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The texture of human skin is influenced by both external and internal factors, and 
changes in wrinkles can most directly reflect the state of the skin. Skin roughness 
is primarily used to quantify the wrinkle features of the skin. Therefore, effective 
and accurate quantification of skin roughness is essential in skincare, medical 
treatment, and product development. This study proposes a method for estimating 
the skin surface roughness using optical coherence tomography (OCT) combined 
with a convolutional neural network (CNN). The proposed algorithm is validated 
through a roughness standard plate. Then, the experimental results revealed 
that skin surface roughness including arithmetic mean roughness and depth of 
roughness depends on age and gender. The advantage of the proposed method 
based on OCT is that it can reduce the effect of the skin surface’s natural curvature 
on roughness. In addition, the method is combined with the epidermal thickness 
and dermal attenuation coefficient for multi-parameter characterization of skin 
features. It could be seen as a potential tool for understanding the aging process 
and developing strategies to maintain and enhance skin health and appearance.
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1 Introduction

With the global increase in the aging population, research on age-related alterations of 
skin is receiving growing interest (1). The passage of time and repeated exposure to UV 
radiation are the two main factors for aged skin. As age advances, there is a gradual loss of 
collagen in the skin, resulting in the development of wrinkles (2). Simultaneously, exposure to 
UV radiation can cause skin dryness, abnormal pigmentation, and other issues, ultimately 
leading to the formation of wrinkles on the skin (3). Quantifying skin wrinkles is of significant 
importance in the fields of skincare, medical treatment, and product development (4, 5).

The quantification of skin wrinkles allows for objective assessment of wrinkle severity, 
enabling accurate evaluation of treatment efficacy and product performance. Various methods 
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are used to quantify wrinkles, including both subjective and objective 
approaches. Subjective methods involve visual assessments by trained 
professionals or self-assessments by individuals themselves. These 
methods rely on scoring systems (five grades and nine grades) to 
evaluate the depth, length, and overall appearance of wrinkles (6, 7). 
However, subjective scoring relies more on individuals’ subjective 
judgments and perceptions and often fails to capture minor changes.

In addition, objective methods utilize advanced imaging 
technologies and computer analysis to provide precise and quantitative 
measurements of wrinkle parameters. These methods can be divided 
into two-dimensional (2D) camera approaches and three-dimensional 
(3D) scanning techniques. Two-dimensional approaches for assessing 
skin include the use of mobile phone cameras with natural light 
sources (8), charge-coupled device (CCD) cameras utilizing UVA light 
sources (9), and speckles with laser light sources (10). However, 
two-dimensional photograph-based analyses by observers are 
vulnerable to noise, variable magnifications, and surrounding 
illumination. Furthermore, speckle contrast does not directly measure 
the height fluctuation of the skin surface. Three-dimensional scanning 
techniques contain 3D stereophotogrammetry (5) and phaseshift rapid 
in vivo measurement of the skin (PRIMOS) (11–13). However, motion 
artifacts during the image capture process in 3D stereophotogrammetry 
and PRIMOS can introduce errors, making it difficult to provide 
accurate and reliable measurements of skin roughness (14).

Optical coherence tomography (OCT) can overcome the above 
problems by providing non-invasive, real-time, and high-resolution 
imaging of the skin (15, 16). Surface roughness measurement based on 
OCT was proposed to assess the arithmetic mean roughness and average 
depth of roughness (17, 18). The roughness estimation was calculated 
based on the height relative to the central line of best fit through the 
dermal–epidermal junction (DEJ) (17). However, the central line of the 
skin surface differs from that defined by the International Organization 
for Standardization (ISO), which is based on the mean of height 
fluctuations (19). Additionally, image processing techniques such as the 
Gaussian filter, median filter, and differential filter were used to extract 
the ideal skin surface boundary (18). However, it is difficult for all skin 
since some empirical parameters in these image processing algorithms.

In this study, the method of OCT combined with the U-Net 
architecture of a convolutional neural network (CNN) is proposed for 
the evaluation of skin surface roughness using the advantages of 3D 
imaging and accurate boundary location. This choice is driven by the 
advantages of U-Net, namely, its ability to provide effective 
segmentation results and its limited requirement for training data. In 
this study, Section 2 introduces the OCT system, the accurate location 
of skin surface based on CNN, and the definition of arithmetic mean 
roughness and the depth of roughness. Section 3 first validates the 
algorithm using a roughness standard plate and explores the function 
of skin surface roughness in terms of age and gender. Section 4 offers 
a discussion of the findings and analyzes the strengths of the 
proposed methodology.

2 Materials and methods

2.1 Optical coherence tomography (OCT)

A schematic of our spectral domain optical coherence 
tomography (SD-OCT) system is illustrated in Figure 1A. The light 

source is a 12-mW superluminescent diode (SLD) with an FWHM 
bandwidth of 85 nm centered at 1310 nm (S5FC1021P, Thorlabs, 
Newton, NC, United States). Light is transmitted into a fiber coupler 
(FC) and then split into reference (50%) and sample (50%) arms, 
where collimators are used to obtain collimated light. A galvo 
scanning mirror (SM) and an achromatic lens (AL) with a focal length 
of 50 mm make up the scanning structure. The axial and lateral 
resolutions of the system in air are approximately 8.9 μm and 18.2 um, 
respectively. The detection arm consists of a spectrometer with a 
single line-scan camera (C-1235-1385, Wasatch Photonics, Logan, 
UT, United States) to construct a 3D image, resulting in the acquisition 
of 400 cross-sectional OCT images with a beam position increment 
of 25 μm.

A total of 16 volunteers were recruited for the experiment, 
including nine male individuals and seven female individuals. At the 
time of enrollment, subjects’ ages ranged between 15 and 45 years, and 
all volunteers had no smoking history. Prior to the experiment, all 
volunteers signed an informed consent form, indicating their 
understanding and agreement to participate in the study. Before the 
imaging procedure, the region of interest of the skin was marked, 
washed using a cleansing cream, and exposed to a constant 
temperature and humidity in order to stabilize the experimental 
conditions. Subsequently, the volunteer was asked to place the back of 
the left hand on the designated area of the collection platform, as 
shown in Figure 1B, maintaining a fixed and comfortable posture. The 
collection platform was designed to support the hand and minimize 
any possible movement or vibration, ensuring the accuracy of data 
collection. Figures 1C,D show the typical cross-sectional and 3D OCT 
image of the back of the left hand. The texture of skin wrinkles is 
shown in Figure  1D. All the research procedures using human 
participants were carried out at Fujian Normal University with 
approval from the Institutional Review Board for the Protection of 
Human Subjects in Research (IRB).

2.2 Detecting boundary of skin surface 
using CNN

Figure 2 illustrates a flowchart of a CNN-based algorithm for 
detecting the boundary of the skin surface including boundary 
segmentation, curvature fitting, flattening, and boundary extraction, 
which will be described in detail in the following paragraph.

Before measuring skin roughness, it is necessary to segment the 
boundaries of the skin surface and flatten the skin surface. Figure 2 
shows a CNN-based algorithm for detecting the real boundary of the 
skin surface. The skin surface was segmented and detected using a 
CNN (Figure  2B), specifically employing the U-Net architecture 
proposed by Ronneberger et al. (20), which has been widely used for 
biological image segmentation (21, 22). Meanwhile, ResNet50 was 
used as the backbone feature extraction network (23). The Adam 
optimizer was used to update the model, allowing the network to 
automatically adjust the learning rate for each parameter based on its 
update history (24). The learning rate (LR) for this experiment was set 
at 0.0001, which directly affected the speed and performance of the 
training process (25). A loss function of 0.01 quantified the error 
between actual values and predicted values (26). Mean Intersection 
over Union (MIoU) was used to evaluate the accuracy of the image 
segmentation model (27).
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FIGURE 1

(A) Experimental setup of OCT, where SLD is the light source of the superluminescent diode, FC is fiber coupler, C is collimator, AL is achromatic lens, 
M is mirror, and SM is scanning mirror. (B) The back of the left hand for imaging, (C) typical cross-sectional OCT image, and (D) three-dimensional (3D) 
OCT image of the back of the left hand.

FIGURE 2

CNN-based algorithm for detecting boundary of skin surface, (A) original cross-sectional OCT images, (B) real boundary segmentation based on 
U-Net, (C) curvature fitting of real boundary height, (D) the flattening fitting boundary, (E) real boundary extraction on the flattening fitting boundary 
correction, (F) 3D real boundary.
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In the experiment, a total of 16 sets of data were collected, 
amounting to 6,400 samples. Among these samples, 1,600 were 
annotated using Labelme for the boundaries of the skin. Afterward, 
the annotated dataset was typically divided into a training set and a 
test set in a 9:1 ratio. The training batch size was set at 8, and the 
number of iterations was set at 100. An MIoU score of 98.36 indicated 
a high degree of similarity between the model’s predictions and the 
manual annotations, indicating a strong segmentation performance. 
In addition, Figure  3D shows that the noise in Figure  3A can 
be  effectively reduced. It suggests that the model has successfully 
learned to extract the boundaries of the skin accurately, as shown in 
Figure 3, which lays a solid foundation for subsequent operations 
or tasks.

The boundary of the skin surface can be recorded based on the 
segmented image. However, the skin surface exhibits natural 
curvature, which can affect the assessment of roughness. Therefore, 
when calculating roughness, it is necessary to eliminate the influence 
of natural curvature. In this algorithm, the influence of natural 
curvature can be addressed by using the method of second-order 
polynomial fitting based on the least square method to find the 
curvature of the natural curvature in that region, as shown in 
Figure  2C. The flattening fitting boundary is shown in 
Figure  2D. Figure  4A demonstrates the fitting result of the skin. 
Subsequently, the curvature of the skin was flattened, as shown in 
Figure 4B, in which the fitting height of the boundary was set to the 
same height.

Once the acquisition of a cross-sectional skin boundary image was 
complete, the algorithm for 3D images of the skin surface was repeated 
to establish a three-dimensional (3D) topographic map of the skin, as 
shown in Figure 2F, and calculate 3D roughness data. Observations of 
the human skin surface under a stereomicroscope and OCT are shown 

in Figures 5A,B, respectively. Figure 5C shows a set of 400 B-scan 
images after segmenting the boundaries of the skin surface and 
flattening the skin surface. Figure 5D reveals the 3D reconstruction of 
Figure 5C, and the parameters of roughness were calculated based on 
Figure  5D. Figure  5A shows the skin roughness based on image 
texture, and Figure 5D shows the skin roughness according to the 
height, which is clearer than Figure 5A.

2.3 Quantification of surface roughness

According to the ISO 25178 standard established by the 
International Organization for Standardization (ISO), which is used 
for surface texture measurement, a series of surface texture parameters 
were defined to describe the morphology characteristics of a surface. 
Based on roughness standards and specific requirements, the 
arithmetic mean roughness ( aR ) and the depth of roughness ( zR ) were 
used for skin roughness. Their definitions are the arithmetic average 
of the absolute values of the surface height (z) and the maximum 
height between the highest peak and the lowest valley from the mean 
line within the measured region, respectively. The specific expressions 
of aR  and zR  are given as follows (19):
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FIGURE 3

(A) Original cross-sectional OCT image of the skin, in which there is noise in the position of arrows, (B) masked image of skin segmentation based on 
CNN, (C) masked image superimposed with the original image, and (D) segmented image of the skin, in which the noise has been reduced comparing 
with (A).
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where ix  and iy  are two-dimensional spatial coordinates, 
respectively. Base on Equation 1, the arithmetic mean roughness ( aR ) 
provides an overall measure of the surface roughness. Moreover, using 
Equation 2, the depth of roughness ( zR ) indicates the maximum height 
variation on the surface. Both parameters including arithmetic mean 
roughness ( aR ) and the depth of roughness ( zR ) are related to the height 
fluctuation of the skin surface; thus, they depend on the axial 
resolution of OCT.

2.4 Statistical analysis

Correlation analysis was performed using Pearson’s correlation 
coefficients. To test validity, the roughness parameters of aR  and zR  
were compared to the age (Pearson’s correlation). A Pearson 

correlation coefficient greater than 0.6 was considered a strong 
positive correlation.

3 Results

3.1 Validating the algorithm using a 
roughness standard plate

First, the proposed algorithm for skin roughness was validated 
using a roughness standard plate, which was purchased from 
Dongguan Tangxia Aiceyi Electronic Instrument Trading Company, 
as shown in Figure 6A. Figure 6A shows the roughness standard plate 
with an arithmetic mean roughness Ra of 6.3 μm, which complies with 
the GB.T6060.2–2006 standard. Figure 6B indicates 3D OCT images 

FIGURE 4

(A) Skin boundary curvature fitting, in which the red curve is the fitting boundary of skin; (B) Flattening boundary according to the fitting curve.

FIGURE 5

(A) Skin image of the back of the left hand under a stereomicroscope; (B) three-dimensional OCT image reconstruction results; (C) rear skin boundary; 
(D) three-dimensional skin boundary.
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of the corresponding roughness standard plate, as shown in 
Figure 6A. Table 1 shows the arithmetic mean roughness Ra on three 
positions of the roughness standard plate and demonstrates that the 
calculated value based on OCT is consistent with the standard defined 
in GB.T6060.2–2006. Thus, the proposed methods for roughness 
based on 3D OCT images provided an accurate and reliable 
measurement of roughness.

3.2 Skin surface roughness dependent on age

Figures 7A–C show the three-dimensional OCT images of the 
back of the hand’s skin, illustrating how the skin surface flattens with 
age. The texture of the skin surface, as observed in these OCT images, 
depends on age. To quantify the texture, we utilized Ra and Rz to 
explore the function of the age based on the three-dimensional skin 
boundary images, as shown in Figures 7D–F. Higher Ra values, shown 
in Figure 8A, indicate increased roughness, while higher values of Rz 
in Figure 8B indicate deeper depths of roughness.

Figure 8A shows a significant positive correlation between age and 
the arithmetic mean roughness in which Pearson’s correlation coefficients 
of men and women are 0.717 and 0.821, respectively. Meanwhile, there 
is a positive correlation between depth of roughness and age in Figure 8B, 
with Pearson’s correlation coefficients of 0.626 and 0.833, respectively, for 
men and women. This can be attributed to the gradual loss of collagen, 
which leads to a decrease in elasticity and firmness in the skin. In 
addition, the slowing down of epidermal cell turnover is also a significant 
contributing factor to increased skin roughness (28, 29).

Figure 8 also demonstrates that the overall roughness levels, as 
indicated by the two parameters of arithmetic mean roughness Ra and 
depth of roughness Rz, were higher in men than in women over the 
age of 25 years old because women generally place more emphasis on 
skincare compared to men (30, 31).

4 Discussion

The advantage of the proposed method in this study for 
estimating the roughness of skin surface is combined with other 
parameters such as epidermal thickness (32, 33) and dermal 
attenuation coefficient (17) based on OCT. Epidermal thickness was 
estimated based on the interval between the first peak and valley of 
the average OCT signal in terms of depth, and the attenuation 
coefficient was calculated based on the fitting line of the OC signal 
(Figure 9). Figure 10A reveals that the epidermal thickness is not 
correlated with age, which is consistent with the results found in the 
previous study (34).

In addition, as shown in Figure 10B, the attenuation coefficient 
of skin was found to be significantly decreased with increased age, 
which is consistent with a previous study (17). This is because of a 
gradual loss of collagen in the skin, resulting in an increase in 
roughness (2). The phenomenon was also observed in PS-SD-OCT, 
revealing depth-dependent correlations between the averaged dermal 
birefringence induced by collagen and the skin roughness parameters 
of the photoaged skin (35). The skin collagen would be determined 
using a two-photon confocal imaging for the skin surface (36). 
However, the image depth of a two-photon confocal image is lower 
than that of OCT.

Some studies employed traditional image processing techniques, 
including Gaussian filter, median filter, and differential filter, to 
emphasize the ideal surface boundary (18). However, these algorithms 
rely heavily on empirical values for different images. The proposed 
method in this study is accurate in extracting the surface boundary of 
skin to overcome the above problem since the CNN can effectively 
segment the skin surface (16, 22) through large-scale datasets and 
diverse data augmentation techniques for enhancing the generalization 
ability of models.

FIGURE 6

(A) Roughness standard plate; (B) 3D OCT image reconstruction of roughness standard plate.

TABLE 1 Calculated arithmetic mean roughness of the three positions 
based on the proposed method is consistent with the standard value in 
GB.T6060.2–2006.

No. Proposed 
method (μm)

Standard value 
(μm)

Error

1 6.47 2.7%

2 6.17 6.3 −2.1%

3 6.39 1.4%
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OCT directly measured the height fluctuation of the skin 
boundary for skin surface roughness, which was quantified by the 
arithmetic mean roughness and the depth of roughness. Thus, the 
development of OCT technology can improve the resolution of OCT, 
which, in turn, improves the accuracy of OCT image segmentation. 
In addition, the continuous progress in CNN algorithms further 
enhances the efficiency of the segmentation of skin boundaries.

5 Conclusion

In summary, the skin surface roughness is estimated using 
optical coherence tomography combined with CNN. The 
experimental results first demonstrated the effectiveness of the 
proposed algorithm by showing that the calculated value of the 

arithmetic mean roughness is consistent with the standard value for 
a roughness standard plate. In addition, the experimental results 
revealed that the skin surface roughness including the arithmetic 
mean roughness and depth of roughness depends on age 
and gender.

The advantage of the proposed method based on OCT is that it 
can reduce the effect of the skin surface’s natural curvature on 
roughness and is combined with the epidermal thickness and dermal 
attenuation coefficient for multi-parameter characterization of skin 
features. Quantitative assessment of skin features including roughness, 
epidermal thickness, and attenuation coefficient enables researchers, 
clinicians, and cosmetic companies to monitor changes in skin 
condition over time, evaluate the effectiveness of interventions or 
treatments, and develop targeted products for anti-aging prevention. 
It serves as a valuable tool in understanding the aging process and 

FIGURE 7

Three-dimensional OCT images at the ages of (A) 17, (B) 29, (C) 42  years, and (D–F) are the corresponding three-dimensional boundary images of 
(A–C).

FIGURE 8

Relationship between skin roughness parameters and age of volunteers: (A) arithmetic mean roughness Ra; (B) depth of roughness Rz.
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developing strategies to maintain and enhance skin health 
and appearance.
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