
TYPE Review

PUBLISHED 30 September 2024

DOI 10.3389/fmed.2024.1450103

OPEN ACCESS

EDITED BY

Fuyong Xing,

University of Colorado Anschutz Medical

Campus, United States

REVIEWED BY

Thompson Stephan,

Graphic Era University, India

Abdulhamit Subasi,

University of Turku, Finland

*CORRESPONDENCE

Faseela Abdullakutty

faseela.abdullakutty@qu.edu.qa

RECEIVED 16 June 2024

ACCEPTED 12 September 2024

PUBLISHED 30 September 2024

CITATION

Abdullakutty F, Akbari Y, Al-Maadeed S,

Bouridane A, Talaat IM and Hamoudi R (2024)

Histopathology in focus: a review on

explainable multi-modal approaches for

breast cancer diagnosis.

Front. Med. 11:1450103.

doi: 10.3389/fmed.2024.1450103

COPYRIGHT

© 2024 Abdullakutty, Akbari, Al-Maadeed,

Bouridane, Talaat and Hamoudi. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Histopathology in focus: a review
on explainable multi-modal
approaches for breast cancer
diagnosis

Faseela Abdullakutty1*, Younes Akbari1, Somaya Al-Maadeed1,

Ahmed Bouridane2, Iman M. Talaat3,4 and Rifat Hamoudi3,4

1Department of Computer Science and Engineering, Qatar University, Doha, Qatar, 2Computer

Engineering Department, College of Computing and Informatics, University of Sharjah, Sharjah, United

Arab Emirates, 3Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah,

United Arab Emirates, 4Research Institute for Medical and Health Sciences, University of Sharjah,

Sharjah, United Arab Emirates

Precision and timeliness in breast cancer detection are paramount for improving

patient outcomes. Traditional diagnostic methods have predominantly relied

on unimodal approaches, but recent advancements in medical data analytics

have enabled the integration of diverse data sources beyond conventional

imaging techniques. This review critically examines the transformative potential

of integrating histopathology images with genomic data, clinical records, and

patient histories to enhance diagnostic accuracy and comprehensiveness in

multi-modal diagnostic techniques. It explores early, intermediate, and late

fusion methods, as well as advanced deep multimodal fusion techniques,

including encoder-decoder architectures, attention-based mechanisms, and

graph neural networks. An overview of recent advancements in multimodal

tasks such as Visual Question Answering (VQA), report generation, semantic

segmentation, and cross-modal retrieval is provided, highlighting the utilization

of generative AI and visual language models. Additionally, the review delves

into the role of Explainable Artificial Intelligence (XAI) in elucidating the

decision-making processes of sophisticated diagnostic algorithms, emphasizing

the critical need for transparency and interpretability. By showcasing the

importance of explainability, we demonstrate how XAI methods, including Grad-

CAM, SHAP, LIME, trainable attention, and image captioning, enhance diagnostic

precision, strengthen clinician confidence, and foster patient engagement. The

review also discusses the latest XAI developments, such as X-VARs, LeGrad,

LangXAI, LVLM-Interpret, and ex-ILP, to demonstrate their potential utility in

multimodal breast cancer detection, while identifying key research gaps and

proposing future directions for advancing the field.
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1 Introduction

Breast cancer remains one of the leading causes of mortality worldwide,

highlighting the critical need for accurate and timely diagnosis to improve patient

outcomes. Historically, diagnostic methodologies have predominantly relied on unimodal

approaches, which focus on a single type of data, such as imaging alone. While

these methods have provided foundational insights, they are constrained by significant

limitations. For example, unimodal approaches often suffer from reduced accuracy at
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higher magnifications, sensitivity to data imbalance, and limited

generalizability across different datasets or conditions (1, 2).

The detection process involves data preprocessing, feature

extraction, and sometimes image segmentation to improve

feature learning. Subsequently, detection models are employed

to diagnose the disease, followed by further analyses such as

subtype classification, grading, and prediction of recurrence or

metastases. The integration of crowdsourcing and human-in-

the-loop methodologies refines these analyses, enabling informed

decisions regarding treatment and monitoring. Figure 1 illustrates

the general workflow for breast cancer diagnosis within a

multi-modal context, incorporating elements of explainability.

Explainable AI (XAI) techniques are crucial in this context, as

they aim to clarify the opaque nature of complex algorithms,

explain the reasoning behind diagnostic decisions, and improve

the interpretation of diagnostic results. Explainability not only

enhances clinician confidence in decision support systems but

also facilitates patient understanding and engagement, fostering

informed decisions and personalized treatment plans.

The evolution of multi-modal diagnostic techniques marks

a significant shift in the field of breast cancer detection and

classification, emphasizing the integration of diverse data sources

beyond traditional imaging. In addition to conventional imaging

modalities such as mammography, magnetic resonance imaging,

ultrasound, and positron emission tomography (PET), multi-

modal approaches leverage a wide variety of non-image data types

including genetic markers, proteomic profiles, clinical parameters,

and patient demographics (3–5). By harnessing the complementary

insights gleaned from these diverse data modalities, multi-modal

techniques offer a multifaceted understanding of breast cancer

biology and pathology, transcending the limitations of unimodal

approaches.

The impact of incorporating multiple modalities can be

demonstrated by comparing the feature space under unimodal

and multimodal conditions. The comparative visualization of

feature space distribution highlights the significant advantages

of multimodal methods over unimodal approaches using the

multimodal EMR dataset (6) in breast cancer diagnosis, as

shown in Figure 2. Unimodal methods, as illustrated by the

VGG-16 (Figure 2A), Bidirectional Encoder Representations from

Transformers (BERT; Figure 2B), and tabular data (Figure 2C),

exhibit limitations such as reduced accuracy, sensitivity to data

imbalance, and poor generalizability across different datasets.

These methods often fail to capture the complete picture due to

their reliance on a single data type, leading to less distinct clustering

and potential loss of critical discriminative features at higher

magnifications. In contrast, the multi-modal approach, which

integrates image, text, and tabular data, demonstrates superior

clustering and separation of data points, reflecting enhanced

diagnostic accuracy and robustness (5). This integration leverages

complementary information from diverse data sources, providing a

holistic view of breast cancer pathology, improving generalizability,

and reducing the risk of overfitting. Consequently, multi-modal

methods offer a more comprehensive and reliable diagnostic tool,

addressing the inherent constraints of unimodal approaches (7).

Figure 2, visually underscores these points by showing clearer data

separation and clustering in the multi-modal plot compared to the

unimodal ones.

Furthermore, alongside the integration of multimodal data, the

necessity for explainability in breast cancer diagnosis emerges as a

pivotal consideration. XAI is a technique that aims to clarify the

opaque nature of complex algorithms, explaining the reasoning

behind diagnostic decisions and improving the interpretation of

diagnostic results (4). Explainability in breast cancer diagnosis not

only enhances clinician confidence in decision support systems but

also facilitates patient understanding and engagement, fostering

informed decisions and facilitating personalized treatment plans.

Based on the above, it is important to focus on multimodal

analysis in the medical field, especially in the field of breast

cancer. Therefore, a comprehensive overview in this field can help

researchers and industry to find frontiers and future directions

and to develop and implement improved methods. Table 1

presents recent reviews on breast cancer diagnosis across various

contexts. However, these reviews often overlook multi-modality

and explainability, treating them as future research directions

rather than discussing existing methods. Additionally, there is a

lack of focus on histopathology and frameworks that combine

histopathology with non-image data for breast cancer detection.

In light of these observations, this review addresses multi-

modal datasets, including histopathology and other non-image

data, and explores multi-modal techniques utilizing these datasets.

It examines explainable multi-modal methods in histopathology-

based breast cancer diagnosis, providing a comprehensive overview

of the evolving field. Advances in medical data analytics now

underscore the importance of these integrated methodologies,

highlighting the fusion of histopathology images with non-image

data. By integrating multi-modality and explainability, this review

aims to contribute to the strategic direction of breast cancer

diagnosis and treatment, ultimately enhancing diagnostic accuracy,

clinician confidence, and patient outcomes. By showcasing how

these combined approaches provide a more holistic and detailed

perspective on breast cancer, we emphasize the critical role of

multi-modal techniques in advancing the field and improving both

diagnostic and therapeutic strategies.

The major contributions of this article are:

• A detailed investigation of multi-modal datasets, including

those that incorporate histopathology and non-image data,

which are frequently overlooked in existing literature.

• A discussion on multi-modal techniques that utilize

the aforementioned datasets, offering insights into their

application and effectiveness in breast cancer diagnosis.

• An investigation of explainable multi-modal methods

specifically within the context of histopathology-based breast

cancer diagnosis, addressing a critical gap in current research.

• Identification research gaps in multi-modality and

explainability, identifying key areas for future study and

contributing to the strategic direction of the field.

2 Breast cancer diagnosis: an
overview

The diagnosis of breast cancer (14) involves a number of tasks,

utilizing both image and non-image data. Using Machine learning

(ML) algorithms, these data can be analyzed to identify potentially
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FIGURE 1

A generic representation of breast cancer diagnosis.

A B C D

FIGURE 2

Feature space distribution of unimodal (VGG, BERT and Tabular) and multimodal (VGG + BERT + Tabular) data. (A) VGG, (B) BERT, (C) Tabular data,

and (D) VGG + BERT + Tabular. In the unimodal plots, the labels Class 0 and Class 1 correspond to the Benign and Malignant classes, respectively.

suspicious areas or anomalies that may indicate the presence of

tumors. These advanced techniques (15) offer a more efficient and

potentially more accurate method for detecting early signs of breast

cancer, providing valuable insights for healthcare professionals in

their diagnostic process.

Malignancy classification (16) is the process of determining

whether detected abnormalities are malignant, indicating cancer,

or benign, meaning they are non-cancerous. This step is vital for

guiding the subsequent treatment plan. Machine learning models

can assist in this classification by analyzing features derived from

imaging data, including characteristics like shape, texture, and

intensity. By training these models on large datasets, they can

provide predictions on the probability that an abnormality is

cancerous, aiding healthcare professionals in making informed

decisions regarding patient care (17).

Subtype classification is a crucial process in understanding

breast cancer, as it encompasses a spectrum of diseases, each with

unique traits and outcomes (18). This step involves dividing breast

cancer cases into specific subtypes like hormone receptor-positive,

HER2-positive, or triple-negative breast cancer, which are known

to have varying responses to treatments and differing prognoses.

By categorizing cases into these subtypes, medical professionals

can tailor treatment plans more effectively (19). Machine learning

models play a role in this by analyzing genomic data, gene

expression profiles, and clinical information to predict the subtype,

facilitating personalized and targeted therapeutic approaches.

Image segmentation (15) involves dividing an image into

cell segmentation and distinct segments or regions of interest.

Within the realm of breast cancer diagnosis, segmentation helps

to demarcate the boundaries of tumors or suspicious lesions in

breast imaging data (43). This process is critical for precisely

measuring tumor size and shape, and it lays the groundwork for

further analyses, including tumor volume estimation or extracting

quantitative features. Machine learning algorithms, especially deep

learning models like convolutional neural networks (CNNs),

have demonstrated strong capabilities in automatically segmenting

breast lesions from medical images (44), offering a powerful tool to

enhance the accuracy and efficiency of breast cancer diagnosis.
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TABLE 1 Latest reviews on breast cancer diagnosis in various contexts.

References Main discussion Datasets Multi
modality

XAI

Abo-El-Rejalet al. (3) Segmentation × × ×

Bai et al. (8) Explainability × × X

Brodhead et al. (9) Imaging characteristics × × ×

Hussain et al. (4) Breast cancer risk prediction × X X

Luo et al. (10) Breast cancer imaging × X ×

Rautela et al. (11) Computational techniques

for breast cancer

× X ×

Singh et al. (12) Breast cancer screening and

detection using

artificial intelligence

and radiomics

× X ×

Thakur et al. (13) Identification and of breast

cancer through medical

image modalities

X X ×

Predicting cancer recurrence and metastasis (45) is a crucial

aspect of breast cancer management, extending beyond initial

diagnosis and treatment. This task involves assessing the risk

of the cancer returning or spreading to other parts of the

body. Machine learning models can combine multiple types of

data-such as imaging, genomic information, clinical variables

(like patient demographics and medical history), and treatment

records-to estimate the likelihood of recurrence or metastasis (37).

These predictions are valuable for clinicians, allowing them to

customize follow-up care and create personalized treatment plans

for breast cancer patients, ultimately enhancing patient outcomes

and reducing the risk of adverse events. It should be noted that

the tasks should be combined and integrated to have an accurate

system. For example, cancer detection for subtype classification

should use the tasks of cancer segmentation and grading tasks and

this process can improve the task of subtype classification (46).

Table 2 presents a summary of recent research advancements

in breast cancer diagnosis across various tasks. A significant

observation is the predominance of unimodal approaches in

current methodologies. While some existing multimodal methods

incorporate different types of imaging, such as ultrasound and

mammography, the integration of image data with non-image

data remains significantly underexplored. In particular, the fusion

of histopathology images with non-image data, including textual

and clinical information, represents a largely untapped area. The

potential benefits of this integration are substantial. By combining

histopathology imaging with comprehensive clinical and textual

data, and leveraging advanced machine learning techniques, there

is a strong potential to enhance the accuracy and efficiency of breast

cancer diagnosis, prognosis, and treatment planning. This holistic

approach could lead to significant advancements in personalized

medicine and improved patient outcomes.

3 Datasets

The dataset used for breast cancer diagnosis encompasses both

clinical image data and non-image data (47), as illustrated in

Figure 3. The clinical image data comprise radiology and pathology

images. Radiology images encompass modalities such as MRI, CT,

thermal imaging, mammograms, and ultrasound, while pathology

images include histopathology and pCLE (5). The non-image data

can be subdivided into clinical and non-clinical categories. Clinical

data encompass radiology reports, pathology reports, including

laboratory results, and narrative descriptions of patient status. Non-

clinical data comprise patient profiles containing demographic

information, patient history, age, other non-clinical details, and

genomic data (48).

Additionally, non-image data are further classified into

structured and unstructured categories. Radiology reports and

narrative descriptions of patient status fall under unstructured

data, while recorded pathology reports and patient profiles

are considered structured data (49). Despite the abundance of

both image and non-image datasets related to breast cancer

detection, this paper focuses specifically on histopathology-based

datasets, examining them in a multi-modal context. Table 3,

lists the existing public datasets in breast cancer detection,

based on histopathology. It is evident from the table that the

number of multi-modal datasets is much less compared to the

unimodal datasets. Also, the sample size is low in most of these

datasets.

The landscape of breast cancer histopathology research is

enriched by a diverse array of datasets, each offering unique

features and clinical insights. Uni-modal datasets, such as BRACS

(50) and BreCaHAD (51), focus on a single type of data. The

BRACS dataset provides 547 Whole-Slide Images (WSIs) and

4,539 Regions Of Interest (ROIs), meticulously annotated by

three board-certified pathologists. This dataset categorizes lesions

into types such as Normal, Pathological Benign, Usual Ductal

Hyperplasia, Flat Epithelial Atypia, Atypical Ductal Hyperplasia,

Ductal Carcinoma in Situ, and Invasive Carcinoma. Similarly,

the BreCaHAD dataset includes 162 histopathology images

focusing on malignant cases, classified into mitosis, apoptosis,

tumor nuclei, non-tumor nuclei, tubule, and non-tubule,

thus facilitating comprehensive analyses and validation of

diagnostic methods.
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TABLE 2 Recent research in breast cancer diagnosis including di�erent

tasks.

Method Dataset Modality Task

Classifier-combined

method (16)

Proprietary MRI Grade

classification

DeepBreast

CancerNet (20)

BUSI (21),

Ultrasound

Image dataset

(22)

Ultrasound Detection

DSCCN (18) TCGA (23) multi-omics Sub-type

classification

EMDCOC (24) BreakHis (25)

IR Thermal

Images (26)

Histopathology,

IR thermal

images

Detection

Ensemble CNN

(17)

Databiox (27) Histopathology Grade

classification

Histogram

K-means

segmentation

(28)

BreakHis (25) Histopathology Segmentation

Hybrid CNN (29) Mini-DDSM

(30),

BUSI (21)

Mammogram,

ultrasound

images

Detection

Hybrid CNN-LSTM

(31)

BreakHis (25) Histopathology Grade

classification

KAMnet (32) Proprietary Ultrasound Detection

moBRCA-net (19) TCGA (23) Multi-omics, Sub-type

classification

Multi-modal fusion

(33)

TCGA (23) WSI, gene

expression

Detection

Optimized LSTM

with

U-net segmentation

(34)

MIAS (35) Mammogram Segmentation

Prediction model

for distant

metastasis (36)

Proprietary Clinical Data Reccurence

and metastatis

Recurrence

prediction (37)

WPBC Clinical data Recurrence

and metastasis

Semantic

segmentation (38)

CBIS-DDSM

(39),

MIAS (35)

Mammogram Segmentation

Unet3+ (40) Proprietary Ultrasound Segmentation

Yolo-based model

(41)

CBIS-DDSM

(39),

Inbreast (42),

Proprietary

Mammogram Detection

In contrast, multi-modal datasets integrate various data types

to provide a more comprehensive view of breast cancer pathology.

The TCGA-BRCA (23) dataset, for instance, combines gene

expression data, copy number variations (CNVs), and pathological

images from 1,098 breast cancer patients. This multi-dimensional

approach allows for a deeper understanding of the molecular

and histological characteristics of breast cancer. Similarly, the

IMPRESS dataset includes Hematoxylin and Eosin (H&E) and

immunohistochemistry (IHC) stained WSIs from 126 patients,

along with clinical data and biomarker annotations. The Post-NAT-

BRCA38 dataset (52) offers 96 WSIs along with detailed clinical

information, including estrogen receptor (ER) status, progesterone

receptor (PR) status, and human epidermal growth factor receptor

2 (HER2) status. These multi-modal datasets enable researchers to

explore the interplay between genetic, molecular, and histological

data, driving advancements in personalized breast cancer diagnosis

and treatment.

The IMPRESS dataset (56) consists of 126 breast H&E WSIs

from 62 female patients with HER2-positive breast cancer and

64 female patients with triple-negative breast cancer, all of

whom underwent neoadjuvant chemotherapy followed by surgical

excision. It includes immunohistochemistry (IHC) stained WSIs

of the same slides, along with corresponding scores. All slides

were scanned using a Hamamatsu scanner at 20× magnification.

The dataset also provides clinical data for both patient groups,

including age, tumor size, and annotations for biomarkers such as

PD-L1, CD-8, and CD-163. The GTEx-Breast dataset (57) is part

of the Genotype-Tissue Expression (GTEx) project, which offers

gene expression data across 44 human tissues. It includes 894 breast

tissue histology images, comprising 306 WSIs of female breast

tissue and 588WSIs of male breast tissue, collected from the central

subareolar region of the right breast at various centers in the United

States. The images are accompanied by brief pathology notes and an

annotation file with detailed sample information.

The CPTAC-BRCA dataset (53), from the Clinical Proteomic

Tumor Analysis Consortium, includes 642 WSIs from 134 patients

with breast invasive carcinoma, scanned at 20×magnification. The

images are available in two resolutions: 0.25 and 0.5 mum/pixel.

The dataset is accompanied by comprehensive clinical, proteomic,

and genomic data. The BCNB dataset (55), or Early Breast Cancer

Core-Needle Biopsy WSI Dataset, is the only publicly available

collection of breast histopathology WSIs from Asia. It contains

1,058 WSIs from 1,058 breast cancer patients in China, scanned

with an Iscan Coreo pathological scanner. Tumor regions in each

image are annotated by two pathologists. The dataset also includes

extensive clinical data such as patient age, tumor size, histological

and molecular subtypes, number of lymph node metastases, and

HER2, ER, and PR status.

A multi-modal evaluation should require the selection of

datasets that include comprehensive and relevant data across

various modalities, including imaging, clinical records, and

genomic data. Using the selected datasets would allow a robust

and comprehensive assessment of the multimodal approach’s

effectiveness and applicability. As an inclusion criterion, it would be

desirable to identify datasets that included all required modalities

and met high-quality standards, such as high-resolution imaging,

complete and standardized clinical information, and accurate

genomic sequencing. Additionally, datasets should be selected

based on their clinical relevance, ensuring that they reflect a diverse

range of patient demographics (e.g., age, gender, ethnicity) and a

variety of cancer subtypes, both of which are crucial for mimicking

real-world clinical conditions. An exclusion criteria should be used

to exclude datasets that did not meet these standards, including

incomplete data modalities, low-quality data (e.g., low-resolution

images or missing clinical information) and samples that did not

represent a broad range of patient groups and cancer types. Using

this rigorous selection process ensures that the datasets used are
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FIGURE 3

Types of breast cancer diagnosis data.

representative of real-world clinical scenarios, thus making the

study more generalizable and relevant. For example, structured

EMR dataset (54) was selected for its comprehensive imaging and

clinical data across a diverse patient cohort, while TCGA-BRCA

(23) was chosen for its detailed genomic data and its inclusion of

multiple cancer subtypes, mirroring the heterogeneity observed in

clinical practice. By clearly defining these inclusion and exclusion

criteria, we aimed to ensure that the selected datasets are both

comprehensive and high-quality, as well as representative of diverse

real-world clinical environments, thereby ensuring the robustness

and validity of the multi-modal approach under evaluation in this

study.

4 Histopathology-driven breast
cancer diagnosis

Histopathology-driven breast cancer detection leverages

microscopic examination of tissue samples to diagnose and

understand the progression of breast cancer. This approach

involves the detailed analysis of histological images, where

pathologists identify abnormal cellular structures indicative

of malignancy. In recent years, advancements in artificial

intelligence (AI) and machine learning have significantly enhanced

histopathology analysis, enabling more accurate and efficient

detection of cancerous cells. AI models, particularly those

employing deep learning techniques, can process large volumes of

high-resolution images, extracting critical features that might be

overlooked by human eyes. These models assist in classifying tissue

samples, predicting cancer subtypes, and providing prognostic

information, thus playing a crucial role in personalized treatment

planning. The integration of AI in histopathology not only

improves diagnostic accuracy but also addresses challenges such

as inter-observer variability and the increasing demand for

pathological assessments, ultimately contributing to better clinical

outcomes for breast cancer patients.

4.1 Uni-modal techniques

Histopathology-based uni-modal breast cancer detection

remains a critical medical approach, utilizing microscopic

examination of tissue samples to identify cellular abnormalities.

Numerous methods have been developed leveraging
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TABLE 3 Multi-modal datasets public for breast cancer diagnosis

featuring histopathology images.

Dataset Year Size Modalities

Post-NAT-BRCA (52) 2019 96 WSI, clinical data

CPTAC-BRCA (53) 2020 642 WSI, clinical, proteomic,

genomic data

Pathological EMR (54) 2021 WSI, patient profile

BCNB (55) 2022 1,058 Clinical data

IMPRESS (56) 2023 126 WSI, clinical data

GTEx-Breast dataset (57) 2023 894 WSI, pathology notes

TCGA-BRCA dataset (23) 2023 1,098 WSI,

gene expression, CNV

histopathology images for this purpose. This section provides

a comprehensive analysis of recent uni-modal techniques in

histopathology-based breast cancer detection.

4.1.1 A comprehensive review on uni-modal
techniques

Gan and Subasi (58) proposed a method for low-magnification

histopathology grading improved data learnability by using

data augmentation and the CovXNet model. This improved

generalization capacity, regression optimization, and feature

purification. The CovXNet model captured features at multiple

observation levels, achieving the highest classification accuracy of

92.13% for the Breast Histopathology Images dataset. However,

GAN-generated patches did not improve validation accuracy

or class distinction. Another method utilized deep learning

on the IDC dataset, revealing that VGG16 and MobileNet

architectures achieved nearly 92% accuracy in detecting breast

cancer (59). In Zhang et al. (60) a novel classification framework

for analyzing whole slide breast histopathology images (WSI) was

introduced. The approach involved patch-based classification,

tumor region segmentation and location, and WSI-based

classification. Techniques utilized included Cycle-GAN for image

color normalization, a fused model combining DPN68 and Swin-

Transformer for enhanced patch-based classification accuracy, and

SVM for the final WSI-based classification. This method effectively

addressed the challenge of processing large WSIs directly and

provided a visual heatmap to facilitate better tumor diagnosis.

Solorzano et al. (61) compared a single CNNmodel to an ensemble

of ten InceptionV3 models to detect invasive breast cancer (IC)

in histopathology images. The ensemble model outperformed the

single CNNmodel in accuracy on the tile level in 89% of all WSIs in

the test set. The overall accuracy was 0.92 for the ensemble model

in the internal test set and 0.87 for the TCGA dataset. However,

the study acknowledged the limitation of having 587 WSI in the

internal datasets, which may affect the generalizability of the

findings. Future work could explore the explainability of ensemble

models and evaluate the impact of IC detection on downstream

analysis tasks.

A deep learning technique and multiple instance learning

(MIL) method for classifying histopathology breast cancer images

was presented in Maleki et al. (62). It utilized pre-trained models

and an extreme gradient boosting classifier to improve accuracy.

The method exhibited high accuracy across various magnification

levels and demonstrated robustness across different resolutions.

However, its accuracy decreased at higher magnification levels

due to the loss of discriminative features. A rank-based ensemble

method that utilized the Gamma function to classify breast

histopathology images was presented in Majumdar et al. (63).

This method outperformed state-of-the-art techniques, achieving

classification accuracies of 99.16%, 98.24%, 98.67%, and 96.16%

across different magnifications on the BreakHis dataset and 96.95%

on the ICIAR-2018 dataset. Despite its promising results, the

method had limitations, such as its application to a single data

modality and the need for further validation across other data

modalities to ensure its generalization ability.

Using color normalization and nucleus extraction techniques,

the method (64) evaluated H&E and fluorescent staining

technologies for the detection of breast cancer tumors. An

AI model was developed for segmenting H&E-stained images,

enabling cross-staining recognition between bright-field and dark-

field images. This approach maintained a high level of precision

in tumor feature recognition across different staining methods

with high accuracy rates. However, the method acknowledged that

fluorescent signals fade over time, making their use less common

in daily practice. Additionally, the high data requirement for

developing deep learning models posed a significant entry barrier

for special stains such as fluorescent stains. Hist2RNA (65), a deep

learning-based method was designed to predict gene expression

from digital images of stained tissue samples, aiming to enhance

breast cancer diagnosis and treatment by enabling personalized

therapies. It proved to be more efficient and computationally less

demanding than traditional molecular tests and could identify

breast cancer subtypes, thereby facilitating targeted treatment

strategies. However, its generalizability was limited due to its

focus on LumA and LumB subtypes, and it potentially introduced

extra noise in subtype classification due to tissue heterogeneity

and staining variability. Additionally, there was a lack of rigorous

external validation because of the absence of molecular information

in the TMA dataset used. Future directions included expanding

validation on a more diverse dataset, developing robust algorithms

for image analysis and validation, and integrating Hist2RNA into

clinical practice.

The AOADL-HBCC technique (66) employed an arithmetic

optimization algorithm (AOA) and a SqueezeNet model for

feature extraction from histopathology breast cancer images.

It included preprocessing steps such as noise removal and

contrast enhancement to improve image quality. The method

utilized a deep belief network classifier with an Adamax

hyperparameter optimizer for classification. The AOADL-HBCC

method demonstrated superior performance in breast cancer

classification, with increased training and validation accuracy and

minimal training and validation loss. Additionally, the method

showed proficiency in classifying different classes in the test

database, as evidenced by a brief ROC study. A Convolutional

Neural Network (CNN)-based binary classification method (67)

was used to diagnose cancer from histopathology images. The

CNN architecture extracted features and classified images with

high accuracy. The model achieved a prediction accuracy of
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up to 99.86%, in improving cancer diagnosis. However, the

model’s performance varied depending on the quality and diversity

of the input data. To improve the detection performance of

breast cancer histopathology images, the method (68) combined

dilated convolution, ResNet, and AlexNet. It introduced a

Composite Dilated Backbone Network (CDBN), which integrated

multiple identical backbones into a single robust network. The

CDBN improved mean Average Precision (mAP) by 1.5%–3.0%

on the BreakHis dataset and enhanced instance segmentation,

elevating the baseline detector cascade mask R-CNN to an mAP

of 53.3. The proposed detector did not require pretraining,

thereby simplifying integration into existing workflows. However,

the method required significant computational resources and

struggled with extremely varied or low-quality histopathology

images.

Using a multistage approach, Mahmood et al. (69) detected

mitotic cells in breast cancer histopathology images through the use

of Faster region convolutional neural networks (Faster R-CNNs)

for initial detection, Deep Convolutional Neural Networks (Deep

CNNs) for feature extraction, post-processing for false-positive

reduction, and machine learning. These methods collectively

contributed to improving the accuracy and reliability of mitotic

cell detection in breast cancer diagnosis. However, the approach

had several limitations, including limited data availability for

training deep learning models, high computational costs, and

challenges in generalization capability. Despite employing data

augmentation techniques like flipping and translation to mitigate

data scarcity, the inherent lack of data remained a significant

constraint. To classify breast cancer histopathology images into

non-carcinoma and carcinoma classes, an ensemble of deep

learning models, specifically VGG16 and VGG19, was utilized

in Hameed et al. (70). The ensemble approach demonstrated

a high sensitivity of 97.73% for the carcinoma class and an

overall accuracy of 95.29%, indicating a significant improvement

in accurately classifying the complex nature of breast cancer

histopathology images. The model also achieved an F1 score

of 95.29%, showcasing balanced precision and recall, which is

crucial for medical diagnostic systems. However, the approach

had limitations, including the use of a small dataset, which

could restrict the model’s generalizability to a wider range

of histopathology images not represented in the training set.

Additionally, the focus on only two classes might not capture

the full spectrum of breast cancer histopathology, potentially

limiting its applicability to more nuanced diagnostic scenarios.

A modified Inception_V3 and Inception_ResNet_V2 architecture

was used in Xie et al. (71) to extract high-level abstract

features from histopathology images of breast cancer. These

architectures were adjusted for binary and multi-class classification

issues. The model was adapted and balanced by manipulating

images to mitigate imbalanced data. The results showed superior

classification accuracy compared to traditional methods, with the

Inception_ResNet_V2 architecture proving to be themost effective.

The features extracted were used for unsupervized analysis,

demonstrating better clustering results with a newly constructed

autoencoder network. However, the study’s reliance on deep

learning models required substantial computational resources,

which may not have been accessible in all research or clinical

settings.

4.1.2 Uni-modal techniques: a critical analysis
Unimodal methods, which rely on single types of data or

features, demonstrated significant limitations in breast cancer

histopathology, particularly when applied to higher magnification

levels such as 400× due to the potential loss of discriminative

power of features (62). This reduction in accuracy can lead to biased

models, thereby affecting the overall performance. Additionally,

unimodal approaches are highly sensitive to data imbalance,

struggle with unbalanced class distributions, and often exhibit

limited generalizability across different datasets or conditions,

particularly in biomedical applications where sample variability is

common. Furthermore, these methods are prone to overfitting,

especially when dealing with complex or high-dimensional data,

underscoring the need for multi-modal approaches that leverage

various data types and analytical methods to enhance robustness

and accuracy.

Relying on a single data modality, such as histology images

alone, presents inherent constraints, including a limited perspective

and restricted generalization ability (63). Unimodal methods may

miss complementary information from other modalities, thereby

limiting the model’s understanding and representation of the

problem. In contrast, multi-modal methods integrate multiple

data types, enhancing the model’s robustness and adaptability

through comprehensive analysis, improved feature representation,

and increased robustness to noise and variability. By incorporating

data from multiple sources, multi-modal approaches can uncover

patterns not visible through unimodal methods, thereby offering a

more holistic view of cancerous tissues and improving diagnostic

confidence (72).

Traditional unimodal histopathology methods, despite their

long-standing use, face significant limitations compared to the

potential benefits of integrating artificial intelligence (AI) (73).

These limitations include high integration costs, regulatory hurdles,

substantial initial investments, and data protection challenges.

The transition to AI-enhanced processes is financially and

logistically challenging, as AI applications in clinical settings

face stringent regulatory approvals and require substantial

computational resources. This shift is further complicated by the

need for significant redundancy and backup measures to ensure

patient data protection.

In contrast, multi-modal methods in breast cancer

histopathology offer enhanced detection capabilities by identifying

a wider range of biomarkers and cellular activities, providing a

detailed understanding of tumor cells. These methods reduce

the likelihood of misdiagnosis, particularly in complex cases

where traditional methods may be insufficient. Multi-modal

approaches enable comprehensive analysis of multiple factors,

such as biomarker presence and cell spatial distribution, leading

to a nuanced understanding of the disease. Although initially

more costly, multi-modal methods ultimately save resources by

reducing the need for repeat tests and follow-up procedures,

thereby streamlining the diagnostic process (67).

The limitations of unimodal methods, such as their focus on

specific breast cancer subtypes and the introduction of noise due

to tissue heterogeneity and staining variability, highlight the need

for multi-modal methods (65). By integrating genetic, imaging, and

clinical data, multi-modal approaches enhance generalizability and

reduce noise, leading to more accurate and reliable predictions.
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These methods also enable comprehensive validation across diverse

datasets, bolstering the robustness and reliability of predictive

models.

The advantages of using multi-modal methods over unimodal

methods for detecting mitotic cells in breast cancer histopathology

images are well-documented. Multi-modal approaches offer

enhanced discrimination abilities, improved accuracy and

reliability, noise reduction, and better generalization capability.

By fusing data from multiple modalities, these methods provide

superior discrimination abilities crucial for high-accuracy

applications like medical diagnosis and are more effective for

real-time clinical applications (69).

In summary, while unimodal methods have provided

foundational insights into breast cancer histopathology, their

limitations underscore the need for multi-modal approaches that

leverage the strengths of various data types, thereby promising

more accurate and clinically relevant outcomes.

4.2 Multi-modal techniques

Multi-modal techniques are essential in histopathology-

based breast cancer detection for improved diagnostic accuracy,

comprehensive insights, and patient outcomes. These techniques

combine various data modalities, such as histopathology images,

molecular profiles, and clinical data, to differentiate between

cancer subtypes, assess tumor heterogeneity, and predict

treatment responses. Advanced imaging and computational

tools, like machine learning and artificial intelligence, have

revolutionized histopathology data analysis, automating detection

and classification, extracting complex patterns, and providing

decision support to pathologists. These techniques facilitate a

deeper understanding of breast cancer mechanisms, leading to the

discovery of new therapeutic targets and biomarkers.

4.2.1 An analysis of current existing multi-modal
techniques

The multi-modal fusion can be categorized as stage-based

and method-based techniques. Stage-based fusion strategies can

be further categorized into early, late, and intermediate fusion

approaches (74), each offering unique advantages in breast cancer

detection. Figure 4 illustrates the implementation of early, late

and intermediate fusion techniques. This approach is particularly

beneficial when uni-modal data are noisy or incomplete, as

integrating redundant information from other modalities can

improve the robustness and precision of predictions.

Multi-modal fusion approaches (75) include encoder-decoder

methods, which combine feature extraction, fusion, and decision-

making processes into a single model, making them efficient

in tasks like video captioning and object detection. Attention

mechanism methods use mechanisms like co-attention and cross-

attention to enhance each modality with information from

other modalities, allowing the model to fuse features and

learn interdependencies among them. Graph Neural Network

methods use GNN to capture long-range dependencies among

different modalities, categorizing tasks into different classes

based on data types. Generative Neural Network methods

include models like VAE-based adversarial frameworks, which

reduce distance differences between unimodal representations

and are crucial for tasks like text-conditional image generation

and image style transfer. Constrained-based methods involve

innovative approaches like channel-exchanging-networks, which

dynamically exchange channels in different modal sub-networks

based on individual channel importance, but are limited to

homogeneous data.

Multi-modal techniques offer a more accurate, comprehensive,

and personalized approach to breast cancer diagnosis and

treatment, but they face challenges such as data standardization,

computational resources management, and interdisciplinary

collaboration. Future advancements in technology and

computational methods are expected to address these challenges,

making multimodal techniques more effective and widely

adopted in clinical practice. However, challenges persist, such

as the richness of feature representation (54) in images and the

inadequacy of information fusion, which can lead to the loss of

high-dimensional information and partially missing data in real-

world scenarios. Each modality within multimodal data possesses

distinct characteristics, adding to the complexity of heterogeneous

data and further complicating multimodal fusion methods.

The integration of multi-modal approaches in breast cancer

diagnosis, including histopathology and non-image modalities,

improves diagnostic accuracy, provides a comprehensive

understanding of the disease, improves personalized treatment

planning, facilitates early detection and timely intervention,

potentially improving patient outcomes, and promotes

interdisciplinary collaboration among specialists. This approach

reduces the likelihood of misdiagnosis, provides a more

comprehensive understanding of tumor biology and patient

health, and facilitates early detection and timely intervention,

ultimately advancing clinical research. Table 4 shows recent

multi-modal research in breast cancer diagnosis.

The integration of heterogeneous data, particularlymaintaining

the integrity of high-dimensional image information, has been

a challenging aspect of data fusion. Yan et al. (54) developed a

multi-modal fusion technique to improve the dimensionality

of structured data in histopathology whole slide images

(WSI). They used VGG-16 for image feature extraction and a

denoising autoencoder to enhance clinical data. These features

were combined into fully connected layers for classification,

distinguishing between benign and malignant cases using a

pathological electronic medical record dataset. Yellapragada et al.

(76) proposed PathLDM, a text-conditioned Latent Diffusion

Model, to enhance histopathology image generation by integrating

contextual information from pathology text reports. The model

achieved a leading Fréchet Inception Distance (FID) score of

7.64 on the TCGA-BRCA dataset, outperforming other models in

generating high-quality, text-conditioned histopathology images.

It is essential to implement strategies that ensure a balanced

integration of all modalities in order to avoid potential biases

during data fusion. This is particularly important when certain

modalities are over-represented or when the quality of the data

varies significantly (77). To begin with, bias sources, such as

over-representation of certain modalities or inconsistencies in

data quality, should be identified, as these can disproportionately
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FIGURE 4

Graphical representation of early, late and intermediate fusion implementation.

influence model outcomes. In order to mitigate these biases,

modalities can be normalized and standardized in order to

ensure that they contribute equally, and weighted fusion can

be applied in order to balance their impact according to their

reliability. Moreover, quality assessment and filtering can be used

to manage variations in data quality, and data augmentation

can be used to enhance the representation of underrepresented

modalities. Furthermore, the effectiveness of these strategies should

be evaluated through comparative analyses, cross-validation, and

sensitivity analysis in order to minimize bias and enhance the

model’s generalizability and performance.

Ding et al. (93) developed a new method for mitosis detection

in histopathology images using large vision-language models. They

integrated image captioning and visual question-answering tasks

with pre-trained models, incorporating metadata like tumor and

scanner types. This approach improved prediction accuracy and

outperformed baseline models. MI-Zero (94) is another multi-

modal framework, which used contrastively aligned image and text

models for zero-shot transfer on gigapixel histopathology whole

slide images. The framework used multiple instance learning and a

graph-based representation, resulting in improved cancer subtype

classification accuracy and robustness. A bi-phase model (80)

was developed to predict breast cancer prognosis using genomic

information, histopathology images, and clinical details. The model

was evaluated using METABRIC and TCGA-BRCA datasets. The

fusion strategy involved feature extraction, concatenation, and

random forest classifiers. This enhanced the model’s predictive

power, utilizing the strengths of each modality and improving the

accuracy of breast cancer prognosis prediction.

A hybrid deep learning model (82) effectively predicted

molecular subtypes of breast cancer by integrating gene expression

data with pathological images. They used the TCGA-BRCA dataset,

selected 831 samples, processed gene expression data, and analyzed

pathological images in RGB color. Using data from The Cancer

Genome Atlas, Howard et al. (83) used a deep learning model to

predict recurrence assay results and risk in breast cancer patients.

The model extracted tessellated image tiles from tumor regions

and downscaled them through a convolutional neural network.

The model incorporated digital histology and clinical risk factors,

resulting in patient-level predictions that outperformed traditional

nomograms, enhancing the accuracy of recurrence predictions.

Canonical Correlation Analysis (CCA) and its penalized

variants (pCCA) were used for multi-modality fusion (81) in

breast cancer prediction, combining histopathology and RNA-

sequencing data from breast cancer patients in The Cancer

Genome Atlas (TCGA). A two-stage prediction pipeline was

proposed using pCCA embeddings for latent variable prediction,

enhancing survival prediction in breast cancer patients. The model

outperformed Principal Components Analysis (PCA) embeddings

in survival prediction tasks. A deep learning approach was

proposed for survival risk stratification in breast cancer, integrating

histopathology imaging, genetic, and clinical data. The MaxViT

model was used for image feature extraction, with self-attention

mechanisms capturing intricate patient relationships (90). A dual

cross-attention mechanism fused image features with genetic

data to enhance predictive accuracy. The study used the TCGA-

BRCA dataset, which included 249 whole-slide images and clinical

variables like tumor grade, size, patient age, and lymph node status.

Sun et al. (78) developed a Multimodal Deep Neural Network

(MDNNMD) for breast cancer prognosis prediction using the

METABRIC dataset. Themethod, which combined gene expression

profiles, CNA profiles, and clinical information from 1,980

breast cancer patients, outperformed single-dimensional methods

like DNN-Clinical, DNN-Expr, and DNN-CNA, demonstrating

the superior predictive power of integrating multi-dimensional

data for prognostic assessments in breast cancer. Arya and

Saha (84) developed the Generative Incomplete Multi-View

Prediction Model (GIMPP) to address missing views in breast

cancer prognosis prediction. The model used multi-view encoder

networks and view-specific generative adversarial networks to learn

shared latent space representations. Validated on the TCGA-BRCA

and METABRIC datasets, it demonstrated superior performance

compared to state-of-the-art approaches.

Huang et al. (91) proposed a multimodal Siamese model

for breast cancer survival prediction, Siamese-RegNet, which

integrates pathological images with clinical data. The model

extracts survival-related features from image patches and captures

correlations between different modalities. Themodel demonstrated
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TABLE 4 Existing research in multi-modal breast cancer diagnosis.

References Datasets Fusion strategy Modality

Sun et al. (78) METABRIC Late fusion Clinical data, Gene expression

Tong et al. (79) TCGA-BRCA Encoder-decoder method Gene expressions, CNV

Arya and Saha (80) METABRIC, TCGA-BRCA Early fusion Clinical data, Gene expression

Subramanian et al. (81) TCGA-BRCA Early fusion Histopathology images, Clinical data

Liu et al. (82) TCGA-BRCA Late fusion Histopathology images, Gene

expressions

Howard et al. (83) TCGA-BRCA Late fusion Histopathology images, Gene

expressions

Arya and Saha (84) METABRIC, TCGA-BRCA Encoder-decoder method Clinical data, Gene expression

Arya and Saha (85) METABRIC Early fusion Clinical data, Gene expression

Furtney et al. (86) TCGA-BRCA Graph-neural network method Histopathology images, Clinical data,

Gene expressions, Radiological data

Rani et al. (87) TCGA-BRCA Early fusion Histopathology images, Gene

expressions

Kayikci et al. (88) METABRIC Attention-based Clinical data, Gene expression

Arya et al.(89) TCGA-BRCA Early fusion Clinical data, Gene expression

Mondol et al. (90) TCGA-BRCA Attention-based Histopathology images, Clinical data,

Gene expressions

Huang et al. (91) TCGA-BRCA, GMUCH-BRCA Early fusion Histopathology images, Clinical data

Li and Nabavi (92) TCGA-BRCA Graph-neural network method Gene expressions, CNV

enhanced survival prediction accuracy using the TCGA-BRCA

and GMUCH-BRCA datasets. Another multi-modal method (86)

employed a cross-entropy loss function to batch patient graphs

for training and to update graph embeddings within a Graph

Neural Network (GNN) framework. The dataset utilized was the

Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA),

comprising clinical, genomic, and radiological data from 1,040

patients. The approach involved multimodal fusion using graph

convolutional neural networks (GCNs), with the goal of improving

the model’s generalization capabilities and overall performance.

This strategy highlighted the potential of integrating diverse data

types to enhance predictive accuracy in breast cancer prognosis.

It is essential to employ a variety of strategies in order to

mitigate overfitting concerns in the context of multi-modal data

and deep learning models in order to validate their performance

andmitigate this risk. Due to the complexity of integrating multiple

data modalities and the inherent complexity of deep learning

architectures, there is a risk of overfitting (95) Multiple techniques

were employed to counteract this, including cross-validation,

such as k-fold cross-validation, which provides an assessment

of generalizability across different subsets of data. Furthermore,

regularization techniques such as L1 and L2 regularization,

dropouts, and early stopping were applied to prevent the model

from becoming too complex and to enhance its generalizability.

Additionally, external validation datasets were used to ensure that

model performance was tested on unseen data, adding a further

level of robustness to the model. A paired t-test and Wilcoxon

signed-rank test were conducted to evaluate the significance of the

performance differences between the multi-modal and unimodal

approaches for validating model performance statistically. As

a measure of the reliability and uncertainty of the results,

confidence intervals were calculated for key performance metrics.

This comprehensive approach to mitigating overfitting and

demonstrating the robustness and effectiveness of multi-modal

models is achieved through the integration of these strategies and

statistical methods.

Multi-modal breast cancer detection requires a nuanced

approach to evaluating AI models that takes into account the

unique characteristics of medical datasets, such as class imbalance

and the importance of minimizing false negatives. Accuracy is a

commonly used metric to determine the proportion of instances

that are correctly predicted (96). Nevertheless, relying solely on

accuracy can be misleading, especially in cases where the majority

class (e.g., benign cases) outnumbers the minority class (e.g.,

malignant cases). Such scenarios may lead to the appearance of

accuracy for a model that primarily predicts the majority class,

but fail to identify critical cases. For a more realistic assessment,

additional metrics are required. In this context, recall (sensitivity)

is critical as it serves as a measure of the model’s ability to correctly

identify all instances of breast cancer while ensuring there are no

false negatives. It is essential to have a high recall rate in order

to detect diseases early and treat them effectively. With an F1-

score, a single metric that considers both false positives and false

negatives, it is ideal for datasets with class imbalances, where false

alarms and missed diagnoses can have a significant impact (97). In

addition to measuring the model’s ability to differentiate between

cancerous and non-cancerous cases across various thresholds,

AUC-ROC provides a comprehensive assessment of the model’s

diagnostic performance. In order to specifically address class

imbalances, metric such as balance accuracy, precision-recall
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curves, and Matthews Correlation Coefficients (MCCs) have been

used. By averaging recall across classes, balanced accuracy takes

into account class prevalence in order to reduce bias toward the

majority class. The precision-recall curves provide insight into

the trade-offs between precision and recall, particularly when

cancer detection (the minority class) is of primary importance.

MCC provides a balanced measure that considers all aspects of

a confusion matrix, providing a more informative evaluation for

binary classifications when the data is imbalanced. By reporting

these metrics comprehensively, a robust and balanced evaluation

can be conducted of AI models in multi-modal breast cancer

detection, improving their reliability and effectiveness across a

variety of clinical scenarios, thereby contributing to improved

patient outcomes (98).

In order to create a comprehensive and unbiased assessment

of multi-modal vs. traditional unimodal approaches, it is essential

to follow a systematic process. By selecting models specific to

each data modality, such as text, images, and structured data, the

unimodal baselines are first defined. Following this, appropriate

datasets must be selected, ensuring that both multimodal and

unimodal models can be trained and tested on the same data.

A consistent preprocessing, feature engineering, and evaluation

metric should be used throughout the entire training and

evaluation process. Furthermore, statistical significance testing,

such as paired t-tests and Wilcoxon signed-rank tests, should be

conducted in order to determine if performance improvements are

statistically significant between the multi-modal model and each

unimodal baseline, and p-values should be provided to indicate if

the improvements are statistically significant.

Table 5 presents the performance of various unimodal and

multi-modal methods in breast cancer detection, highlighting the

accuracy achieved by each approach as reported by the authors.

The comparison is carried out on same dataset for unimodal and

multimodal scenarios. Unimodal methods, which rely on a single

type of data modality, have demonstrated varying levels of accuracy

in breast cancer detection. Yan et al. (6) reported an accuracy

of 83.6% using image data and 81.5% using clinical data. Arya

et al. (80) exploredmultiple unimodal approaches including clinical

data (80.2%), gene expression data (80.6%), and copy number data

(74.8%). These results illustrate that while unimodal methods can

achieve reasonably high accuracy, there are notable differences

depending on the type of data used.

In contrast, multi-modal approaches, which integrate multiple

types of data, consistently outperformed unimodal methods. Yan

et al. (6) reported a significant increase in accuracy to 90.6% with

their hybrid deep learning approach combining image and clinical

data. Sun et al. (78) utilized a multi-modal approach incorporating

clinical, gene expression, and copy number data, achieving an

accuracy of 82.6% with their MDNNMD method. Arya and Saha

(84) reported an accuracy of 86.9% using the GIMPP method and

90.2% with the stacked RF approach (80), both combining multiple

data modalities.

Based on the comparative data in Table 5, paired t-tests

and Wilcoxon signed-rank tests were conducted on the uni-

modal and multi-modal results reported in Yan et al. (6, 54)

and Arya and Saha (85), which utilized the same dataset. The

paired t-test for Yan et al. (6, 54) results shows a p-value

of 0.0080, indicating a statistically significant difference (p <

TABLE 5 Performance of multi-modal techniques in breast cancer

detection.

References Unimodal Multi-modal

Modality Accuracy Method Accuracy

Yan et al. (6) Image 83.6 Hybrid

deep

learning

90.6

Clinical 81.5

Yan et al. (54) Image 83.6 Richer

fusion

network

92.9

Clinical 78.5

Sun et al. (78) Clinical – MDNNMD 82.6

Gene

expression

–

Copy

number

–

Arya and Saha

(84)

Clinical – GIMPP 86.9

Gene

expression

–

Copy

number

–

Arya and Saha

(85)

Clinical 80.2 Stacked

RF

90.2

Gene

expression

80.6

Copy

number

74.8

0.05) and suggesting that the multi-modal approach significantly

outperforms the unimodal methods, assuming normal distribution

of differences. However, theWilcoxon signed-rank test for the same

data provides a p-value of 0.1250, exceeding the 0.05 threshold,

indicating insufficient evidence to confirm this improvement

without assuming normality. Similarly, tests on data from Arya and

Saha (85) yield a paired t-test p-value of 0.0247, again suggesting a

significant difference under the normality assumption. In contrast,

theWilcoxon signed-rank test results in a p-value of 0.2500, further

supporting the lack of significance without normal distribution.

These findings underscore the need to consider data distribution

assumptions when evaluating the comparative performance of uni-

modal and multi-modal approaches and suggest further research is

needed for more conclusive evidence.

The comparative analysis between unimodal and multi-modal

methods reveals a clear advantage of multi-modal approaches in

breast cancer detection. As a result of their unique ability to

leverage the strengths of diverse data types, they are able to produce

enhanced feature representations, robustness, and generalizability

(99). However, while the findings suggest significant potential

for improving clinical outcomes, they also underscore the need

for ongoing research and development to further refine these

methodologies in order to ensure their applicability across a variety

of clinical settings and breast cancer subtypes (87, 100).

A number of challenges are highlighted in this analysis,

including the variability in model performance across different

breast cancer subtypes and the potential for overfitting due to
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the complexity of multimodal models and the limited size of the

datasets (101). Inconsistencies in the detection of rarer cancers,

such as triple-negative breast cancer, suggest that the effectiveness

of multi-modal methods is dependent upon how subtypes are

represented within training datasets (100). It is therefore imperative

that future research prioritize more balanced datasets and advanced

data integration techniques in order to increase the robustness and

generalizability of models.

An important factor in determining the effectiveness of multi-

modal approaches is the quality and integration of the data

modalities involved. Several factors may undermine the accuracy

of a model, such as poor resolution imaging data or genomic data

with significant noise. These factors emphasize the importance of

rigorous data preprocessing (102). As a result, although multi-

modal approaches generally outperformed unimodal approaches

in most cases, there were instances where unimodal approaches

yielded comparable results, particularly when the single modality

data was of high quality and relevance. Hence, multi-modal

approaches may not always be necessary or advantageous,

depending on the specific clinical context. In order to develop

advanced, reliable AI-driven diagnostic tools for breast cancer

detection, a balanced and critical evaluation of these methods is

necessary. Further validation and research will also be required,

along with further validation and research (6, 101).

4.2.2 Error analysis in multi-modal breast cancer
detection

A thorough error analysis is critical in multi-modal breast

cancer detection to understand the specific areas where AI models

may fail and to enhance their overall performance. Given the

complexity and heterogeneity of breast cancer, which includes

multiple subtypes and varying data modalities (such as imaging,

genomic profiles, and clinical records) (103), identifying the

specific failure points of AI models is crucial for guiding future

improvements and optimizing clinical outcomes.

One of the key aspects of error analysis involves examining how

AI models perform across different breast cancer subtypes, such as

invasive ductal carcinoma, invasive lobular carcinoma, and triple-

negative breast cancer (104). Certain subtypes, particularly rare

or aggressive ones, may be underrepresented in training datasets,

leading to poor model performance. Errors in detecting these

subtypes could result in missed diagnoses or misclassification,

which is particularly concerning given the potential for delayed

or inappropriate treatment. By categorizing errors by subtype,

researchers can identify which cancer types aremost challenging for

the model and explore targeted approaches, such as incorporating

more balanced datasets or developing subtype-specific models to

improve detection rates.

In a multi-modal approach, different data types-such as

histopathology images, mammograms, MRI scans, genomic

sequences, and patient clinical histories-contribute unique

information to the diagnostic process. However, each modality also

presents its own set of challenges. For example, imaging data may

suffer from noise, variability in acquisition protocols, or differences

in resolution, affecting the model’s ability to accurately detect

tumors (105). Similarly, genomic data might be incomplete or

noisy, leading to errors in models that rely heavily on this modality.

Conducting an error analysis that dissects the performance by

each modality allows for a clearer understanding of where the

models excel and where they are prone to failure. This analysis can

reveal if a model is overly reliant on one modality and potentially

missing critical cues from others, suggesting a need for better data

integration or improved feature extraction techniques.

Understanding the distribution and causes of false positives and

false negatives is crucial for refining model performance (106). In

breast cancer detection, false negatives-where the model fails to

identify a cancerous lesion-pose significant risks, as they can lead

to missed diagnoses and delayed treatment. False positives, on the

other hand, may result in unnecessary biopsies, increased patient

anxiety, and higher healthcare costs. Analyzing the circumstances

under which these errors occur, such as specific imaging artifacts

or ambiguous genomic markers, can provide insights into model

weaknesses. For instance, if a high rate of false negatives is observed

in certain mammogram images with dense breast tissue, this could

indicate a need for more advanced image processing techniques

or the inclusion of complementary data modalities to improve

detection sensitivity.

Data quality and variability are significant factors influencing

model performance (107). Inconsistent or poor-quality data, such

as low-resolution images, incomplete clinical records, or non-

standardized genomic data, can contribute to errors. Analyzing

how variations in data quality affect model predictions can

help identify the most impactful sources of noise or bias. This

understanding can drive efforts to standardize data acquisition

protocols, implement more rigorous data preprocessing steps, or

develop robustness-enhancing strategies such as data augmentation

or adversarial training.

The findings from a detailed error analysis can provide valuable

insights for model improvement. For example, understanding

which subtypes are most frequently misclassified or which

modalities contribute to the majority of errors can guide the

development of more focused and effective model architectures

(108). Additionally, error analysis can inform the need for

enhanced data fusion strategies that better leverage the strengths

of each modality while mitigating their respective weaknesses. By

continuously iterating on these insights, researchers can refine AI

models to achieve higher accuracy, better generalizability, andmore

robust performance in clinical settings.

Integrating a comprehensive error analysis into the evaluation

of multi-modal breast cancer detection models significantly

enhances the understanding of model performance and robustness.

By systematically examining errors by cancer subtype, modality,

type of mistake, and data quality, researchers can identify critical

areas for improvement and guide the development ofmore effective

and reliable AI models (109). This approach not only strengthens

the conclusions drawn from the study but also contributes to the

advancement of AI-driven diagnostics, ultimately leading to better

patient outcomes in breast cancer care.

4.2.3 Novel trends in multi-modal techniques
Multimodal fusion is a crucial technique in multimodal

analysis, involving the integration of multiple data sources to

improve analytical capabilities. This approach is just one of several

techniques in multimodal analysis, which explores the interactions
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between different types of data to achieve more comprehensive

and nuanced insights. The integration of image and textual data

has led to innovative applications in various fields, such as

report generation, Visual Question Answering (VQA), cross-modal

retrieval, and semantic segmentation.

The integration of multimodal data in medical informatics

is a significant advancement, combining medical images and

textual descriptions to generate comprehensive reports. This

process streamlines clinical workflows and improves medical

documentation accuracy. The process reduces clinician burden

and ensures consistency and comprehensiveness in medical

records (110). Visual Question Answering (VQA) is a field that

uses multimodal integration to answer queries based on image

data, particularly in medical contexts. It can interpret complex

histopathology images and provide insights based on textual

questions. Hartsock and Rasool (111) demonstrate the application

of VQA in medical imaging, where a system trained on both

image and text data can effectively answer questions about medical

image content. This capability enhances diagnostic accuracy and

facilitates educational tools in medical training. Cross-modal

retrieval involves searching for information across different data

modalities, such as histopathology, to retrieve relevant textual

reports or case studies based on visual similarities in histopathology

images (112).

Semantic segmentation is a technique that categorizes

individual pixels in an image into meaningful categories, often

using both image and text data. This technique can improve the

segmentation accuracy in medical images by incorporating textual

annotations for more precise and reliable results (113). Multimodal

methodologies have gained significant scholarly attention in the

medical field, particularly in leveraging medical images and textual

data for improved diagnostic outcomes. Sun et al. (1) conducted

a comprehensive scoping review of multimodal approaches in

medical research, highlighting the growing interest in integrating

various data types to enhance diagnostic accuracy and patient

care. These methodologies have been instrumental in advancing

personalized medicine, enabling more accurate diagnoses, and

facilitating the development of tailored treatment plans.

5 An insight into explainable breast
cancer diagnosis

Explainability is a crucial challenge in breast cancer detection,

especially with the growing use of complex machine learning

and deep learning models. It is essential for clinical decision-

making, trust, transparency, regulatory compliance, and error

detection. Explainable models help clinicians understand a

diagnosis’s rationale, fostering more informed decision-making

and trust in automated systems. However, challenges include the

complexity of models, data diversity, the black-box nature of

algorithms, the trade-off between explainability and accuracy, and

the lack of standardization in medical diagnostics. The absence

of universally accepted standards leads to approach variability,

complicating comparisons and consistent interpretations. AI

systems used in breast cancer diagnosis often lack transparency,

leading to inaccuracies in diagnosing breast cancer across different

populations.

FIGURE 5

Di�erent types of XAI methods.

Figure 5 illustrates how XAI methods can be categorized in

different contexts. Based on Explanation, stage and scope, there can

be different methods. Exaplaiability explanations can be in terms of

feature attributes and textual format. In scope-based categorization,

there are local and global methods. Post-hoc and ante-hoc

are the stage-based XAI methods. Local and global methods

offer specific insights into individual decisions, while intrinsic

and post-hoc methods provide detailed explanations for black-

box models. However, these methods may sacrifice complexity

for interpretability, potentially reducing model performance.

Model-specific and model-agnostic methods offer advantages and

disadvantages, respectively.

Local methods provide specific insights into individual

decisions, while globalmethods offer an overarching understanding

of the model’s behaviour across the dataset. However, they cannot

generalize across different inputs and may overlook specific

decision-making nuances. Model-specific methods can delve deep

into a model’s structure, while model-agnostic methods are flexible

and can be used across different models without understanding

their internal mechanics. However, model-specific methods are

not transferable across different models and may offer less

detailed explanations. Challenges such as data availability, diversity,

semantic heterogeneity, and potential biases in explanations can

affect the efficiency and acceptance of XAI methods.

XAI techniques can include Gradient-weighted Class

Activation Mapping (GRAD-CAM), SHapley Additive

exPlanations (SHAP), Local Interpretable Model-agnostic

Explanations (LIME), Trainable Attention, and Image Caption.

Figure 6 illustrates these methods with their features. XAI

techniques, such as LIME and SHAP, offer local interpretations

for understanding individual predictions and are model-agnostic,

working across various models.

To enhance explainability, techniques such as feature

importance and saliency maps can provide insights into which

aspects of the input are driving the model’s predictions. Model-

agnostic methods like LIME and SHAP allow for the explanation

of any machine learning model, offering flexibility in creating
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explainable outputs. Interpretable models, such as decision trees

or linear models, provide greater transparency, albeit potentially

at the cost of reduced accuracy. Additionally, human feedback and

oversight in the diagnostic process can help validate and explain

automated decisions, combining algorithmic efficiency with human

intuition. In conclusion, explainability is crucial in breast cancer

detection to ensure reliable and trustworthy outcomes, requiring

a combination of technical solutions, regulatory compliance, and

human oversight to create models that are both accurate and

transparent.

LIME (114) is a technique employed to elucidate predictions

made by complex machine learning models in the context of breast

cancer detection. LIME provides local insights, making it easier to

understand individual predictions and is particularly effective with

smaller datasets such as gene clusters. Its model-agnostic nature

allows it to be applied to various models, thereby offering versatility

across different types of data. This flexibility helps clinicians and

patients gain confidence in the diagnostic results produced by AI,

enhancing trust in AI-driven diagnostic processes.

However, LIME is primarily limited to local explanations and

may not provide a comprehensive understanding of the model’s

global behaviour. This limitation can be especially challenging in

multi-modal data scenarios, where a holistic view of the model’s

decision-making process is crucial. Furthermore, the accuracy

of LIME’s explanations can be influenced by the perturbations

generated around the instance being explained, potentially failing

to capture the model’s complexity accurately. Despite these

limitations, LIME remains a valuable tool for enhancing the

interpretability of AI in breast cancer detection, particularly in

multi-modal contexts. By making the predictions of complex

models more understandable, LIME significantly contributes to the

transparency and trustworthiness of AI applications in medical

diagnostics.

SHAP (115) is a sophisticated machine learning tool that

assigns importance values to each feature for a specific prediction,

thus elucidating how each feature contributes to the outcome. This

tool is model-agnostic, meaning it can be applied to any machine

learning model, offering considerable flexibility. SHAP provides

both global and local explanations, delivering detailed insights into

the overall model behaviour as well as individual predictions. It

ensures consistency and reliability by accurately reflecting changes

in the model’s predictions through the SHAP values. Moreover,

it adeptly handles missing features by setting their SHAP values

to zero.

Despite its powerful capabilities, SHAP comes with certain

drawbacks. It is computationally intensive, particularly for

models with a large number of features, which can limit its

feasibility in real-time applications. Additionally, interpreting

SHAP values can be challenging for individuals without a

technical background, which may hinder its broader accessibility.

Nevertheless, SHAP remains a highly effective tool, especially

for tree-based models like XGBoost, where understanding the

impact of each feature is crucial. By enhancing the interpretability

of AI models, SHAP contributes significantly to making these

models more transparent and trustworthy for users. It provides

a comprehensive framework for detailed analysis, facilitating

a deeper understanding of how features influence outcomes

and thereby improving the overall trust in machine learning

predictions.

In the context of breast cancer diagnosis, SHAP’s applicability

extends to multi-modal data, integrating various data types

such as histopathological images, genomic data, and clinical

records. This integration enhances the model’s robustness and

provides a comprehensive understanding of the disease. By using

SHAP to analyze multi-modal data, researchers can uncover

intricate patterns and relationships that might be overlooked

when considering a single data type. This holistic approach not

only improves diagnostic accuracy but also aids in identifying

key biomarkers and prognostic factors, ultimately contributing

to more personalized and effective treatment strategies for

breast cancer patients. Despite the computational challenges,

the detailed insights provided by SHAP make it an invaluable

tool in the complex landscape of multi-modal breast cancer

diagnosis.

Class Activation Mapping (CAM) (116) is a fundamental

tool in convolutional neural networks (CNNs) that generates

heatmaps to visualize important parts of an image. Grad-CAM

(117), an extension of CAM, uses gradients of any target concept

to produce a coarse localization map, highlighting key regions

for predicting concepts without requiring model modification

or retraining. Grad-CAM is model-agnostic and applicable to

various CNN models, making it valuable in tasks such as image

classification and particularly useful in healthcare for identifying

cancerous tissues in breast cancer diagnosis. However, Grad-

CAM can sometimes produce too coarse localization, potentially

prioritizing clinically irrelevant features and leading to false

positives or incorrect interpretations. Grad-CAM++ improves

upon Grad-CAM by providing finer localization and the ability

to highlight multiple objects of interest in an image, making it

better suited for explaining instances with multiple objects. Despite

its advantages, Grad-CAM++ is more complex to implement

and interpret. Integrating visual explanation methods like Grad-

CAM and Grad-CAM++ into multi-modal data analysis presents

challenges, particularly in ensuring coherent explanations across

different types of data. Additionally, Grad-CAM-like methods are

limited to CNN models, restricting their use in non-CNN models

and potentially complicating decision-making processes in those

contexts.

Trainable attention in Explainable Artificial Intelligence (XAI)

is an advanced technique that emphasizes critical features in

input data, such as images or text, to make predictions (118).

This approach is particularly valuable in multi-modal breast

cancer diagnosis, where models must analyze diverse data sources

including mammograms, ultrasounds, and patient histories. By

focusing on themost relevant features, trainable attention enhances

interpretability for clinicians, improves diagnostic accuracy, and

can be customized to specific types of data. In the context

of multi-modal breast cancer diagnosis, trainable attention can

integrate and prioritize information from various modalities,

leading to a more comprehensive understanding of the patient’s

condition. For instance, it can highlight specific regions in a

histopathology image that correlate with textual descriptions

from patient histories, thereby providing a clearer picture of

potential issues.
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FIGURE 6

Recent XAI techniques.

Despite its advantages, trainable attention faces several

challenges. One major issue is the complexity of implementing

such models, which require sophisticated algorithms and

significant computational resources. Additionally, there is a

risk of overemphasizing certain features, potentially leading

to biased predictions. Implementation challenges also include

ensuring the system’s robustness and generalizability across

different patient populations and clinical settings. Nevertheless,

trainable attention (119) remains a promising approach to

enhancing model interpretability and focus in multi-modal

breast cancer diagnosis. By addressing the challenges associated

with its implementation, the full potential of trainable attention

can be realized, thereby advancing the accuracy and reliability

of AI-driven diagnostic tools. In conclusion, while trainable

attention in XAI offers significant benefits in improving the

interpretability and accuracy of multi-modal breast cancer

diagnosis, ongoing efforts to overcome its inherent challenges are

essential. Through continuous development and refinement, this

technique holds the potential to become an integral component

of advanced diagnostic systems, ultimately contributing to better

patient outcomes.

Image captioning in XAI involves generating descriptive text

for images, which aids in elucidating the decision-making process

of AI models (120). This technique is particularly relevant in

the context of multi-modal breast cancer diagnosis, where it can

provide significant benefits. Image captioning offers an easy-to-

understand explanation of what the model detects in medical

images, such as mammograms or ultrasounds, thereby making

the AI’s decision-making process more transparent. By translating

complex patterns into textual descriptions, image captioning

facilitates better communication between AI systems and medical

professionals, enhancing the collaborative diagnostic process. This

method also makes the findings of AI models more accessible to

non-specialists, including patients, by providing explanations in

natural language, which helps in understanding the diagnosis and

treatment options.

However, the utility of the generated captions is heavily reliant

on the accuracy of the underlying model. Errors in interpretation

by the model can result in misleading captions, potentially affecting

diagnostic decisions. Incorporating image captioning into multi-

modal diagnostic systems presents challenges, as it requires the

model to accurately understand and explain data from various

sources, ensuring coherent and accurate descriptions. Furthermore,

the simplification necessary for generating captions might omit

critical details, leading to oversimplified explanations that could

overlook nuances essential for an accurate diagnosis. In summary,

while image caption XAI methods hold promise for enhancing the

interpretability and accessibility of AI in breast cancer diagnosis,

their implementation must be meticulously managed to prevent

misinterpretation and oversimplification. Proper integration and

careful validation are essential to fully leverage their potential in

clinical settings.

5.1 Existing methods: an explainability
perspective

In the domain of uni-modal breast cancer detection, significant

advancements have been made in integrating explainability

techniques to enhance the interpretability and reliability of

predictive models. Gu et al. (121) developed an auxiliary decision

support system that combines ensemble learning with case-

based reasoning (CBR) to predict breast cancer recurrence. Using

XGBoost for predictions and CBR to provide comprehensible

explanations, this system effectively communicated the importance

of various attributes, aligned well with human reasoning, and

gained acceptance among clinicians. Kabakçı et al. (122) proposed

an automated method for determining CerbB2/HER2 scores from

breast tissue images by adhering to ASCO/CAP recommendations.

This method employed cell-based image analysis and a hand-

crafted feature extraction approach, ensuring both interpretability

and adaptability to guideline updates without the need for re-

training.

Moreover, recent studies have focused on enhancing the

explainability of deep learning models used in breast cancer

histopathology. Maleki et al. (62) utilized pre-trained models

combined with gradient-boosting classifiers to achieve high

accuracy in classifying breast cancer images from the BreakHis

dataset. Similarly, Peta and Koppu (123) introduced an explainable

deep learning technique involving adaptive unsharp mask filtering

and the Explainable Soft Attentive EfficientNet (ESAE-Net),

which provided improved visualization and understanding

of classification decisions. Jaume et al. (124) presented

CGEXPLAINER, a post-hoc explainer for graph representations

in digital pathology, which pruned redundant graph components

to maximize mutual information between the original prediction

and the sub-graph explanation. These contributions, along with
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methods like the cost-sensitive CatBoost classifier with LIME

explainer (125) and the use of SHAP for feature importance

analysis in tumor cellularity assessment (126), highlight the

growing emphasis on explainability to ensure that AI systems for

breast cancer detection are not only accurate but also interpretable

and trustworthy for clinical application.

Explainability is a critical factor in radio genomics (127), as it

fosters trust with end-users like physicians and patients, driving

the deployment of deep learning models in research and clinical

practice. It increases confidence in the model’s decision-making

process, enabling better understanding and acceptance of results.

Explainability also serves as a debugging process for model training

and fine-tuning, identifying potential errors or biases. It also helps

bypass malicious manipulation, ensuring the integrity and security

of radiogenomic research and its applications. In the healthcare

field, explainability is especially important as it facilitates better

interpretation and understanding of complex AI models, leading

to improved patient care and treatment outcomes.

Holzinger et al. (128) proposed the utilization of Graph

Neural Networks (GNNs) as a method for achieving multi-modal

causability within XAI (xAI). This approach facilitated information

fusion through the establishment of causal links between features

using graph structures. The method’s objective was to construct

a multi-modal feature representation space, utilizing knowledge

bases as initial connectors for the development of novel explanation

interface techniques. Essential components included intra-modal

feature extraction and multi-modal embedding. Various GNN

architectures and graph embeddings, such as GCNN, Graph

Isomorphism Network (GIN), and SchNet, were considered viable

options. Additionally, dynamic GNN architectures like Pointer

Graph Networks (PGN) were employed to enable the processing of

adaptive graphs. Zhang et al. (129) introduced a Deep Multimodal

Reasoning and Fusion Network (DMRFNet) for Visual Question

Answering (VQA) and explanation generation. The model

employed multimodal reasoning and fusion techniques to improve

the accuracy of answers and explanations. A key innovation was

the Multi-Graph Reasoning and Fusion (MGRF) layer, which

utilized pre-trained semantic relation embeddings to handle

complex spatial and semantic relations among visual objects.

DMRFNet was capable of being stacked in depth to facilitate

comprehensive reasoning and fusion of multimodal relations.

Additionally, an explanation generation module was incorporated

to provide justifications for predicted answers. Experimental

findings demonstrated the model’s effectiveness in achieving both

quantitative and qualitative performance improvements.

Kang et al. (130) introduced a segmentation framework

with an interpretation module that highlights critical features

from each modality, guided by a novel interpretation loss with

strengthened and perturbed fusion schemes. This approach

effectively generates meaningful interpretable masks, improving

multi-modality information integration and segmentation

performance. Visualization and perturbation experiments validate

the effectiveness of the interpretation method in exploiting

meaningful features from each modality. An interpretable

decision-support model for breast cancer diagnosis using

histopathology images was proposed in Krishna et al. (131).

This method integrated an attention branch into a variant of

the DarkNet19 CNN model to enhance interpretability and

performance. The attention branch generated a heatmap to

identify regions of interest, while the perception branch performed

image classification through a fully connected layer. Training and

validation utilized over 7,000 breast cancer biopsy slide images

from the BreaKHis dataset, resulting in a binary classification

accuracy of 98.7%. Notably, the model offered enhanced clinical

interpretability, with highlighted cancer regions corresponding

well with expert pathologist findings. The ABN-DCN model

effectively combined an attention mechanism with a CNN feature

extractor, thereby improving both diagnostic interpretability and

classification performance in histopathology images.

Evaluation of XAI (Explainable AI) techniques such as

Grad-CAM, SHAP, and LIME in clinical settings requires a

comprehensive assessment framework, focusing on both their

technical performance and practical application. There are several

key metrics that should be defined, including fidelity, which

measures how accurately explanations reflect the model’s decision-

making process, and interpretability, which is measured by how

easy it is for clinicians to understand these explanations, often

through Likert scale ratings. Metrics like localization accuracy are

used to evaluate how well highlighted regions, as identified by

Grad-CAM, correspond with relevant clinical areas. In addition,

feature importance consistency, particularly for SHAP and LIME,

is also essential for ensuring stable and reliable explanations across

different cases, thereby fostering trust in the model. In order to

provide a broader perspective on transparency, an explainability

score combines aspects such as model simplicity and clarity, in

order to evaluate how well AI model predictions align with clinical

practice. Additionally, human-AI agreement and time efficiency

metrics are used to assess alignment with clinical judgment and the

ease of interpreting explanations. Through user studies and surveys

with clinicians, as well as scenario-based testing, comprehensive

feedback is obtained. By comparing the XAI methods with

standard clinical practices and assessments across different settings,

this structured evaluation ensures robustness, transparency, and

reliability, thus enhancing the clinical utility of the methods.

5.2 Latest XAI approaches in multi-modal
context

X-VARS (132), a multimodal large language model initially

designed for football refereeing tasks, utilized Video-ChatGPT

to process video features and predict responses. This model

emphasized interpretability and has demonstrated strong

performance in human studies, indicating its potential for

adaptation in breast cancer detection. By integrating diverse data

sources, such as histopathology images and clinical records, similar

models could offer comprehensible diagnostic support, thereby

enhancing the accuracy and transparency of the diagnostic process.

The LeGrad (133) explainability method, which employs Vision

Transformers (ViTs) (134), utilizes techniques such as GradCAM

(117) and AttentionCAM (135) to provide granular insights into

feature formation. These explainability methods are crucial for

breast cancer detection, offering transparent interpretations of

model decisions. By adapting this method to a multimodal scenario

that includes histopathology images, and clinical or textual data,
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can provide comprehensive diagnostic support. This integration

enhances trust and clinical applicability by offering transparent and

interpretable insights across various data types, thereby improving

the accuracy and reliability of breast cancer diagnostics.

The method proposed by Hu et al. (112) for fine-grained cross-

modal alignment between histopathology WSIs and diagnostic

reports holds promise as a future avenue in explainable multimodal

breast cancer detection. By leveraging anchor-based WSI and

prompt-based text encoders, this method ensured that relevant

diagnostic information was accessible and interpretable to

pathologists. Through precise alignment and interpretation of

multimodal diagnostic data, including histopathology images and

clinical and textual reports, the method enhances transparency

and interpretability in breast cancer diagnosis. This approach

can provide clear insights into the decision-making process of

diagnostic models, thereby enhancing trust and clinical acceptance

in the application of multimodal AI systems for breast cancer

detection. A multimodal image search strategy was described

in Tizhoosh and Pantanowitz (136) as a method of improving

diagnosis, prognosis, and prediction in histopathology. With this

method, large image archives can be explored to identify patterns

and correlations using foundation models for feature extraction

and image matching. A breast cancer detection framework based

on this framework could provide efficient retrieval and comparison

of histopathology images, thereby aiding in the identification of

malignancies and their characteristics.

Investigating local surrogate explainability techniques in deep

learning models, researchers explored the use of VisualBERT and

UNITER networks to generate multimodal visual and language

explanations (137). The potential of these models to mimic domain

expertise underscores the value of XAI techniques in breast cancer

detection. By providing clear and understandable rationales for

automated decisions, such methods enhance clinical trust and

support informed decision-making in diagnostic processes. A

framework named LangXAI (138) was introduced, integrating XAI

with advanced vision models to generate textual explanations for

visual recognition tasks. This framework enhances transparency

and plausibility, potentially improving breast cancer detection by

making the diagnostic processmore understandable and reliable for

clinicians. Consequently, it supports better patient outcomes.

Various XAI methods, including Gradient backpropagation

and Integrated-Gradients, were applied in Rehman Hashmi

et al. (139) to analyze the MedCLIP model. These methods

provided valuable insights into model predictions, offering pivotal

information for the development of breast cancer detection

models. Ensuring the transparency and comprehensibility of

model decisions can play a crucial role in facilitating regulatory

compliance and fostering clinical acceptance of such models

in diagnostic settings. A tool called LVLM-Interpret (140) was

developed to interpret responses from large vision-language

models, employing techniques such as raw attention and relevancy

maps. This tool’s capacity to visualize and comprehend model

outputs can be utilized in breast cancer detection to improve the

interpretability and reliability of AI-driven diagnostic tools.

An ex-ILP framework was introduced to enhance reasoning

capabilities in vision-language models by Yang et al. (141).

By improving implicit reasoning skills, this methodology could

be harnessed in breast cancer detection to interpret complex

interactions between visual and textual data, thus contributing to

more accurate and nuanced diagnostic insights. The NLX-GPT

method, introduced in Sammani and Deligiannis (142), integrated

discriminative answer prediction and explanation tasks into a

unified model. This approach, which achieves high performance

across diverse tasks, holds the potential for adaptation in breast

cancer detection. By providing both diagnostic conclusions and

their explanations, the NLX-GPT method enhances the usability

and trustworthiness of AI models in clinical settings.

6 Exploring future directions in
multi-modal explainable for breast
cancer diagnosis

Multi-modal data integration in histopathology enhances

diagnostic accuracy and robustness by combining diverse data

modalities from the same patient. In breast cancer detection,

these modalities include histopathology images, radiological

scans, genomic data, and textual clinical reports. Acquiring

comprehensive multi-modal datasets presents challenges (143)

due to the varied nature of data, high cost and complexity of

data collection, and difficulties in synchronizing and correlating

data across different modalities. The scarcity of comprehensive

multi-modal datasets has led to the exploration of synthetic data

generation techniques, such as Generative Adversarial Networks

(GANs) (144) and Variational Autoencoders (VAEs), which create

realistic data to augment existing datasets and provide diversity for

training robust machine learning models (145).

Text-to-image synthesis, where descriptive text is converted

into corresponding images, is an emerging field with significant

implications for histopathology. This approach can generate

detailed histopathology images from textual descriptions of patient

pathology reports. For instance, Reed et al. (146) demonstrated

the capability of GANs to generate high-resolution images from

textual descriptions, which can potentially be adapted to create

synthetic histopathology slides from clinical narratives. This

methodology not only aids in dataset augmentation but also

in visualizing pathological conditions described in text format,

thereby bridging the gap between clinical reports and image

data. Conversely, image-to-text generation involves converting

visual data, such as histopathology images (110), into descriptive

text. This technique can automate the generation of pathology

reports from histological images, thereby reducing the workload of

pathologists and improving the consistency of diagnostic reports.

Modality conversion in multi-modal histopathology is a crucial

area of research, enabling the integration of complementary

information from different imagingmodalities. GAN-basedmodels

have shown promise in this domain, allowing the transformation

of medical images across different modalities while preserving

anatomical structures (147, 148). This is particularly relevant

for creating histopathology images from non-invasive imaging

techniques, reducing the need for invasive biopsies (147).

Cross-modal data generation techniques, such as CycleGAN,

can synthesize one type of imagery from another, generating

histopathology-like images from non-histopathology data sources.

However, challenges (149) remain, such as ensuring the fidelity
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FIGURE 7

Proposed framework for explainable multi-modal breast cancer detection.

and clinical relevance of synthetic data, as inaccuracies can lead to

erroneousmodel training and diagnostic conclusions. Additionally,

robust validation is needed to ensure the integration of generated

data into existing workflows meets necessary clinical standards and

regulations.

Future research should focus on refining generative models to

enhance the quality and realism of synthetic data, especially in

histopathology. Techniques that integrate synthetic data with real-

world clinical data are crucial for advancing multi-modal breast

cancer detection. Exploring novel generative methods, such as

combining genomic and imaging data, can enhance the richness

and utility of multi-modal datasets, leading to more accurate

and comprehensive diagnostic tools. This approach can address

data scarcity challenges and improve the robustness of multi-

modal breast cancer detection systems. This will lead to improved

accuracy, transparency, and patient outcomes in histopathology-

based breast cancer diagnosis.

6.1 Advancing toward a new framework

The framework proposed for multimodal explainable breast

cancer diagnosis involves a systematic process aimed at enhancing

diagnostic accuracy and transparency while integrating human

expertise for improved patient outcomes. Figure 7 illustrates the

proposed framework. In the initial step, histopathology images

are processed using pre-trained medical report generation models.

These models, such as CLARA (150), automatically generate

comprehensive reports from the images, augmenting them with

relevant features extracted through computer vision techniques.

Clinical data, including patient history and laboratory results,

are integrated into the report generation pipeline to ensure

contextually relevant diagnostic reports.

Subsequently, in the multimodal explainable framework for

diagnosis, the generated diagnostic reports and histopathology

images serve as input. Visual language models, such as Vision

Transformers or large language models, are employed to

process both visual and textual information simultaneously.

Explainability techniques like GradCAM and AttentionCAM

are implemented to provide interpretable insights into

model decisions, enhancing transparency and trust in the

diagnostic process. Model outputs are visualized using

tools like LVLM-Interpret to improve interpretability

and reliability.

Human expertise is integrated through crowdsourcing or

expert consultations to validate and refine model predictions,

ensuring clinical relevance and accuracy. This human-in-

the-loop approach facilitates informed decision-making and

iterative refinement based on feedback from clinicians and

patients. Ultimately, the framework supports diagnostic

support by providing transparent and understandable

diagnostic conclusions, along with explanations for model

predictions. It is integrated into existing clinical workflows

to streamline diagnostic processes and enhance patient care,

Frontiers inMedicine 19 frontiersin.org

https://doi.org/10.3389/fmed.2024.1450103
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Abdullakutty et al. 10.3389/fmed.2024.1450103

contributing to advancements in the field of breast cancer

diagnostics.

7 Conclusion

Breast cancer diagnosis has evolved significantly with

the advent of multi-modal methodologies, which combine

histopathology images with non-image data. These methods offer

a more comprehensive view of breast cancer pathology, enhancing

diagnostic confidence and accuracy. The use of Explainable

Artificial Intelligence (XAI) in multi-modal diagnoses highlights

the importance of transparency in diagnostic procedures. Despite

challenges like computational complexity and the need for coherent

explanations across different data types, the potential of XAI in

multi-modal contexts is significant. The review also advocates for

the development of new frameworks that leverage advanced AI

techniques while ensuring interpretability. These advancements

aim to address existing limitations and develop personalized

treatment strategies tailored to each patient’s unique needs. By

leveraging multi-modal data and emphasizing explainability,

these methods enhance diagnostic accuracy, bolster clinician

confidence, and foster patient engagement. In conclusion, the

integration of multi-modal data and explainable AI techniques

represent significant advancements in breast cancer diagnosis.

By overcoming the constraints of uni-modal approaches and

enhancing the interpretability of diagnostic models, these methods

hold promise for improving diagnostic accuracy, patient outcomes,

and clinician trust in AI-driven healthcare solutions. This review

contributes to a comprehensive understanding of multi-modal

diagnostic techniques and the imperative of explainability,

informing strategic directions in breast cancer diagnosis and

treatment, ultimately striving for improved patient outcomes and a

more effective healthcare landscape.
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