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High altitude polycythemia is a maladaptation of highlanders exposed

to hypoxic environment, leading to high blood viscosity and severe

cardiorespiratory dysfunction. Prolonged hypoxia causes respiratory depression

and severe hypoxemia, and further mediates changes in genetic and molecular

mechanisms that regulate erythropoiesis and apoptosis, ultimately resulting in

excessive erythrocytosis (EE). This updated review investigated the maladaptive

mechanisms of EE, including respiratory chemoreceptor passivation, sleep-

related breathing disorders, sex hormones, iron metabolism, and hypoxia-

related factors and pathways.
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1 Introduction

Over 140 million people reside in highlands globally, among whom some people
develop hypoxemia due to insufficient oxygen supply, leading to excessive erythrocytosis
(EE) and increased blood viscosity, so-called high altitude polycythemia (HAPC), which
is the most important contributor to chronic mountain sickness (CMS), a well-known
maladaptive syndrome in highlands (1, 2).

Different populations show varied morbidity and adaptation. The incidence of EE was
2.39% in Lhasa, Tibet (3650 m) (3), whereas it increased to 4.5% among Peruvians in the
Andes (3825 m) (4) and peaked at 44% in La Rinconada, Peru (5200 m) (5). Tibetans have
been living in the Qinghai-Tibet Plateau for ten thousand years and successfully evolved
with adaptive genetic mechanisms, thus showing a lower hematocrit (Hct) and incidence
of EE than other highlanders living at the same altitude (6). Gene variations in EGLN1
and EPAS1 that regulated the pathways associated with hypoxia-inducible factor (HIF)
were demonstrated to exert a significant influence on Tibetan adaptation (7, 8). Noticeably,
distinct genetic adaptations to highlands were also revealed in other populations. However,
the frequency of adaptive mutations such as the EPAS1 variant (rs570553380) was relatively
low in Andean highlanders (9, 10), which resulted in a particular maladaptation to the
hypoxic environment and more severe clinical manifestations (Table 1).

The maladaptive mechanisms that accelerate EE development are catching more
attentions as the pathogenesis of EE has not been fully elucidated. Long-term hypoxic
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exposure stimulates the increase of erythrocyte count to enhance
the transportation capacity of oxygen in blood, but promote the
development of EE at the same time. In addition to the genetic
adaptation, the maladaptive mechanisms of EE have been reported,
including respiratory chemoreceptor passivation, sleep-related
breathing disorders, sex hormones, iron metabolism, and hypoxia-
related factors and pathways (11–17), which were reviewed with
updates in this study, and prospects regarding new therapeutic
strategies for HAPC were discussed as well.

2 Respiratory chemoreceptor
passivation

Blunted chemoreceptor sensitivity means a decreased
respiratory response to hypoxia, which has been observed in
highlanders, leading to severe hypoxemia and EE. The chemoreflex
drives of breathing were stimulated by sustained hypoxia to
regulate ventilation response for the stabilization of arterial
PO2 and were commonly evaluated by the hypoxic ventilatory
response (HVR) and hypercapnic ventilatory response (HCVR)
(18, 19).

Previous studies have documented that Han-Tibetan
immigrants and Andeans with prolonged high-altitude living
exhibited progressively weaker HVR and lower ventilation than
Tibetans (20, 21). The discrepancy mainly accounted for a loss-
of-function allele in Tibetans named EGLN1 that played a pivotal
role in enhancing HVR (8). Additionally, Menuet et al. (22) also
observed blunted HCVR in respiratory recordings of Tg6 mice
with high erythropoietin (EPO) level in brain and plasma, and
concluded that the high level of plasma EPO, but not cerebral EPO,
acted on erythropoiesis and regulation of the blunted HCVR (22),
possibly due to the reduced depletion of O2 and CO2, rather than
the effect of EPO on CO2 chemosensitivity (23).

3 Sleep-related breathing disorders

Nocturnal periodic breathing (nPB) and nocturnal hypoxemia
are frequent manifestations for sleep disorders in highlanders (12),
which are attributed to insufficient ventilation and apnea caused by
hypoxia in highlands (24). The nocturnal hypoxemia, represented
by lower nocturnal blood oxygen saturation (SpO2), has been
demonstrated to be relevant to higher Hct (25). Moreover, the
apnea-hypopnea index (AHI), an indicator of nPB severity, was
revealed to be negatively related to nocturnal SpO2, suggesting
that more severe nBP correlated with lower nocturnal SpO2
(12). However, it is still doubtful whether nPB is only a clinical
manifestation caused by nocturnal hypoxemia, since no univariate
relevance between nPB and EE has been detected (26). In male
Andeans, Hct was observed to be forecasted only by average
sleep SpO2, AHI, and obstructive apnea index (OAI) (27), which
indicated that the direct effect of nPB on Hct might be limited.
Furthermore, a recent study suggested that ameliorating nPB did
not improve the disordered sleep structure of highlanders, and thus
more valuable indicators are needed to evaluate the relationship
between sleep pattern and EE occurrence (24).

4 Sex hormones

The prevalence of HAPC is higher in men and postmenopausal
women due to sex hormone regulation (4). Higher serum
testosterone level was detected in male EE patients and up
to 45% of postmenopausal women had high CMS scores with
increased Hct in highlands, increased by 23% compared to
premenopausal women (27–29). Azad et al. (17) collected samples
from Andeans at an altitude of 4338m and established an induced
pluripotent stem cell line to find that estrogen significantly
decreased hypoxia-induced erythropoiesis in a dose-dependent
manner (17). The estrogen directly reduced the expression level of
GATA1, a transcription factor regulating erythroid differentiation,
and inhibited its downstream targets, including Alas2, Bcl-xL,
and erythropoietin receptor (EpoR), to decrease hypoxia-induced
erythropoiesis and increase erythrocyte apoptosis (17). Moreover,
the mRNA expressions of GATA1, vascular endothelial growth
factor (VEGF), and HIF-1 were distinctly restrained by estrogen
beta signaling that was identified as a dominant pathway involved
in inhibiting EE progression (17).

5 Iron metabolism

Iron is an important component of hemoglobin and is involved
in EE occurrence. EE patients among Han immigrants living in
the Qinghai-Tibet Plateau showed higher concentrations of serum
iron, Hct, serum soluble transferrin receptor, and serum ferritin
than healthy highlanders, indicating increased iron availability and
reserves (30). The increased expression of HIF-2α in the intestine
of EE mice upregulated the hub gene expression related to iron
metabolism, such as Dmt1, Dcytb, Fpn, Tfrc, and Fth, to enhance
iron availability and thus promote erythropoiesis (13). Hepcidin,
a peptide hormone, plays a crucial role in iron homeostasis by
inhibiting excessive iron mobilization. In the hypoxic environment,
the hepcidin expression level was decreased, followed by stored
iron releasing and consequent erythropoiesis, which was involved
in downregulation of STAT3 signaling pathway (30). Moreover,
red pulp macrophages (RPMs) in the spleen serve as a cleaner
for the removal of abnormal erythrocytes, and the ferroptosis of
RPMs due to lipid peroxidation was observed in C58BL/6 mice with
hypoxia, resulting in decreased RPMs and erythrocytic clearance
(31). Besides, in a recent study, men living in the highest cities of the
world indicated that their iron stores remained stable regardless of
whether they suffered from CMS, which implied the highlanders
might have a unique mechanism for maintaining an efficient
balance between iron absorption/storage and its consumption (32).

6 Hypoxia-related factors and
pathways

6.1 HIF-EPO pathway and VHL

EPO, mainly generated by the kidneys, is induced in anoxic
environment and binds to EpoR, then activating its downstream
signals to further promote erythropoiesis and reduce erythrocyte
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TABLE 1 Current genetic studies of highlanders globally.

Population Gene SNP Adaptation/
Disadaptation

Function Source

Tibetan EGLN1 rs186996510,
rs12097901

A Decreasing erythropoiesis (7, 67)

EPAS1 – A Decreasing
anoxic response

(68)

PPARA – A Decreasing erythropoiesis (68)

ITGA6 rs3749148 A – (69)

ERBB4 rs934607,
rs141267844

A – (69)

rs6710946 DA – (69)

PIK3CD – DA – (70)

COL4A3 – DA – (70)

Andean EPAS1 rs570553380 A Decreasing hematocrit (10)

EGLN1 rs1769793
rs2064766,
rs2437150,
rs2491403, rs479200

A Increasing
VO2 max

(9)

SENP1 – DA Increasing erythropoiesis (71)

ANP32D – DA – (71)

Han EPAS1 rs75591953, rs75984373 A – (69)

ITGA6 rs6744873 A – (69)

ERBB4 rs17335043 A – (69)

Ladakhis EGLN1, EPAS1, COQ7,
NAPG, ADH6, DUOXA1

– A – (72)

Ethiopian CBARA1, VAV3, ARNT2,
THRB, CIC, LIPE,
PAFAHIB3

– – – (73)

A, Adaptation; DA, Disadaptation; SNP, Single Nucleotide Polymorphism; –: unknown.

apoptosis (33). HIF is a regulator of EPO, including HIF-
1α and HIF-2α, and involved in acute and chronic hypoxia
respectively, which mediates erythrocyte formation by affecting
the transcription and synthesis of EPO (34). Recent studies have
suggested that HIF-2α/EPO-related pathway plays a dominant role
in hypoxia-induced erythrocytosis (35).

VHL is a tumor suppressor involved in the ubiquitylation
and degradation of HIFs (36, 37). Hypoxia promoted methylation
of the VHL promoter by increasing the expression of DNA
methyltransferase, DNMT3α and DNMT3β, leading to inhibition
of VHL expression (14, 38). The downregulated VHL protected the
HIF-2α from degradation and contributed to erythropoiesis (14).
Moreover, the mRNA expression of HIF-2α, but not HIF-1α, was
upregulated in the bone marrow cells of patients with EE (14).
Overall, hypoxia inhibits VHL to reduce the degradation of HIFs
and promotes HIF-2α/EPO-related pathway, resulting in EE.

6.2 EPO/soluble EpoR ratio

EPO regulates erythropoiesis through the EPO/EpoR pathway
(39), and soluble EpoR (sEpoR) is a protein produced by alternative
splicing of EpoR mRNA and can reduce EPO availability by
competitively combining with EPO (40). Noticeably, only part
of EE patients exhibited raised EPO levels, while other patients
had normal EPO levels, suggesting, in addition to EPO, sEpoR

may play a role in pathogenesis of EE (41). Hypoxia-induced
downregulation of sEpoR was observed to modulate respiratory
status and increase oxygen transport in mice (42). Further, sEpoR
was decreased in both normal and high EPO groups of Andeans
with EE at an altitude of 4340m while EPO/sEpoR was positively
correlated with Hct and negatively correlated with SpO2 (41).
Another study reported a higher EPO/sEpoR ratio during the
night and early morning in Andean highlanders, despite EPO
concentration showing no obvious change over time (43). The
proportion of lower nocturnal SpO2 ( ≤ 80%) was higher in
CMS patients, leading to a decrease in sEpoR and an increase in
nocturnal EPO/sEpoR ratio and erythropoiesis (43). Overall, the
EPO/sEpoR ratio rather than EPO may play a key role in EE.

6.3 SENP1-HIF/GATA1 pathway

SENP1 is a nuclear small ubiquitin-related modifier protein
(SUMO) protease. Previous studies demonstrated that SENP1 was
involved in the pathogenesis of CMS and regulated hypoxia-
stimulating erythropoiesis (44). A decrease in the number of
erythroid colony-forming units (CFU-e) was observed in SENP1
knockout mice due to EPO downregulation and increased
apoptosis of erythroid progenitor cells (45). SENP1 regulated
EPO production and erythrocyte metabolism through HIF and
GATA-1 in the hypoxic environment (15, 45). HIF is sumoylated
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intracellularly and then degraded by SUMO-targeted ubiquitin
ligases. SENP1 protects sumoylated HIF from degradation by
desumoylation and increases the downstream effects of HIF
under hypoxic conditions (45, 46), then further regulates the
production of EPO and erythrocytes. GATA1, a transcription
factor that regulates erythroid differentiation, interacts with a
variety of hematopoietic transcription factors and is involved in
the regulation of erythropoiesis genes such as heme biosynthetic
enzymes, hemoglobin, EpoR, and anti-apoptotic protein (Bcl-
xL) (47–51), and GATA1-deficient mice exhibited severe anemia
and eventual death (48). SENP1 can upregulate the expression
of GATA1 and its downstream factor Bcl-xL during hypoxia,
then contributing to erythrocyte proliferation and apoptosis
inhibition (15, 48). Overall, under hypoxic environment, SENP1
upregulates the expression of HIF and GATA1 to increase EPO
and erythropoiesis.

6.4 HIKER/LINC02228-CSNK2B-GATA1

long-chain noncoding RNAs (lncRNAs) are transcripts that can
regulate gene transcription, having a vital role in cardiovascular,
neurological, endocrine systems, cancer occurrence, and so on
(52), which was recently revealed to be correlated with EE
(53). An RNA-Seq analysis was conducted to investigate the
effect of gene transcription of erythroid cells on EE patients
and significant differences in the expression of lncRNAs were
discovered between EE and non-EE subjects (53). Among
these, the lncRNA showing the most notable change was
named hypoxia-induced kinase-mediated erythropoietic regulator
(HIKER)/LINC02228, which was upregulated in vitro with EE
phenotype and proved to be significant for regulating erythroid
progenitors under hypoxic conditions by increasing the expression
of casein kinase 2β unit (CSNK2B) (53), a downstream factor
of HIKER/LINC02228. CSNK2B was suggested to promote
erythrocyte growth and upregulation of GATA1 (54), and CSNK2B
knockout mice showed severe anemia (53). Overall, hypoxia
upregulates the HIKER/LINC02228 in EE patients to increase
CSNK2B expression, which further promotes the GATA1 level and
thus erythrocyte growth.

7 Discussion

This updated review suggested that the pathogenesis of HAPC
was involved in not only lack of the adaptive genetic background,
but also complicated maladaptive mechanisms that were discussed
above. However, the advances in HAPC treatment are slow. In
addition to recommendation of migration to low-altitude areas,
the conventional treatments for HAPC include phlebotomy and
hemodilution (55, 56), which often result in hypovolemia, iron
deficiency and even exacerbation of pulmonary hypertension (57),
but recently, erythrocytapheresis has been widely used to reduce
Hct in HAPC by seperating erythrocytes from the circulation with
hemodynamic stability (58).

However, targeting on the maladaptive mechanisms could be
more effective for treatment of HAPC. Six-month administration
of acetazolamide, a carbonic anhydrase inhibitor, stimulated

respiratory response and rectify hypoxemia, and thus reduced Hct,
EPO and pulmonary vascular resistance and even improved sleep-
related breathing disorders (59, 60). Noticeably, as a methylated
lipophilic analog of acetazolamide, methazolamide was shown to
reduce Hct and blood viscosity dose-dependently in a rat model
of EE, but with fewer side effects than acetazolamide, indicating
a promising prospect for methazolamide in HAPC treatment
(61, 62).

Maca is a plant growing in Peru, and long-term use of maca
reduced the Hct in EE patients (63), which was implicated in
regulation of sex hormone and its related pathways (64). Likewise,
as a traditional Chinese medicinal plant, astragalus membranaceus,
decreased erythropoiesis by inhibiting the differentiation of
hematopoietic stem cells into erythroid lineage and downregulating
the expression of HIF-1a, EPO and GATA-1 in HAPC mice (65).

Interestingly, it was demonstrated that arginine could inhibit
the development of EE by reducing EPO/EpoR via upregulation
of miR-144-5p in a rat model of CMS (66). Moreover, HIF-
2α antagonists, CSNK2B inhibitors and DNMT inhibitors were
reported to improve hypoxia-induced EE in experimental studies,
suggesting potential pharmaceutical values (13, 14, 53).

Taken together, although the treatment of HAPC is dependent
on the conventional methods, new strategies targeting on the
maladaptive mechanisms may lead to better therapeutic effects in
the forthcoming future.
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