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Background: Delirium is a severe neuropsychiatric symptom following acute 
ischemic stroke (IS) and is associated with poor outcomes. Systemic inflammation 
and immune dysregulation are believed to contribute to the pathophysiology 
of delirium. The neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte 
ratio (PLR), and lymphocyte-to-monocyte ratio (LMR) are widely recognized as 
convenient and reliable biomarkers of systemic inflammation. However, their 
association with delirium after IS remains unclear.

Methods: In this study, we identified IS patients requiring ICU admission from the 
Medical Information Mart for Intensive Care (MIMIC)-IV database. We employed 
multivariable logistic regression and restricted cubic splines (RCS) to assess 
the association between the NLR, PLR, and LMR and delirium. Two-sample 
Mendelian randomization (MR) analysis was performed to further explore their 
causal relationship at the genetic level.

Results: A total of 1,436 patients with IS were included in this study, of whom 
214 (14.9%) had delirium. In the multivariate logistic regression analysis, after 
adjustment for confounders, the patients in the highest quartile of the NLR 
(odds ratio [OR] 2.080, 95% confidence interval [CI], 1.282–3.375) and LMR (OR 
0.503, 95% CI 0.317–0.798) and the patients in the second quartile of the PLR 
(OR 1.574, 95% CI 1.019–2.431) were significantly associated with delirium. The 
RCS function showed a progressive increase in the risk of delirium with higher 
NLR and PLR and lower LMR. In the MR analysis, only the PLR was negatively 
associated with the risk of delirium.

Conclusion: The observational studies found significant associations between 
the NLR, PLR, and LMR and delirium. However, the MR analysis only demonstrated 
a potential protective causal relationship between the PLR and delirium. Further 
prospective studies are needed to validate their association and to elucidate the 
underlying mechanisms.
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1 Introduction

According to the World Health Organization, stroke is the second 
leading cause of death and the third leading cause of disability 
worldwide (1). As one of the most devastating neurological disorders, 
stroke imposes a significant economic and healthcare burden on 
society (2). Stroke can be divided into two major categories based on 
neuropathology: ischemic stroke (IS) and hemorrhagic stroke (3). 
Among them, IS is characterized by the interruption of cerebral blood 
supply due to various causes, resulting in corresponding neurological 
impairment, and it accounts for approximately 70–80% of all strokes 
(4). Intracranial atherosclerotic plaques and large artery stenosis are 
identified in 45–62% of patients with IS (5), while microvascular 
thrombosis and small artery occlusion are responsible for 25% of cases 
(5) and cardiogenic embolism is attributed to IS in 22% of cases (6, 7). 
While the neurological function of the majority of IS patients 
improves after intravenous thrombolysis or mechanical 
thrombectomy, some still suffer from varying degrees of complications, 
such as delirium and speech disorders (8).

Delirium is a severe neuropsychiatric symptom commonly 
observed in elderly patients following acute illness or surgery, 
characterized by a rapid decline in cognitive function, impaired 
attention, and disturbance of consciousness (9, 10). It is a common 
complication in hospitalized patients, with an incidence of 
approximately 15 to 27% in patients with stroke (11–14). Delirium has 
been associated with prolonged hospital stays (15), increased 
in-hospital mortality (16), permanent cognitive impairment (17, 18), 
and dementia (19) in patients with IS.

However, the pathophysiological mechanisms underlying 
delirium remain unclear, and there are currently no effective 
intervention measures available in clinical practice. Therefore, it is 
particularly important to identify modifiable risk factors and establish 
intervention strategies. Previous observational studies have suggested 
that inflammatory factors may be one of the precipitating factors for 
delirium (20, 21). Among the various inflammatory markers, the 
neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio 
(PLR), and lymphocyte-to-monocyte ratio (LMR) have emerged as 
convenient and reliable indicators of systemic inflammation. The NLR 
reflects the balance between the innate immune response (mediated 
by neutrophils) and adaptive immunity (mediated by lymphocytes), 
serving as a proxy for immune system dysregulation. Similarly, the 
PLR captures the interplay between inflammation and thrombophilia, 
while the LMR provides insight into the severity of systemic 
inflammation through its negative correlation with inflammatory 
activity. These readily available biomarkers have shown promise in 
predicting outcomes in various inflammatory and cardiovascular 
conditions (22), yet their roles in delirium following IS 
remain underexplored.

In this study, we  specifically focused on ischemic stroke (IS) 
patients requiring ICU admission. We  aimed to investigate the 
relationship between the NLR, PLR, and LMR and post-IS delirium, 
with the goal of identifying potential biomarkers for the early 
prediction of delirium. To achieve this, we combined observational 
data from the Medical Information Mart for Intensive Care 
(MIMIC)-IV database with Mendelian randomization (MR) methods. 
MR is an emerging epidemiological approach that uses genetic 
variables as proxies to assess the effects of exposures (e.g., NLR, PLR, 
and LMR) on specific outcomes (e.g., delirium) (23). Compared to 

observational studies, this approach can avoid the effects of 
confounding and reverse causality and can better simulate the results 
of randomized controlled trials. In this study, we  combined 
observational data from the MIMIC-IV database with MR methods 
to investigate the causal effects of the NLR, PLR, and LMR on delirium 
after IS.

2 Methods

2.1 Overall study design

This study consisted of two phases. In the first phase, we performed 
multivariable logistic regression analysis using data from the 
MIMIC-IV v2.2 database to explore the association between the NLR, 
PLR, and LMR and delirium after IS. Before using the MIMIC 
database, we obtained institutional review board approval from Beth 
Israel Deaconess Medical Center and the Massachusetts Institute of 
Technology (record ID: 12299215).

In the second phase, we  further investigated the causal 
relationship between the NLR, PLR, and LMR and delirium using 
summary statistics from genome-wide association studies (GWAS) 
through MR analysis. Based on the law of independent assortment, 
genetic variations selected as instrumental variables (IVs) for the 
exposure are randomly allocated to gametes during meiosis (24). Due 
to the random assignment of genotypes, MR analysis using single 
nucleotide polymorphisms (SNPs) as genetic IVs can effectively 
mimic the design of a randomized controlled trial (RCT), enabling 
the estimation of causal effects between the exposure and outcome 
without being influenced by traditional confounders (25), such as 
sex, since genetic variations do not systematically vary with 
demographic factors. The GWAS data for delirium were obtained 
from the ninth version of the FinnGen database, which includes 
3,039 cases and 356,660 controls (ID: F5_DELIRIUM). According to 
the database, all cases of delirium were classified as conditions not 
caused by alcohol or other psychoactive substances. The GWAS data 
for the NLR, PLR, and LMR were obtained from a large-scale analysis 
of leukocyte-related genetic data, as published in the study by Zhou 
et al. (26). This study utilized summary statistics derived from the UK 
Biobank, and the datasets are publicly available. The specific details 
of the GWAS data are as follows: the GWAS summary statistics for 
the NLR were obtained from the study by Zhou et  al. (26). The 
analysis included 5,973 SNPs and was conducted on a population of 
European ancestry, as described by the authors. The GWAS summary 
statistics for the PLR were sourced from the same study (26), 
involving 15,473 SNPs and based on a cohort of European ancestry. 
The data for the LMR were also obtained from the study by Zhou 
et  al. (26), with analysis including 4,606 SNPs, conducted on a 
population of European ancestry, as described by the original 
research group. To obtain effective causal estimates, the IVs used in 
MR analysis must meet the following criteria: (1) Genetic variations 
must be strongly associated with the levels of the NLR, PLR, and 
LMR; (2) Genetic variations should not be influenced by confounding 
factors; (3) Genetic variations should affect delirium only through 
their influence on the NLR, PLR, and LMR. In addition, these 
summary statistic data come from different sample databases of 
European ancestry, and the probability of sample overlap is small. 
The original research for these GWAS studies had already received 
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ethics committee approval (27, 28). Therefore, this study did not 
require additional ethical review.

2.2 Data sources and patient selection

This study used data from the MIMIC-IV (version 2.2) database, 
a comprehensive clinical database containing records of patients 
admitted to the intensive care units (ICUs) of Beth Israel Deaconess 
Medical Center. The MIMIC-IV database was developed and is 
managed by the MIT Laboratory for Computational Physiology. 
Patients diagnosed with IS according to the International Classification 
of Diseases, 9th and 10th revisions, were included in this study. The 
primary outcome of this study was to determine the presence of 
delirium during hospitalization. The assessment of delirium was 
primarily conducted using the widely adopted clinical tool, the 
Confusion Assessment Method for the ICU (CAM-ICU). The 
CAM-ICU consists of four features: Feature 1: acute changes or 
fluctuations in mental status; Feature 2: inattention; Feature 3: 
disorganized thinking; and Feature 4: altered level of consciousness 
(LOC) (29, 30). A patient was considered CAM-ICU-positive and 
diagnosed with delirium when Features 1 and 2 were both present, 

along with either Feature 3 or Feature 4 (29). The exclusion criteria 
were as follows: (1) patients who were admitted to the ICU multiple 
times for IS, with only the record of the first admission being 
extracted; (2) patients without sufficient data from the NLR, PLR, and 
LMR examinations on the first day of their stay in the ICU; (3) patients 
with a history of schizophrenia; and (4) patients with dementia, 
infections, trauma, allergies, or neoplasms. Ultimately, a total of 1,436 
patients were enrolled in this study and categorized into two groups 
based on the presence or absence of delirium (Figure 1).

2.3 Data extraction

These data were extracted from the MIMIC-IV database using 
Structured Query Language (SQL) and PostgreSQL (version 
13.7.2) software. The dataset included the following information: 
(1) demographic characteristics: age, sex, ethnicity, body mass 
index (BMI), and adverse lifestyle factors; (2) comorbidities: 
diabetes, hypertension, heart disease, chronic kidney disease, 
chronic lung disease, chronic liver disease, peripheral vascular 
disease, and obstructive sleep apnea; (3) laboratory parameters: 
hemoglobin, platelet count, serum creatinine, fasting blood 

FIGURE 1

Flow diagram of patient selection.
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glucose, serum albumin, white blood cell count, lymphocyte count, 
monocyte count, and neutrophil count; (4) admission severity 
scores: the Sequential Organ Failure Assessment (SOFA) score and 
Glasgow Coma Scale (GCS) score; (5) admission vital signs: heart 
rate, mean arterial pressure (MAP), respiratory rate, and peripheral 
oxygen saturation (SpO2); (6) use of benzodiazepines; (7) and 
outcomes: the primary outcome was the onset of delirium, and the 
secondary outcomes included length of hospital stay and 
in-hospital mortality. The NLR, PLR, and LMR were calculated 
using the following formulas: (1) NLR = neutrophil count/
lymphocyte count, (2) PLR = platelet count/lymphocyte count, and 
(3) LMR = lymphocyte count/monocyte count. The ICD-9 and 
ICD-10 codes used to identify IS and delirium are shown in 
Supplementary Table S1.

2.4 Statistical analysis

For the observational studies using MIMIC-IV data, categorical 
variables were presented as numbers (n) and percentages (%), while 
continuous variables were presented as median (interquartile range, 
IQR) due to their non-normal distribution. The chi-squared test was 
used to compare the categorical variables between the groups. For the 
continuous variables, the Kruskal–Wallis test was applied to compare 
differences between the groups. Multivariable logistic regression 
analysis was used to assess the associations between the NLR, PLR, 
and LMR and delirium. To reduce bias caused by confounders, 
we adjusted for age, sex, ethnicity, BMI, and alcohol abuse in Model 
1. Model 2 was adjusted for age, sex, ethnicity, BMI, alcohol abuse, 
SOFA score, GCS score, and comorbidities, including hypertension, 
diabetes mellitus, chronic pulmonary disease, chronic liver disease, 
chronic renal disease, congestive heart failure, myocardial infarction, 
peripheral vascular disease, and obstructive sleep apnea. Model 3 was 
further adjusted for benzodiazepine use and laboratory results, 
including hemoglobin levels, glucose, albumin, and creatinine, based 
on Model 2. The results were presented as odds ratios (ORs) with 95% 
confidence intervals (CIs), and statistical significance was determined 
at a p < 0.05.

In addition, we  performed a two-sample MR analysis to 
re-evaluate the causal relationships between the NLR, PLR, LMR, and 
delirium. First, we selected single nucleotide polymorphisms (SNPs) 
that were strongly associated with the NLR, PLR, and LMR, with a 
p < 5 × 10–8. In addition, to exclude linkage disequilibrium (LD), 
we set R2 to <0.001 (clumping window size = 10,000 kb). Then, the 
SNPs with a minor allele frequency (MAF) ≤ 0.01 were removed. 
Finally, we harmonized the alleles of the exposures and outcomes to 
eliminate ambiguous SNPs with inconsistent alleles and intermediate 
allele frequencies. For the MR analysis, the inverse-variance weighted 
(IVW) method was used as the primary analytical approach. The 
MR-Egger, weighted median, and weighted mode methods were used 
to validate the IVW results. MR-Pleiotropy RESidual Sum and Outlier 
(MR-PRESSO) was used to identify potential outliers and horizontal 
pleiotropy. Cochrane’s Q test and MR-Egger intercept were used to 
assess heterogeneity and directional pleiotropy, respectively (31, 32). 
Sensitivity analyses were also performed using leave-one-out analysis. 
All analyses were two-sided and were performed using the 
TwoSampleMR and MR-PRESSO packages in R software 
(version 4.0.2).

3 Results

3.1 Baseline characteristics

In this study, a total of 1,436 patients with IS were included for 
analysis, and the selection process is shown in Figure 1. The median 
age of the included patients was 71 years (IQR: 59–81 years), and 
52.4% were male. Among them, 14.9% experienced delirium during 
hospitalization and 224 patients (15.6%) had fatal events. Table 1 
shows the baseline characteristics of the patients, stratified according 
to the presence or absence of delirium. Compared to the patients 
without delirium, those with delirium tended to have more 
comorbidities, higher SOFA scores on admission, a higher proportion 
of benzodiazepine use, poorer nutritional status, unstable vital signs, 
and longer hospital stays. The NLR values were significantly higher 
in the patients with delirium compared to the patients without 
delirium (7.23 vs. 5.65, p = 0.000), while the LMR values were 
significantly lower in the delirium group (2.22 vs. 2.72, p = 0.000). 
There was no significant difference in the PLR values between the 
two groups.

3.2 The association between the NLR, PLR, 
and LMR, and delirium

Table 2 shows the association of the NLR, PLR, and LMR with the 
incidence of delirium after IS. In the univariate logistic regression 
analysis, an increase in the NLR was independently associated with an 
increased risk of delirium (OR 1.032, 95% CI 1.016–1.049). After 
adjustment for age, sex, ethnicity, BMI, and lifestyle factors in Model 
1, this association remained significant (OR 1.034, 95% CI 1.017–
1.050). The relationship between the elevated NLR and delirium risk 
persisted after adjustment for comorbidities, SOFA score, and GCS 
score in Model 2 (OR 1.023, 95% CI 1.006–1.041), as well as for 
laboratory results and benzodiazepine use in Model 3 (OR 1.022, 95% 
CI 1.004–1.039). However, in the univariate logistic regression 
analysis, as well as in models 1, 2, and 3, there was no significant 
association between an increase in the PLR and the risk of delirium 
(all p > 0.05). In the regression analysis between the LMR and 
delirium, the univariate logistic regression showed that an increase in 
the LMR was independently associated with a decreased risk of 
delirium (OR 0.891, 95% CI 0.831–0.956). This significant association 
remained after adjustment for confounders in Model 1, Model 2, and 
Model 3 (all p < 0.05). In addition, when the NLR was categorized as 
a nominal variable, the patients in the second, third, and highest 
quartiles of the NLR were significantly associated with an increased 
risk of delirium across all three logistic regression models (Model 1, 
Model 2, and Model 3) compared to those in the lowest quartile 
(Table 3). Similarly, the patients in the second quartile of the PLR were 
significantly associated with a higher risk of delirium compared to the 
patients in the lowest quartile: Model 2 (OR 1.579, 95% CI 1.026–
2.429) and Model 3 (OR 1.574, 95% CI 1.019–2.431). Lastly, the 
patients in the highest quartile of the LMR were negatively associated 
with an increased risk of delirium compared to the patients in the 
lowest quartile: Model 1 (OR 0.430, 95% CI 0.276–0.672), Model 2 
(OR 0.489, 95% CI 0.310–0.773), and Model 3 (OR 0.503, 95% CI 
0.317–0.798). For the NLR and LMR, as well as the PLR in models 2 
and 3, the restricted cubic spline (RCS) models showed that they were 
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TABLE 1 Baseline characteristics (n = 1,436).

Variables Total, n = 1,436 No delirium, 
n = 1,222

Delirium, n = 214 p-value

Age, years, median (IQR) 71 (59, 81) 71 (58, 82) 71 (61, 82) 0.618

Male, n (%) 752 (52.4) 629 (51.5) 123 (57.5) 0.105

Ethnicity 0.506

White 933 (65.0) 799 (65.4) 134 (62.6)

Black 138 (9.6) 115 (9.4) 23 (10.7)

Asian 31 (2.2) 25 (2.0) 6 (2.8)

Other 334 (23.3) 283 (23.2) 51 (23.8)

BMI, kg/m2 27.2 (23.6, 31.3) 27.1 (23.5, 31.2) 27.7 (24.2, 32.9) 0.029

Comorbidity, n (%)

 Hypertension 1,065 (74.2) 900 (73.6) 165 (77.1) 0.287

 Diabetes 459 (32.0) 364 (29.8) 95 (44.4) 0.000

 Chronic pulmonary disease 277 (19.3) 234 (19.1) 43 (20.1) 0.747

 Chronic liver disease 65 (4.5) 48 (3.9) 17 (7.9) 0.009

 Chronic renal disease 304 (21.2) 242 (19.8) 62 (29.0) 0.002

 Congestive heart failure 409 (28.5) 323 (26.4) 86 (40.2) 0.000

 Myocardial infarction 292 (20.3) 229 (18.7) 63 (29.4) 0.000

 Peripheral vascular disease 237 (16.5) 189 (15.5) 48 (22.4) 0.011

 Obstructive sleep apnea 110 (7.7) 83 (6.8) 27 (12.6) 0.003

Alcohol abuse 44 (3.1) 37 (3.0) 7 (3.3) 0.849

Use of benzodiazepines 369 (25.7) 301 (24.6) 68 (31.8) 0.027

GCS score 15 (14, 15) 15 (14, 15) 15 (14, 15) 0.129

SOFA score 3 (2, 6) 3 (2, 5) 5 (3, 8) 0.000

Laboratory findings

 Albumin, g/dL 3.7 (3.3, 4.1) 3.8 (3.4, 4.1) 3.6 (3.1, 4.0) 0.001

 Creatinine, mg/dL 1.0 (0.8, 1.4) 1.0 (0.8, 1.4) 1.2 (0.9, 1.9) 0.000

 Hemoglobin, g/dL 12.5 (10.8, 13.9) 12.6 (10.9, 14.0) 11.8 (10.1, 13.4) 0.000

 Glucose, mg/dL 136 (110, 181) 133.0 (109.0, 176.3) 160.5 (127.0, 221.0) 0.000

 White blood cell counts, ×10⁹/L 12.1 (9.0, 16.0) 11.8 (8.8, 15.7) 13.1 (9.8, 17.4) 0.000

 Platelets, ×10⁹/L 223 (176, 285) 226 (178, 286) 204.5 (159, 277) 0.004

 Lymphocytes, ×10⁹/L 1.42 (0.95, 2.01) 1.44 (0.97, 2.03) 1.32 (0.82, 1.87) 0.013

 Monocytes, ×10⁹/L 0.55 (0.37, 0.80) 0.54 (0.37, 0.77) 0.62 (0.40, 0.92) 0.002

 Neutrophils, ×10⁹/L 8.22 (5.77, 11.76) 8.05 (5.64, 11.61) 9.65 (6.26, 12.60) 0.005

 NLR 5.88 (3.40, 9.89) 5.65 (3.25, 9.62) 7.23 (4.18, 11.91) 0.000

 PLR 155.24 (103.85, 242.82) 156.12 (103.45, 242.27) 153.46 (107.74, 249.63) 0.810

 LMR 2.67 (1.60, 4.12) 2.72 (1.65, 4.28) 2.22 (1.26, 3.40) 0.000

Vital signs on the first day in the ICU

 MAP, mmHg 82 (74, 92) 82 (74, 93) 78 (72, 89) 0.001

 Heart rate, beats/min 79 (71, 90) 79 (70, 89) 82 (73, 94) 0.000

 Respiration rate, breaths/min 19 (17, 21) 18 (17, 21) 20 (18, 22) 0.000

 SpO2, % 97 (96, 99) 97 (96, 99) 97 (96, 98) 0.291

Length of ICU stay, days 2.8 (1.5, 6.1) 2.5 (1.4, 5.3) 4.9 (2.2, 8.9) 0.000

Length of hospital stay, days 7.8 (4.2, 14.5) 7.0 (3.9, 11.9) 13.6 (7.8, 23.8) 0.000

Hospital mortality, n (%) 224 (15.6) 193 (15.8) 31 (14.5) 0.627

All data were presented as median (interquartile range) or number of patients (%). Abbreviations: BMI, body mass index; SOFA, Sequential Organ Failure Assessment; GCS, Glasgow Coma 
Scale; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio; MAP, mean arterial blood pressure; SpO2, percutaneous oxygen 
saturation; ICU, Intensive Care Unit.

https://doi.org/10.3389/fmed.2024.1456742
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al. 10.3389/fmed.2024.1456742

Frontiers in Medicine 06 frontiersin.org

non-linearly correlated with delirium (all non-linear p < 0.05) 
(Figure 2).

3.3 Subgroup analysis

In addition, subgroup analyses were conducted to assess the 
associations between the NLR, PLR, and LMR and delirium across 
different populations. The participants were stratified based on sex, 
congestive heart failure, chronic pulmonary disease, hypertension, 
and diabetes. The results are presented in Figure 3.

The positive correlation between the NLR and delirium was 
particularly pronounced in the female patients (OR 1.05, 95% CI 
1.02–1.07) and the participants with hypertension (OR 1.04, 95% CI 
1.02–1.06). This association remained consistent across the subgroups 
with and without congestive heart failure, chronic pulmonary disease, 
and diabetes, highlighting potential sex-specific and comorbidity-
dependent influences. However, there was a positive association 
between the PLR and delirium in those with hypertension (OR 1.00, 
95% CI 1.00–1.00) and a negative association in those without 
hypertension (OR 1.00, 95% CI 0.99–1.00). In contrast, the LMR 
showed a significant negative association with delirium, particularly 
in the female participants (OR 0.81, 95% CI 0.71–0.92), participants 
without congestive heart failure (OR 0.85, 95% CI 0.77–0.94), 
participants without chronic pulmonary disease (OR 0.89, 95% CI 
0.82–0.96), participants with hypertension (OR 0.89, 95% CI 0.82–
0.96), and those with and without diabetes. The interaction test 
suggested that the relationship between the LMR and delirium was 
affected by sex (male/female) (Pp < 0.05). Female individuals may 
serve as effect modifiers (Figure 3).

Moreover, in the sex-stratified analysis of comorbidities, the 
positive correlation between the NLR and delirium was more 
pronounced in the female participants across all comorbidity 
subgroups, including those with and without congestive heart failure, 
chronic pulmonary disease, and diabetes, as well as those with 

hypertension (Figure 4). The interaction test suggested that sex played 
a pivotal role in modulating these relationships, with female 
individuals acting as potential effect modifiers (p < 0.05). Similarly, the 
negative association between the PLR and delirium was more evident 
in the female participants, with and without hypertension. 
Furthermore, the LMR showed a significant protective effect against 
delirium in the female participants across all comorbidity subgroups, 
including those with congestive heart failure, chronic pulmonary 
disease, diabetes, and hypertension.

3.4 Causal association between the NLR, 
PLR, and LMR and delirium in MR

In the MR study, we screened a total of 59, 85 and 44 SNPs, to 
investigate the causal relationship between the NLR, PLR, and LMR 
and delirium. Detailed information about these SNPs can be found in 
Supplementary Table S2. The results showed that an increase in the 
genetically predicted PLR was causally associated with a decreased 
risk of delirium (IVW: OR 0.996, 95% CI 0.994–0.999, p = 0.040). This 
finding was further validated by MR-PRESSO (OR 0.997, 95% CI 
0.994–0.999, p = 0.036) (Table 4). On the other hand, no significant 
association was observed between an increase in the genetically 
predicted NLR (IVW: OR 0.799, 95% CI 0.628–1.017, p = 0.068) and 
LMR (IVW: OR 1.033, 95% CI 0.942–1.133, p = 0.489) and the risk of 
delirium. These results indicated a lack of evidence for a causal 
relationship between the NLR and LMR levels and the risk of delirium. 
In addition, the intercept obtained from the MR-Egger regression was 
not significant (Supplementary Table S3), suggesting that there was no 
significant horizontal pleiotropy in the MR analysis. The results of the 
MR-PRESSO heterogeneity test further confirmed the accuracy of the 
MR-Egger regression. In the absence of heterogeneity and pleiotropy, 
the abovementioned MR results were considered reliable.

In the sensitivity analysis, the funnel plots (Supplementary Figure S1) 
showing the results of the MR analysis displayed a symmetrical shape, 
indicating no heterogeneity in the results. The leave-one-out analysis 
revealed a significant association between the NLR and delirium when 
the SNPs “rs61839660,” “rs77919370,” “rs4760,” “rs11975539,” 
“rs6981399,” and “rs4792711” were excluded from the model 
(Supplementary Figure S2). However, this association was no longer 
significant when these SNPs were included. In the analysis of the 
association between the PLR and delirium, excluding the SNPs 
“rs6713632,” “rs4907923,” “rs1982151,” “rs7003580,” “rs1076415,” 
“rs10794175,” “rs11953668,” “rs10843375,” “rs80230005,” “rs536327,” 
and “rs6679677” resulted in no significant association between the PLR 
and delirium, whereas the association became significant when these 
SNPs were included (Supplementary Figure S3). The association 
between the LMR and delirium was not influenced by any single SNP 
(Supplementary Figure S4).

4 Discussion

In this study, we investigated the association between the NLR, 
PLR, and LMR and the occurrence of delirium in IS patients admitted 
to the ICU. We  found that 214 (14.9%) of the 1,436 IS patients 
developed delirium. High levels of the NLR and PLR were associated 
with an increased risk of delirium during hospitalization, and low 

TABLE 2 Multivariable logistic regression analysis of the associations 
between the NLR, PLR, and LMR and delirium after ischemic stroke.

Variables OR (95% CI)

Crude 
model

Model 1 Model 2 Model 3

NLR

1.032 

(1.016–

1.049)*

1.034 

(1.017–

1.050)*

1.023 

(1.006–

1.041)*

1.022 (1.004–

1.039)*

PLR

1.000 

(1.000–

1.001)

1.000 

(1.000–

1.001)

1.000 

(1.000–

1.001)

1.000(1.000–

1.001)

LMR

0.891 

(0.831–

0.956)*

0.891 

(0.830–

0.956)*

0.905 

(0.847–

0.967)*

0.907 (0.850–

0.968)*

*p < 0.05. Bold values indicate statistically significant results. Crude model: Adjusted for 
none. Model 1: Adjusted for age, sex, ethnicity, BMI, and alcohol abuse. Model 2: Adjusted 
for age, sex, ethnicity, BMI, alcohol abuse, SOFA score, GCS score, and comorbidities, 
including hypertension, diabetes mellitus, chronic pulmonary disease, chronic liver disease, 
chronic renal disease, congestive heart failure, myocardial infarction, peripheral vascular 
disease, and obstructive sleep apnea. Model 3: Further adjusted for benzodiazepine use and 
laboratory results, including hemoglobin levels, glucose, albumin, and creatinine. NLR, 
neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; LMR, lymphocyte-to-
monocyte ratio; CI, confidential interval; OR, odds ratio.
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levels of the LMR were associated with an increased risk of delirium 
during hospitalization. This association persisted after adjusting for 
age, sex, ethnicity, comorbidities, and poor lifestyle factors. However, 
after further adjustment for other study outcomes, vital signs, and 
disease severity scores, the association between the high NLR and PLR 
values and the risk of delirium disappeared. In contrast, the increased 
risk of delirium associated with the low LMR values remained. 
Furthermore, in the MR analysis, we found no causal relationship 
between either the NLR or LMR and the occurrence of delirium, while 
a significant relationship between the PLR and delirium persisted.

Delirium is an acute state of cerebral dysfunction characterized by 
sudden, fluctuating disturbances in consciousness and impaired 
attention (33–35). Increasing evidence suggests a strong association 
between delirium and adverse patient outcomes. Patients with 
delirium face a 10-fold increased risk of death, a 3–5-fold increased 
risk of complications, longer hospital stays, and a greater need for 
post-discharge care and support measures (33). In addition, patients 
with delirium are more likely to experience poor functional and 
cognitive recovery. The pathophysiological mechanisms underlying 
delirium are not fully understood (36). Currently, there are no effective 
medications or interventions for the treatment of delirium. Therefore, 
early identification of patients at risk of delirium is important (36).

Numerous studies have examined the association between 
inflammatory cytokines and delirium, with some showing that levels 
of inflammatory mediators such as plasma interleukin (IL)-6, 
C-reactive protein (CRP), IL-8, IL-10, and tumor necrosis factor 
(TNF)-α are significantly elevated in patients with delirium (14). 
However, the relationship between the NLR, PLR, and LMR and 
delirium in IS patients remains underexplored.

Compared to cytokines and acute-phase reactants, neutrophils, 
lymphocytes, and platelet counts are routinely measured as part of the 
hospital admission laboratory test for the majority of patients, with 
low acquisition costs and minimal requirements (37). In addition, 
these blood cell ratios reflect the dynamic balance between 

pro-inflammatory and anti-inflammatory immune responses, which 
are believed to contribute directly to the pathophysiology of delirium 
via neuroinflammatory mechanisms. As a result, they may offer 
greater clinical utility in predicting delirium after IS, facilitating early 
intervention to reduce its incidence.

In various inflammatory conditions, the NLR has been positively 
correlated with IL-6 levels, which supports its potential as a reliable 
marker of systemic inflammation (38–40). Neutrophils, as key 
pro-inflammatory immune cells, are elevated in response to acute 
inflammatory processes, indicating an intense inflammatory response. 
Conversely, lymphocytes typically play a suppressive role in 
inflammation, and their reduced numbers may indicate immune 
suppression. Thus, an elevated NLR value is generally associated with 
increased inflammation or immune system dysregulation. Similarly, the 
PLR has been associated with elevated levels of TNF-α in patients 
experiencing acute inflammation, underscoring its role as an 
inflammatory marker (41, 42). In addition to their traditional role in 
coagulation, platelets also contribute to immune responses by 
promoting pro-inflammatory pathways. The elevation of platelets and 
the corresponding decrease in lymphocytes observed in an increased 
PLR may signal a systemic inflammatory response, further associating 
this ratio with acute or chronic inflammatory conditions. Monocytes, 
which play a critical role in immune modulation, particularly in chronic 
inflammation, contribute to the regulation of immune responses. A low 
LMR value generally reflects a state of immune suppression, while a 
higher LMR value suggests a more balanced immune environment or 
a dominant anti-inflammatory response. This suggests that the LMR 
could offer insights into immune balance in IS patients, potentially 
providing prognostic value in predicting delirium risk.

These findings indicate that the NLR, PLR, and LMR may reflect 
similar inflammatory processes as traditional markers, reinforcing 
their clinical utility in predicting delirium after IS. Although IL-6 and 
TNF-α are well-established markers of inflammation, the NLR, PLR, 
and LMR offer a more accessible and cost-effective alternative for the 

TABLE 3 Odds ratio (95% CI) for delirium across the quartiles of the NLR, PLR, and LMR.

Variables OR (95% CI) P for trend

Quartile 1 Quartile 2 Quartile 3 Quartile 4

NLR

Model 1 Reference 1.933 (1.210–3.085)* 1.982 (1.239–3.171)* 2.650 (1.679–4.182)* 0.001

Model 2 Reference 1.715 (1.062–2.769)* 1.748 (1.077–2.837)* 2.135 (1.325–3.440)* 0.02

Model 3 Reference 1.733 (1.072–2.804)* 1.745(1.069-2.847)* 2.080 (1.282–3.375)* 0.028

PLR

Model 1 Reference 1.305 (0.865–1.969) 1.054 (0.688–1.615) 1.197 (0.787–1.821) 0.574

Model 2 Reference 1.579 (1.026–2.429)* 1.274 (0.814–1.992) 1.378(0.890–2.134) 0.213

Model 3 Reference 1.574 (1.019–2.431)* 1.245 (0.793–1.955) 1.252 (0.803–1.952) 0.239

LMR

Model 1 Reference 0.814 (0.553–1.197) 0.701 (0.471–1.042) 0.430(0.276–0.672)* 0.003

Model 2 Reference 0.911 (0.609–1.362) 0.871(0.573–1.324) 0.489(0.310–0.773)* 0.016

Model 3 Reference 0.957 (0.637–1.438) 0.954 (0.623–1.460) 0.503(0.317–0.798)* 0.017

*p < 0.05. Bold values indicate statistically significant results. Model 1: Adjusted for age, sex, ethnicity, BMI, and alcohol abuse. Model 2: Adjusted for age, sex, ethnicity, BMI, alcohol abuse, 
SOFA score, GCS score, and comorbidities, including hypertension, diabetes mellitus, chronic pulmonary disease, chronic liver disease, chronic renal disease, congestive heart failure, 
myocardial infarction, peripheral vascular disease, and obstructive sleep apnea. Model 3: Further adjusted for benzodiazepine use and laboratory results, including hemoglobin levels, glucose, 
albumin, and creatinine. NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio; CI, confidential interval; OR, odds ratio.
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assessment of inflammatory status in acute conditions such as IS (43). 
Moreover, the NLR, PLR, and LMR have demonstrated strong 
prognostic value in a variety of diseases, including IS (44), 
cardiovascular events (45), and cancer (46).

The pathophysiological mechanisms underlying delirium remain 
unclear. One hypothesis is that neuroinflammation-induced metabolic 
dysregulation contributes to the occurrence of delirium. Infection, 
surgery, or trauma can trigger acute peripheral inflammation in the 
body, leading to increased adherence and activation of leukocytes on 
the endothelial cells of cerebral blood vessels. This results in the 
significant release of free radicals and enzymes, which, in turn, disrupt 
the integrity of the endothelial cell membrane and intercellular 

adhesion, increase the permeability of the blood–brain barrier, cause 
perivascular edema, reduce perfusion, and increase the oxygen 
diffusion distance, ultimately leading to neuronal hypoxia and the 
manifestation of delirium (47–49). In addition, the elderly or those 
with impaired cognitive function are more susceptible to delirium 
(50). This increased susceptibility may be due to age-related changes 
in neurotransmitters, decreased cerebral blood flow, neuronal loss, 
and reduced intracellular signaling capacity. When stimulated by 
factors such as peripheral inflammation, cognitive decline is further 
exacerbated, leading to the manifestation of delirium.

Our findings highlight the relevance of systemic inflammatory 
biomarkers—NLR, PLR, and LMR—in the context of delirium. In the 

FIGURE 2

Restricted spline curves showing the relationship between the NLR, PLR, and LMR and delirium in the patients with ischemic stroke. The red bold 
line denotes the OR, while the shaded area represents the 95% CI. No covariates were adjusted in (A–C). Age, sex, ethnicity, BMI, and lifestyle factors 
were adjusted in Model 1 (D–F). Model 2 was further adjusted for comorbidities, SOFA score, and GCS score based on Model 1 (G–I). In Model 3, 
laboratory results and benzodiazepine use were adjusted based on Model 2 (J–L). BMI, body mass index; SOFA, Sequential Organ Failure 
Assessment; GCS, Glasgow Coma Scale.
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occurrence and prognosis of delirium, variations in these indicators 
reflect the body’s inflammatory response, immune dysfunction, 
cytokine release, and other related processes.

In addition to the overall analysis, we  performed subgroup 
analyses based on sex and comorbidities, which provided further 
insights into the relationship between the inflammatory markers and 
delirium. Our subgroup analysis suggested that sex may influence the 
association between the inflammatory markers and delirium. 
Specifically, the positive correlation between the NLR and delirium 
was more pronounced in the female patients, while the LMR appeared 
to offer a protective effect in this group. These findings imply that sex 

may modulate the inflammatory response and its impact on delirium. 
One possible explanation for these sex-related differences is the role 
of estrogen in modulating immune responses, including leukocyte 
proliferation and antibody production, which may result in a stronger 
immune response in female individuals, thereby influencing the 
relationship between inflammation and delirium (51).

Moreover, our subgroup analysis highlighted the role of 
comorbidities (such as hypertension, congestive heart failure, and 
chronic pulmonary disease) in modulating the relationship between 
the inflammatory markers and delirium. In the hypertensive 
patients, we observed a significant positive correlation between the 

FIGURE 3

Subgroup analyses of the association between the NLR, PLR, and LMR and delirium. (A) NLR; (B) PLR; (C) LMR. NLR, neutrophil-to-lymphocyte ratio; 
PLR, platelet-to-lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio; OR, odds ratios; CI, confidence interval.
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NLR and delirium, along with a negative correlation between the 
LMR and delirium. Hypertension is a well-established risk factor 
for IS, exerting chronic effects on vascular health and the blood–
brain barrier integrity through increased shear stress, endothelial 

dysfunction, and large artery stiffness (52, 53). In hypertensive 
individuals, the increase in systemic inflammation may further 
exacerbate endothelial dysfunction, leading to an elevated risk of 
delirium. In this context, the hypertensive state may amplify the 

FIGURE 4

Sex-stratified analysis of comorbidities in the association between the NLR, PLR, and LMR and delirium. (A) NLR; (B) PLR; (C) LMR. NLR, neutrophil-to-
lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio; OR, odds ratios; CI, confidence interval.
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inflammatory response, thereby strengthening the association 
between the inflammatory markers and delirium in this subgroup.

The present study has several strengths. First, the cohort size 
was larger than in previous studies. Second, we evaluated the overall 
systemic inflammation of the patients using the NLR, PLR, and 
LMR as inflammatory markers, which are simple and easily 
obtainable methods. Third, we adjusted for more confounders than 
previous studies, including laboratory indicators and vital signs, to 
determine the association between the NLR, PLR, and LMR and 
delirium. Finally, we performed an MR analysis to investigate the 
causal relationship between these markers and delirium at the 
genetic level.

However, there are also some limitations to this study. First, 
the definition of delirium in the FinnGen database (ID: F5_
DELIRIUM) encompasses various etiologies and is not limited to 
IS-related delirium. This phenotypic heterogeneity could have 
potentially diluted the specificity of our findings in the MR 
analysis. Second, IS patients often present with acute and severe 
neurological impairments, which may hinder the recognition of 
delirium, potentially leading to an underestimation of its true 
prevalence. Third, the NLR, PLR, and LMR data used in the MR 
analysis were derived from secondary GWAS analyses, which 
might have introduced errors or biases. The inconsistency 
between our observational study and the MR study suggests that 
the NLR, PLR, and LMR remain valuable predictors of post-IS 
delirium and require further rigorous exploration, such as 
prospective studies.

5 Conclusion

In conclusion, our observational study showed that the NLR, 
PLR, and LMR were significantly associated with the occurrence of 
delirium and that the inclusion of the NLR, PLR, and LMR in the 
delirium prediction model may improve its predictive accuracy. 
However, further MR analysis revealed a causal relationship only 

between the PLR and the risk of delirium. Therefore, well-designed 
prospective cohort studies are warranted to validate the associations 
between the NLR, PLR, and LMR and delirium, as well as to explore 
the underlying mechanisms.
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SUPPLEMENTARY FIGURE S1

Funnel plots of the MR analyses for the association of NLR, PLR, and LMR and 
delirium. (A) Causal effect of NLR on delirium; (B) Causal effect of PLR on 
delirium; (C) Causal effect of LMR on delirium. SNP, single nucleotide 
polymorphisms; MR, Mendelian randomization.

SUPPLEMENTARY FIGURE S2

Leave-one-out plots of the MR analyses (IVW model) for the association of 
NLR and delirium.

SUPPLEMENTARY FIGURE S3

Leave-one-out plots of the MR analyses (IVW model) for the association of 
PLR and delirium.

SUPPLEMENTARY FIGURE S4

Leave-one-out plots of the MR analyses (IVW model) for the association of 
LMR and delirium.
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