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Introduction: The prevalence of Renal cell carcinoma (RCC) is increasing 
among adults. Histopathologic samples obtained after surgical resection 
or from biopsies of a renal mass require subtype classification for diagnosis, 
prognosis, and to determine surveillance. Deep learning in artificial intelligence 
(AI) and pathomics are rapidly advancing, leading to numerous applications 
such as histopathological diagnosis. In our meta-analysis, we assessed the 
pooled diagnostic performances of deep neural network (DNN) frameworks in 
detecting RCC subtypes and to predicting survival.

Methods: A systematic search was done in PubMed, Google Scholar, Embase, 
and Scopus from inception to November 2023. The random effects model was 
used to calculate the pooled percentages, mean, and 95% confidence interval. 
Accuracy was defined as the number of cases identified by AI out of the total 
number of cases, i.e. (True Positive + True Negative)/(True Positive + True 
Negative + False Positive + False Negative). The heterogeneity between study-
specific estimates was assessed by the I2 statistic. The Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to 
conduct and report the analysis.

Results: The search retrieved 347 studies; 13 retrospective studies evaluating 
5340 patients were included in the final analysis. The pooled performance 
of the DNN was as follows: accuracy 92.3% (95% CI: 85.8–95.9; I2 = 98.3%), 
sensitivity 97.5% (95% CI: 83.2–99.7; I2 = 92%), specificity 89.2% (95% CI: 29.9–
99.4; I2 = 99.6%) and area under the curve 0.91 (95% CI: 0.85–0.97.3; I2 = 99.6%). 
Specifically, their accuracy in RCC subtype detection was 93.5% (95% CI: 88.7–
96.3; I2 = 92%), and the accuracy in survival analysis prediction was 81% (95% CI: 
67.8–89.6; I2 = 94.4%).

Discussion: The DNN showed excellent pooled diagnostic accuracy rates to classify 
RCC into subtypes and grade them for prognostic purposes. Further studies are 
required to establish generalizability and validate these findings on a larger scale.
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1 Introduction

Renal Cell Carcinoma (RCC) is the most common primary renal 
neoplasm, affecting nearly 300,000 individuals worldwide annually, 
and it is responsible for more than 100,000 deaths each year (1). RCC 
is a heterogeneous group of cancers with distinctive molecular 
characteristics, histology, clinical outcomes, and therapy response. 
RCC arises from the renal parenchyma and, according to the World 
Health Organization (WHO) has three main subtypes: Clear cell 
(ccRCC), Papillary RCC (pRCC) and Chromophobe. The remaining 
subtypes are rare, each occurring with a total incidence of ≤1%. Each 
type has different histologic features, distinctive genetic and 
molecular alterations, clinical courses, and different responses to 
therapy (2).

The ccRCC type accounts for 70–90%. It is named due to the 
presence of clear cells from the lipid and glycogen-rich cytoplasmic 
content, ccRCC has the worst prognosis among the RCC subtypes 
with a 5-year survival rate between 50 and 69%. When metastasis 
occurs, the 5-year survival decreases further to about 10%. The pRCC 
type has a spindle-shaped pattern of cells with areas of hemorrhage 
and cysts. Pathologists further classify it into two subtypes based on 
the lesion’s histological appearance and biological behavior, and it 
accounts for about 14–17% of the cases. The subtypes, pRCC type 1 
(basophilic) and pRCC type 2 (eosinophilic) differ in their prognostic 
significance, with type 2 having a poorer prognosis. Chromophobe 
RCC is common in adults over the age of 60 years. Histologically 
described as a mass formed of large pale cells with reticulated 
cytoplasm and perinuclear halos, it carries the best prognosis among 
the RCC types in the absence of sarcomatoid changes. If sarcomatoid 
transformation occurs, it tends to be  more aggressive with worse 
survival (3).

Due to its relevance and applicability, the Fuhrman nuclear 
grading method is commonly used for staging to determine prognostic 
significance. Using nuclear morphology and characteristics, it 
designates a prognostic indicator grade (4). The histological 
classification of RCC is of great importance in patient care, as RCC 
subtypes have significant implications in the prognosis and treatment 
of renal tumors. The incidence of RCC has increased, likely due to the 
increased detection of incidental renal masses on abdominal imaging 
(5). Around 60% of RCCs are detected incidentally (6). The inspection 
of complex RCC histologic patterns is prolonged and time consuming 
due to tumor heterogeneity. There is also a moderate amount of inter-
observer and intra-observer variability due to the absence of a defined 
threshold for determining the minimum percentage of an area with 
high nuclear grade (7).

With the advancement of whole-slide images in digital pathology, 
automated histopathologic image analysis systems have shown great 
potential for diagnostic purposes (8–10). Computerized image 
analysis has the advantage of providing a more efficient, less subjective, 
and consistent diagnostic methodology to assist pathologists in their 
medical decision-making processes. In recent years, significant 
advancement has been made in understanding and applying deep 
neural network (DNN) frameworks, especially convolutional neural 
networks (CNNs), to a wide range of biomedical imaging analysis 
applications. These CNN-based models can process digitized 
histopathology images and learn to diagnose cellular patterns 
associated with tumors (11, 12). In our systematic review and meta-
analysis, we  provide a comprehensive assessment of the existing 

literature and present the pooled diagnostic performances of DNN 
frameworks in detecting RCC and predicting outcomes.

2 Materials and methods

2.1 Data sources and search strategy

The literature search was conducted from inception through 
December 2023  in the following electronic databases, Pubmed, 
Embase, Web of Science, Cochrane Library, and Google Scholar, using 
the following terms, “Renal Cell Carcinoma” OR “RCC” OR “Kidney 
Cancer” AND “Histopathology” OR “Histological Analysis” OR 
“Tissue Histopathology” AND “Deep Neural Network” OR “DNN” 
OR “Deep Learning.” Additional pertinent studies were added by 
searching the bibliographic section of the articles of interest. The 
search strategy is shown in the Supplementary data section.

2.2 Study selection

The studies retrieved from the search were screened by two 
authors (D.C and P.S). Abstracts of the studies were initially screened, 
followed by full-text screening to include studies based on prespecified 
inclusion and exclusion criteria. Any disagreements between authors 
were resolved through consensus. The Checklist for critical Appraisal 
and data extraction for systematic Reviews of prediction Modelling 
Studies (CHARMS) for prediction modeling studies was followed (13) 
and The Preferred Reporting Items for Systematic Reviews and Meta-
Analyses guidelines was used to select the final articles (14). The 
CHARMS and PRISMA checklists are shown in the 
Supplementary data section. The study protocol was registered in 
PROSPERO, a database of systematic reviews, with registration 
number CRD42024497980.

The inclusion criteria were as follows: (1) studies reporting the 
histopathological diagnosis of RCC using DNN; (2) studies reporting 
detection of RCC using DNN models after validation. The exclusion 
criteria were as follows: (1) studies lacking sufficient data on reported 
accuracy, sensitivity, specificity, positive predictive value, negative 
predictive value or area under the curve of DNN models; (2) review 
articles, conference abstracts and case reports; (3) studies conducted 
on animal models; (4) studies not published in English; (5) studies 
reporting data on DNN models predicting RCC based on imaging; (6) 
studies reporting only the mathematical development of DNN models 
without internal or external validation and (7) studies that reported 
RCC detection using methods other than DNN. Ethics approval was 
not required for our meta-analysis because the data was accessible to 
the public.

2.3 Outcomes assessed

The outcomes assessed were accuracy, sensitivity, specificity, and 
area under the curve (AUC) of the DNN models in subtype detection 
of RCC and grading them for prognostication.

We defined True positive (TP) as the number of cases correctly 
identified as RCC by the models. True negative (TN) was the number 
of cases correctly identified as non-RCC. False positive (FP) was the 
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number of cases incorrectly identified as RCC and False negative 
(FN) was the number of cases incorrectly identified as 
non-RCC. Accuracy was defined as the ability to detect the presence 
or absence of RCC and calculated as TP + TN/
TP + TN + FP + FN. Sensitivity was the ability to detect RCC cases 
correctly, calculated as TP/TP + FN. Specificity was the ability to 
detect non-RCC cases correctly, calculated as TN/TN + FP. These 
definitions were derived from the existing literature (15, 16). 
Outcomes were only recorded if the studies had reported those and 
were not calculated.

2.4 Data extraction

After removing duplicates, the retrieved articles were checked for 
duplicates using the EndNote 21 reference manager (17). Data was 
extracted using the CHARMS spreadsheet (18). All the authors 
extracted the data. Author information, country, total number of 
patients, and histopathology slides were extracted. The accuracy, 
sensitivity, specificity, and AUC of the models on the external dataset 
were collected. The author, D.C, verified the extracted data.

2.5 Statistical analysis

Mean ± standard deviation was used to express continuous 
variables, and percentages to express categorical variables. The pooled 
rates, mean estimates, and 95% confidence intervals (CI) were 
calculated using the random effects DerSimonian-Laird method (19). 
We used the random effects model due to the assumption that the 
studies were selected from a random sample and that they vary in 
their effect sizes (20).

Two methods evaluated heterogeneity. First, we used the Cochran 
Q statistic. The Cochran Q statistic tests the null hypothesis that the 
included studies share the same effect size. A p-value of <0.05 was 
considered significant. We then utilized the I2 statistic to detect and 
quantify the heterogeneity. Low, moderate, substantial, and 
considerable heterogeneity correspond to values <30, 31 to 60%, 61 to 
75%, and > 75%, respectively, (21).

Publication bias was initially evaluated by visually examining the 
funnel plots and later by Egger’s test. A cut-off p-value of <0.05 was 
considered significant for the Egger’s test (22). When there was an 
indication of publication bias, we utilized Duval and Tweedie’s ‘Trim 
and Fill’ method to examine the difference in the effect size after the 
imputation of studies using computer software (23). The statistical 
analyses was conducted using the Comprehensive Meta-Analysis 
software, version 4 (Biostat, Englewood, NJ, USA) (24).

2.6 Quality assessment and risk of bias

The assessment of the individual study’s quality and risk of bias 
was done using the Prediction model Risk of Bias Assessment Tool 
(PROBAST). It contains four domains: participants, predictors, 
outcomes, and analysis to assess the risk of bias and applicability. A 
total of 20 signaling questions were used to determine if a domain was 
low or high risk (25). The assessment was done independently by two 
authors (D.C and P.S).

3 Results

3.1 Search results

We retrieved 347 studies using the search strategy. After the 
removal of duplicates, 283 studies were screened. Following this, a full 
text review was done on 57 studies, and finally, 13 studies were selected 
for the systematic review and meta-analysis (2, 26–37). The study 
selection process flowchart using the Preferred Reporting methods in 
Systematic review and Meta-analysis (PRISMA) is shown in Figure 1.

3.2 Study characteristics

A total of 13 studies with 13,958 slides/whole slide images from 
5,340 patients were included in our analysis. There were 4 studies from 
the United States of America (26, 28, 29, 37), 4 from China (27, 30, 35, 
36), 2 from Germany (32, 34), 1 study from the United Arab Emirates 
(2), India (33) and Japan (31). Eleven studies evaluated the 
performance of CNN models (2, 26–31, 33–35, 37). Schulz et al. (32) 
assessed the performance of a multimodal deep learning model 
(MMDLM). Zheng et al. (36) evaluated a deep learning model based 
on a clustering-constrained-attention multiple-instance learning 
(CLAM) framework called SSL-CLAM. The DNN models were used 
to subtype RCC in 8 studies (2, 26–29, 33, 35, 37). Survival prediction 
and prognosis was assessed by 5 studies (30–32, 34, 36). The Cancer 
Genome Atlas (TGCA) validated the machine learning model in 12 
studies (2, 26, 28–37). Two studies also used the Clinical Proteomic 
Tumor Analysis Consortium (CPTAC) together with the TGCA 
dataset to validate their model (29, 36). The study characteristics and 
the DNN details are summarized in Tables 1, 2.

3.3 Outcomes

The pooled accuracy of the DNN in the detection of RCC subtype 
was 93.5% (95% CI: 88.7–96.3; I2 = 92%). The pooled accuracy in 
survival analysis was 81% (95% CI: 67.8–89.6; I2 = 94.4%). They had 
an overall accuracy of 92.3% (95% CI: 85.8–95.9; I2 = 98.3%) when 
used for RCC detection and survival analysis. The forest plots are 
shown in Figures 2A–C. The studies pooled together had a sensitivity 
of 97.5% (95% CI: 83.2–99.7; I2 = 92%), specificity of 89.2% (95% CI: 
29.9–99.4; I2 = 99.6%) and area under the curve of 0.91 (95% CI: 0.85–
0.97.3; I2 = 99.6%). The forest plots are shown in Figures 3A–C.

3.4 Quality assessment and risk of bias

Most of the studies showed a high risk of bias in the selection of 
study participants. Figure  4A shows the results of the PROBAST 
scoring of individual studies. Figures 4B,C show the summary of the 
risk of bias and applicability across all studies.

3.5 Heterogeneity

Both the Q statistic and I2 statistics were utilized to assess 
heterogeneity. Upon quantification of the heterogeneity, we concluded 
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that the degree of heterogeneity was considerable, as they 
exceeded 75%.

3.6 Sensitivity analysis

Sensitivity analysis was performed by eliminating one study at a 
time to determine whether there is any difference in the effect sizes. 
We found no significant differences except in the analysis of pooled 
specificity. This was due to the reported specificity of 44.9% by Wessels 
et al., which was lower than other studies. The sensitivity analysis of 
all the outcomes is shown in the Supplementary material.

3.7 Publication bias

Analysis of Publication Bias was done initially by visual inspection, 
and it showed a potential publication bias due to the presence of 
asymmetry. Therefore, an Egger’s test was performed, and the 
regression intercept gave a 1-tailed p-value of 0.28, indicating the lack 

of publication bias. The funnel plot with the observed and imputed 
studies is shown in Figure 5.

4 Discussion

Our systematic review and meta-analysis demonstrate that deep 
machine learning can be utilized to diagnose renal cell carcinoma, classify 
subtypes, and grade RCC. Based on our analysis, the DNN models had 
excellent performance. The pooled accuracy was 92.3%, sensitivity was 
97.5%, specificity was 89.2%, and area under the curve 0.91.

Artificial intelligence (AI) in pathology or computational 
pathology, referred to as pathomics, is a rapidly developing field. 
Whole-slide imaging (WSI) technology has allowed the capture and 
storage of histopathologic images into a high-resolution virtual slide, 
which is used to train deep learning algorithms (38).

At present, deep learning methods are the most successful among 
other machine learning types in detecting abnormalities in 
histopathologic images (27). CNNs, by their design, can detect spatial 
information and compare images (39). These can then be used for deep 

FIGURE 1

Study selection process according to the preferred reporting items for systematic reviews and meta-analysis statement.
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feature extraction in a weakly supervised or unsupervised learning 
setting to identify relationships between random variables in a large 
dataset (36). A supervised approach is where the WSI have annotations 
showing the irregularity in histopathology, which the machine learning 
model then uses as a representative to learn from (2). Similarly, the 
MMDLM uses clinical, radiologic, and histopathological data to train its 
algorithm and a “fusion” approach to reach a conclusion. Schulz et al. 
used MMDLM to predict the prognosis and survival among patients 
with ccRCC (32). Big data is essential to develop and train such deep 
learning algorithms. In the field of renal malignancies, the TCGA dataset 
is an excellent resource for genetic, pathologic, molecular, and clinical 
data that could be used to train and validate these models (1).

Various architecture frameworks have been used to construct a 
CNN model. These networks comprise several interconnected layers 
composed of several blocks (30). One of the more commonly used 
architectures is the ResNet (residual network), which allows more 
deeper layers to be  created and reduces errors (39). ResNet 
architecture based CNN has been found to have better performance 
than the Inception-v3 and VGG-16 (visual geometry group) (29).

Typically, in oncology, clinical decision-making involves multiple 
data points such as biomarkers, gene expression profiling, and radiology 
imaging. Machine learning algorithms can help in combining various 
data to improve detection. Eigengenes extraction and radiomics, where 
CNN can extract genetic and radiology information to augment the 

prediction accuracy has good outcomes (30). The relationship between 
copy number alterations (CNAs), a common cause of gene alterations 
in malignancies, and histopathology can also be  elucidated using 
machine learning. Marostica et  al. demonstrated that their model 
recognized histopathological changes in CNAs involving VHL (von 
Hippel–Lindau), EGFR (epidermal growth factor), and KRAS (Kristen 
rat sarcoma virus) genes. Their model also distinguished between low 
and high-risk RCC and predicted overall survival (29).

Another study by Ning et  al. used a combination of features 
extracted from computed tomography (CT) and histopathology added 
to eigengenes to create a prognostic model for ccRCC (30).

A high percentage of patients with RCC face recurrence after 
surgical resection, and current predictive models lack the ability to 
predict recurrence accurately. DNNs can assist in prognostication and 
determine survival (30, 32, 40). The model used by Wessels et al. was 
able to predict the 5-year overall survival (OS) with an AUC of 0.78. 
The model’s accuracy increased when other data points, such as age, 
tumor size, and metastasis were added (34). Ohe et al. (31) used their 
CNN model based on AlexNet to grade ccRCC into clear and 
eosinophilic types according to the WHO/ISUP system to predict 
prognosis. When evaluating survival analysis, the concordance index 
(C-Index) is used to determine the efficacy of matching patients 
according to their risk. The studies by Ning, Ohe and Sculz et al. 
reported good performance of their model’s C-index (30–32).

TABLE 1 Summary of the included studies.

Study, year Country Total number 
of patients, n

Histopathology 
evaluated

External dataset used 
for validation after 
internal validation

Outcome assessed

Abdeltawab et al. (2022) (26) USA 41 Clear cell RCC and papillary 

RCC

TCGA RCC subtype

Cai et al. (2022) (27) China 243 All subtypes of RCC and 

normal histopathology

None RCC subtype or healthy 

kidneys

Fenstermaker et al. (2020) 

(28)

USA 42 All subtypes of RCC and 

normal histopathology

TCGA RCC subtype or healthy 

kidneys and Fuhrman grade

Abu Haeyeh et al. (2022) (2) UAE 52 All subtypes of RCC None RCC subtype

Marostica et al. (2021) (29) USA 1,150 All subtypes of RCC TCGA, CPTAC RCC subtype, survival 

prediction and genetic profiles.

Ning et al. (2020) (30) China 209 Clear cell RCC TCGA Prediction of survival of clear 

cell RCC

Ohe et al. (2022) (31) Japan 530 Clear cell RCC TCGA Classification of clear cell RCC 

into clear and eosinophilic 

phenotypes

Schulz et al. (2021) (32) Germany 248 Clear cell RCC TCGA Disease specific survival and 

5-year survival in patients with 

clear cell RCC

Tabibu et al. (2019) (33) India 1,584 All subtypes of RCC TCGA RCC subtype

Wessels et al. (2022) (34) Germany 353 Clear cell RCC TCGA Prediction of 5-year overall 

survival in patients with clear 

cell RCC

Wu et al. (2021) (35) China 153 All subtypes of RCC TCGA RCC subtype

Zheng et al. (2023) (36) China 735 Clear cell RCC TCGA, CPTAC Grade clear cell RCC per 

WHO-ISUP

Zhu et al. (2021) (37) USA Not reported All subtypes of RCC TCGA RCC subtype

CAPTAC, Clinical Proteomic Tumor Analysis Consortium; RCC, renal cell carcinoma; TCGA, The Cancer Genome Atlas.
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TABLE 2 Deep neural network model characteristics.

Study Machine 
learning type

Model architecture Feature extraction and 
training process using images

Outcome

Abdeltawab et al. 

(26)

CNN Developed using Tensor-Flow 

from Google, the performance 

was compared with pretrained 

ResNet18 and ResNet34.

Whole slide images were divided into 

smaller patches; 250 × 250, 350 × 350 and 

450 × 450 pixels. Training set included 44 

WSI and final validation included 20 WSI.

The framework was able to subclassify into fat, 

parenchyma, clear cell renal cell carcinoma, 

and clear cell papillary renal cell carcinoma. It 

showed better performance compared to 

ResNet and other deep learning methods.

Cai et al. (27) CNN Based on Alex-Net Whole slide images of 93 patients with renal 

cancer and 150 healthy people were used. 

Feature vectors were collected and fused for 

training.

Model performed well in classifying RCC. 

Combination of both deep learning with 

texture descriptors resulted in increased renal 

cancer detection accuracy.

Fenstermaker 

et al. (28)

CNN The model consisted of 6 

convolutional layers and 6 

other layers.

Samples from 42 patients were obtained 

from TCGA. Slides were divided into 1,024 

× 1,024 pixels patches. The model trained 

over the dataset around 25 times.

The model showed 97.5% accuracy in 

distinguishing clear cell, papillary, and 

chromophobe subtypes and a 98.4% accuracy 

in predicting Fuhrman grade.

Abu Haeyeh et al. 

(2)

CNN Based on ResNet 50 A weakly supervised model was created and 

pre annotated WSI by pathologists was used 

in training. Multiple instance learning with 

overlapping patches was employed.

The framework was able to achieve 93% 

accuracy and outperformed ResNet-50.

Marostica et al. 

(29)

CNN Constructed using VGG-16, 

Inception v3 and ResNet-50

A total of 2,363 WSI were used from TCGA 

and 782 WSI from CPTAC cohort. A weakly 

supervised approach was used and the three 

different CNNs were compared.

The model was able to identify RCC subtype, 

survival and identify correlations between 

genetic aberrations and histology.

Ning et al. (30) CNN Developed with several blocks 

and fully connected layers and 

global pooling applied in the 

end

The CNN was trained using an average of 

150 patches, each with a size of 128×128 

pixels. The data was later combined with 

functional genomic data to identify high risk 

groups.

The model was effective in predicting the 

prognosis of clear cell RCC. The study also 

evaluated the correlation between renal 

cancer and genetic data.

Ohe et al. (31) CNN Based on AlexNet Clear and eosinophilic regions of 227 × 227 

pixels were obtained from 3,904 and 16,584 

regions.

The model detected clear and eosinophilic 

regions with high accuracy. It also predicted 

outcomes using histopathological and gene 

signatures.

Schulz et al. (32) MMDLM Constructed using 18 layers of 

ResNet.

About 230 WSI were used in unimodal 

training, and later multimodal training was 

done. CT and MRI from the same cohort 

was also used.

The model was able to predict the 5-year 

survival status and the accuracy increased 

when combined with radiological and 

genomic data.

Tabibu et al. (34) CNN Developed using modification 

of the pre-trained ResNet 18 

and ResNet 34.

Images extracted were made into patches of 

size 512 × 512 pixels and data was 

augmented. The average number of epochs 

were between 3 and 40.

The model was able to diagnose RCC and 

distinguish between the subtypes. Prediction 

of high-risk types was also accomplished.

Wessels et al. (34) CNN Based on ResNet 18. The CNN was trained in two stages using 

254 pixels WSI and patches were augmented.

The model was able to predict the 5 year 

overall survival with an AUROC of 0.78. The 

accuracy increased when the CNN prediction 

was combined with other data such as age, 

tumor size and metastasis.

Wu et al. (35) CNN Based on Inception V3. From the images annotated by pathologists, 

each subtype of RCC was entered into the 

training dataset. The size of the regions 

included was 512 × 512 pixels.

The model was able to subtype the RCC as 

well as grade them per WHO-ISUP.

Zheng et al. (36) CLAM The model used was SSL-

CLAM, a weakly supervised 

deep learning method.

The model was trained using 519 WSI from 

TCGA and 783 WSI from CPTAC datasets. 

The patches extracted from WSI were 256 × 

256 pixels.

The model was able to successfully designate 

a Fuhrman grading.

(Continued)

https://doi.org/10.3389/fmed.2024.1447057
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chandramohan et al. 10.3389/fmed.2024.1447057

Frontiers in Medicine 07 frontiersin.org

TABLE 2 (Continued)

Study Machine 
learning type

Model architecture Feature extraction and 
training process using images

Outcome

Zhu et al. (37) CNN Based on ResNet Two pathologists annotated 486 WSI. 

Patches extracted from WSI were 224×224 

pixels and used in training the model over 

40 epochs.

The model performed well in subtyping RCC

CLAM, clustering-constrained-attention multiple-instance learning; CNN, convolutional neural networks; CT, Computed tomography; MMDLM, Multimodal deep learning model; MRI, 
Magnetic resonance imaging; WHO-ISUP, World health organization-International society of urologic pathologists; WSI, Whole slide images.

FIGURE 2

Forest plots showing (A) accuracy in renal cell carcinoma subtype detection, (B) accuracy in renal cell carcinoma survival analysis (C) overall accuracy 
of deep neural network in detection and prognostication of renal cell carcinoma.
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More recently, a study by Chen et al. demonstrated that assessing 
various cancer types was possible through a self-supervised learning 
model. The model, called UNI, a Vision Transformer (ViT) based 
model, could pretrain using more than 100 million images from 
different datasets and evaluate 34 different histopathologies of 
varying difficulties. Its performance was superior, particularly while 
assessing ccRCC and prostate adenocarcinoma histopathologies. 
The ability to integrate different datasets and perform large 
quantities of tasks demonstrates that such models could be utilized 
in the near future to complete large-scale histopathological tasks 
without compromising diagnostic accuracies (41).

Our study has some limitations. First, all the studies were 
retrospective, and the data depended on the accuracy of the collection 
process. Second, there is also a possibility for the introduction of 
selection bias when datasets were accessed to include patients with 
RCC or a particular subtype of RCC. Third, although most of the 
models included in the study were CNN-based, differences exist in 
the structure and construct of these models. Lastly, heterogeneity was 
noted in our analyses due to these differences in the models. 
Therefore, caution must be observed while interpreting these results.

To our knowledge, this is the first meta-analysis to assess the 
performance of machine learning models in the diagnosis, subtyping 

and prognostication of RCC using histopathology. Histopathologic 
classification of renal cell carcinoma into its subtypes and grading is 
a challenging task. Deep learning can help fill a large void in the early 
detection of RCC as well as accurate determination of its subtypes. 
Although it cannot replace the skill and experience of a pathologist 
or radiologist, it can decrease their workload and improve efficiency.
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FIGURE 3

Forest plots showing (A) sensitivity, (B) specificity and (C) area under the curve of deep neural network in detection and prognostication of renal cell 
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FIGURE 4

Risk of bias assessment of studies by Prediction model Risk of Bias Assessment Tool (PROBAST). (A) Assessment of individual studies, (B) summary of 
Risk of bias assessment for all studies, (C) summary of applicability for all studies.
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FIGURE 5

Analysis of publication bias by funnel plot showing the effect size of the total number of patients and the total number of histopathology slides/whole 
slide images. Egger’s test for a regression intercept gave a 1-tailed p-value of 0.284 indicating no publication bias. The intercept (B0) is 1.942, 95% 
confidence interval (−5.326 and 9.211), with t  =  0.588, df  =  11.
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