proposed model demonstrated outstanding 
performance across various performance metrics. The model achieved 
an F1 score of 0.9834, indicating an exceptionally high balance 
between precision and recall, with the precision itself also reaching 
0.9834, which signifies the model’s high accuracy in correctly 
identifying positive cases of monkeypox. The Matthews correlation 
coefficient (MCC) was 0.9617, reflecting a strong and reliable 
correlation between the predicted outcomes and the actual data. 
Additionally, the accuracy of the model was recorded at 0.9812, 
meaning that the vast majority of the classifications were correct. 
These metrics collectively suggest that the proposed model excels in 
classifying monkeypox images, demonstrating its potential as an 
effective tool in the diagnosis of the disease.

As depicted in Figure 3, we present the confusion matrix and 
Receiver Operating Characteristic (ROC) curve for our model. The 
confusion matrix illustrates a high number of true positives and true 
negatives with minimal misclassifications, indicating strong diagnostic 
accuracy. Concurrently, the ROC curve demonstrates an excellent area 
under the curve (AUC) of 0.9983, further confirming the model’s 
outstanding discriminative ability between classes. Compared to 
existing literature, our model demonstrates superior accuracy (11). 
These results underscore the robustness and efficacy of our model in 
classifying monkeypox images.

3.2 Comparative experiment result

In our study, we compared the proposed model against several 
popular models, as depicted in Table 1, which includes efficientnetb1, 
mobilenetv2, a conventional cnn, RESNET50, RESNET18, and 
Desnet. The comparative results indicate that our model excels across 
all four key performance metrics. Specifically, our model attained an 
F1 score of 0.9834 and a precision of 0.9834, with a Matthews 
correlation coefficient (MCC) of 0.9617 and an accuracy of 0.9812. 
Compared to other models, for instance, efficientnetb1 which scored 
0.9162 on F1 and 0.9266 on precision, our model surpasses the 0.98 
mark in both metrics, demonstrating a clear advantage. Moreover, our 
model also shows a significant improvement in MCC and accuracy, 
particularly when contrasted with the standard cnn model, which only 
records an MCC of 0.6399 and an accuracy of 0.8119, further 
highlighting the superiority of our approach. Overall, our model 
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TABLE 1 Comparative results of different models from the experiment.

F1-score Precision MCC Accuracy

efficientnetb1 0.9162 0.9266 0.8094 0.906

mobilenetv2 0.9628 0.9282 0.9133 0.9561

cnn 0.8182 0.906 0.6399 0.8119

RESNET50 0.97 0.957 0.9299 0.9655

RESNET18 0.9611 0.9665 0.9108 0.9561

Desnet 0.9665 0.9774 0.9239 0.9624

Our 0.9834 0.9834 0.9617 0.9812

outperforms the comparative models in all performance metrics, 
affirming its effectiveness and efficiency in the classification of 
monkeypox images.

Moreover, the outcomes of various models are delineated through 
ROC curves and confusion matrices. This methodology facilitates a 
thorough assessment of the performance of each model in classifying 
monkeypox images, delineating their accuracy, sensitivity, and 
specificity in categorization. These visual depictions further clarify the 
comparative advantages and limitations of each model. Contrasted 
with the results in Figure 3, the superior performance of our proposed 
model is accentuated. The results of the models are displayed in 
Figure 4, where Figure 4A illustrates the ROC curve outcomes for the 
comparative models, and Figure 4B presents the confusion matrix 
results for the same.

Beyond outperforming other models on major performance 
metrics, our model is also more user-friendly in operation due to its 
reduced number of tunable parameters and enhanced computational 
efficiency. This means that in practical applications, especially when 
dealing with large datasets, our model can be trained and inferred 
more rapidly. Furthermore, given its outstanding performance, the 
potential application spectrum of the model is expanded across 

various clinical settings, ranging from assisting preliminary diagnoses 
to providing second opinions, particularly valuable in regions with a 
scarcity of expert resources.

3.3 Ablation experiment result

In our ablation study, detailed experimental validations were 
conducted for each discrete component, as depicted in Table 2. The 
table demonstrates a stepwise integration of model components into 
the baseline. The adoption of the FPN component led to an 
approximate 1.3% enhancement in model performance, along with a 
3% increase in the MCC, robustly validating the efficacy of these 
components. Further incorporation of the attention mechanism on 
top of the FPN foundation yielded a continuous 1% uptick in accuracy 
and improvements across all evaluation metrics. Finally, the 
implementation of model distillation with vgg16 further elevated the 
overall performance of the model, thereby confirming the superior 
performance and robustness of our proposed model.

In Figure 5, we present the confusion matrix results from the 
ablation study of four different model configurations. The first matrix 

FIGURE 3

Our model confusion matrix and Receiver Operating Characteristic (ROC) curve.
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FIGURE 4 (Continued)
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FIGURE 4

Comparative experimental results of different models. (A) Displays the ROC curves of the various models, and (B) presents the depiction of the 
confusion matrices for these models.
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TABLE 2 Ablation experiment results.

F1-score Precision MCC Accuracy

Baseline 0.9613 0.9613 0.9106 0.9561

Baseline + FPN 0.9728 0.9572 0.9365 0.9687

Baseline + FPN + mutilattention 0.9805 0.9888 0.9556 0.9781

Baseline + FPN + mutilatt + vgg16 0.9834 0.9834 0.9617 0.9812

FIGURE 5 (Continued)
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depicts the baseline model, which correctly predicted class 1 for 131 
instances and class 2 for 174 instances, but exhibited 7 
misclassifications for each class. The second matrix illustrates the 
outcomes after incorporating the Feature Pyramid Network (FPN) 
into the baseline, where we  observe a slight decrease in accurate 
predictions for class 1 but an increase to 179 correct predictions for 
class 2, highlighting the FPN’s contribution to enhancing classification 
performance for the latter. The third matrix shows the results upon 
adding both FPN and multi-head attention mechanisms to the 

baseline model. This confusion matrix indicates an increase to 136 
correct predictions for class 1 and 176 for class 2, demonstrating the 
further improvements in classification accuracy provided by the 
multi-head attention mechanism. Finally, the fourth matrix represents 
our complete model, showcasing the performance after the integration 
of VGG16, with high accuracy in classifying both classes—135 correct 
predictions for class 1 and 178 for class 2.

Comparing these four confusion matrices clearly delineates the 
positive impact of each incremental model enhancement, particularly 

FIGURE 5

Results of ablation experiment. (A) Presents the confusion matrix results of incorporating different components into various models, while (B) displays 
the ROC curve results of incorporating different components into various models.
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in reducing misclassifications. Our comprehensive model significantly 
improves recognition capabilities for class 2 while maintaining high 
accuracy for class 1, validating the effectiveness and superiority of our 
proposed model.

In Figure 5B, we present the ROC curve results of the ablation 
experiment. The results indicate that each addition of components 
enhances the AUC metric, underscoring the effectiveness of each 
component within our model.

3.4 Visualization of results

Monkeypox clinical skin manifestations typically present as rashes 
emerging post-febrile phase, initially appearing as red macules, which 
subsequently evolve into papules, vesicles, pustules, and eventually 
scabs. These lesions are often circular or oval-shaped and can 
be distributed on the face, hands, feet, and other body parts. Symptoms 
of monkeypox may also include lymphadenopathy, headache, myalgia, 
and fatigue. Similar to smallpox, the evolution of monkeypox skin 
lesions follows a synchronous progression, indicating that at any given 
time point, the lesions across the body are in the same stage 
of development.

Therefore, we generated attention heatmaps with the objective of 
visually depicting the areas of focus of the model on monkeypox 
pathology, as illustrated in Figure 6. These heatmaps serve to highlight 
the regions within the images that the model prioritizes or deems 
most relevant in identifying and analyzing the pathological features of 
monkeypox, providing insight into the model’s decision-
making process.

4 Discussion

This study implemented a deep learning framework, specifically 
utilizing a model architecture based on FPN and ResNet18, for the 
automatic recognition and classification of monkeypox skin lesions. 
We  employed the FPN module to enhance the multi-scale feature 
extraction capability of the model and augmented this with attention 
mechanisms to improve feature extraction and visualize the model’s 
focus areas. Through training and validation, the model demonstrated 
high accuracy and good generalization capability, particularly in 
handling diverse images of monkeypox cases. Additionally, we explored 
model fusion strategies, combining the predictive results of FPNResNet18 
and VGG16, to further improve the classification performance.

The outstanding performance of our model in the monkeypox 
classification task can primarily be attributed to its structural design. 
The FPNResNet18 architecture enhances the integration of deep and 
shallow features through pyramid feature maps, effectively capturing 
the details of the lesion areas. Furthermore, the incorporation of 
attention modules allows the model to focus more on key areas related 
to monkeypox pathological features in the images, thereby improving 
its discriminative capability. From a task perspective, this architecture 
is particularly well-suited for image classification and pathological 
feature recognition tasks, as it can effectively handle multi-scale 
pathological features while maintaining high resolution. Our model 
demonstrated the best results in both comparative and ablation 
studies. The comparative experiments validated the superior 
performance of our model, while the ablation studies confirmed the 
effectiveness of each component within the model.

From another perspective, this work has the potential to make a 
significant contribution to the public health sector. By automating the 

FIGURE 6

Visualizing the model’s attention regions for monkeypox pathology.
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identification and classification of monkeypox cases, the model can 
help alleviate the workload of medical professionals, accelerating the 
process of diagnosis and treatment decision-making. Furthermore, 
the model’s interpretability, facilitated by the visualization of attention 
mechanisms, provides physicians with additional diagnostic evidence, 
aiding in the enhancement of diagnostic accuracy and efficiency. In 
the long term, the development and application of this technology 
could improve the monitoring and response capabilities for 
monkeypox disease.

While our work has achieved certain results, it also has 
limitations. First, the current study focuses solely on the 
identification of monkeypox types, and future efforts could consider 
a more detailed classification of different subtypes of monkeypox. 
Second, our model has not been trained with multi-center data, 
which may limit its generalizability. Third, as an in-silico 
retrospective image classification task, our study may have inherent 
biases related to the specific dataset used, which could affect the 
model’s performance when applied to new data. Finally, the current 
model has not yet been deployed in practice; future work will need 
to include further development into a system for clinical translation 
to facilitate its application in real-world medical settings. 
Prospective intervention studies will be  crucial to validate the 
model’s effectiveness and address potential biases before 
practical implementation.

5 Conclusion

This study developed a deep learning model that integrates the 
Feature Pyramid Network (FPN) and ResNet18 architectures, and 
employed model fusion with the VGG model to automate the 
identification and classification of monkeypox skin lesions. This 
integrated approach leverages the multi-scale feature extraction 
capability of FPN, the deep residual learning of ResNet18, and the 
robust visual feature recognition of VGG, significantly enhancing 
the model’s performance. The clinical significance of this research 
lies in its potential to simplify the diagnostic process, reduce the 
workload of medical professionals, and improve the accuracy and 
efficiency of monkeypox diagnosis through automated and 
enhanced interpretative analysis. Looking forward, the work will 
further refine the model to differentiate between various subtypes 
of monkeypox and plans to use multi-center data to enhance its 
generalizability, moving toward deployment in real clinical settings. 
The ultimate goal is to integrate this technology into healthcare 
systems, improving the monitoring and management of monkeypox 
disease, and strengthening the resilience of public health systems 
against emerging infectious diseases.
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