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Purpose: Predicting 24-hour peak and average intraocular pressure (IOP) is 
essential for the diagnosis and management of glaucoma. This study aimed to 
develop and assess a machine learning model for predicting 24-hour peak and 
average IOP, leveraging advanced techniques to enhance prediction accuracy. 
We  also aimed to identify relevant features and provide insights into the 
prediction results to better inform clinical practice.

Methods: In this retrospective study, electronic medical records from January 
2014 to May 2024 were analyzed, incorporating 24-hour IOP monitoring data 
and patient characteristics. Predictive models based on five machine learning 
algorithms were trained and evaluated. Five time points (10:00 AM, 12:00  PM, 
2:00  PM, 4:00  PM, and 6:00  PM) were tested to optimize prediction accuracy 
using their combinations. The model with the highest performance was selected, 
and feature importance was assessed using Shapley Additive Explanations.

Results: This study included data from 517 patients (1,034 eyes). For predicting 
24-hour peak IOP, the Random Forest Regression (RFR) model utilizing 
IOP values at 10:00  AM, 12:00  PM, 2:00  PM, and 4:00  PM achieved optimal 
performance: MSE 5.248, RMSE 2.291, MAE 1.694, and R2 0.823. For predicting 
24-hour average IOP, the RFR model using IOP values at 10:00  AM, 12:00  PM, 
4:00  PM, and 6:00  PM performed best: MSE 1.374, RMSE 1.172, MAE 0.869, and 
R2 0.918.

Conclusion: The study developed machine learning models that predict 24-
hour peak and average IOP. Specific time point combinations and the RFR 
algorithm were identified, which improved the accuracy of predicting 24-hour 
peak and average intraocular pressure. These findings provide the potential for 
more effective management and treatment strategies for glaucoma patients.
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1 Introduction

Glaucoma, a leading cause of global blindness (1–3), underscores 
intraocular pressure (IOP) as the primary modifiable risk factor in its 
diagnosis and progression, as evidenced by numerous randomized 
clinical trials (4–7). IOP exhibits significant variation over the 24-hour 
cycle (8–10), making reliance on office-hour measurements 
insufficient for accurately characterizing its dynamics in glaucoma 
patients (11, 12). Studies have shown that nearly two-thirds of patients 
experience peak IOP outside of regular clinic hours, often occurring 
nocturnally (8–10). Therefore, comprehensive assessment of IOP 
parameters-including average, peak, and fluctuations-before and after 
interventions is crucial for evaluating therapy efficacy.

Traditional methods for 24-hour IOP monitoring typically involve 
hospitalization and spaced measurements, presenting logistical 
challenges such as increased patient burden, heightened medical 
workload, and limited feasibility in routine clinical settings. In 2009, 
Leonardi et al. (13) introduced a disposable contact lens sensor (CLS) 
enabling continuous IOP monitoring (Sensimed AG, Lausanne, 
Switzerland). However, this technology provides IOP readings in 
arbitrary units rather than millimeters of mercury (mmHg), hindering 
direct comparison with standard measurements (14). Zhang et al. (15) 
recently reported continuous 24-hour IOP monitoring in Chinese 
adults using mmHg, offering new insights into ocular physiology (15). 
Despite advancements in monitoring devices, these innovations 
exacerbate patient burdens, inflate medical costs, and restrict 
widespread adoption.

Previous studies, such as those conducted by Mosaed et al. (16), 
Fogagnolo et  al. (17), and Leonardo et  al. (18) have significantly 
advanced our understanding of the relationship between daytime and 
nighttime intraocular pressure (IOP) for predicting 24-hour IOP 
dynamics. The findings underscore the potential utility of using 
daytime IOP measurements to estimate nocturnal IOP peaks. 
However, traditional linear analysis methods may not fully capture the 
intricate nonlinear relationships inherent in IOP fluctuations, which 
could limit the accuracy and reliability of predictions.

Machine learning represents a subset of artificial intelligence that 
enables computer systems to learn and improve performance 
autonomously through data and algorithms, without explicit 
programming. The integration of machine learning technologies in 
our research provides robust tools for more precise prediction and 
analysis of complex IOP dynamics. Unlike traditional linear methods, 
machine learning algorithms excel in capturing complex nonlinear 
relationships, thereby enhancing the accuracy and reliability of 
IOP predictions.

This study aims to enhance the prediction accuracy of 24-hour 
peak and average intraocular pressure (IOP) using advanced machine 
learning algorithms. Data were collected from patients diagnosed with 
glaucoma suspects (GS), primary angle-closure glaucoma (PACG), 
and primary open-angle glaucoma (POAG) treated at the Fifth 
People’s Hospital of Shanghai, affiliated with Fudan University, 
between January 2014 and May 2024. The study explores the 
relationships between daytime IOP, sex, age, central corneal thickness 
(CCT), body mass index (BMI), blood pressure, ocular perfusion 
pressure, spherical equivalent (SE), use of glaucoma drugs, and 
24-hour peak and average IOP.

Various combinations of five daytime IOP measurement time 
points-10:00 AM, 12:00 PM, 2:00 PM, 4:00 PM, and 6:00 PM-were 

systematically evaluated to identify the optimal subset for maintaining 
high predictive accuracy. Rigorous evaluations of five machine 
learning algorithms were conducted to determine the most effective 
combination of algorithms and features.

The best-performing model was selected based on these 
evaluations. Feature importance was assessed using Shapley Additive 
Explanations to provide detailed insights into each feature’s 
contribution to predictive accuracy. The study aims to develop a 
machine learning prediction model capable of accurately forecasting 
24-hour peak and average IOP, thereby improving the efficiency and 
effectiveness of glaucoma management strategies.

2 Materials and methods

2.1 Data collection

Electronic medical records (EMRs) were gathered, containing 
24-hour IOP monitoring data and basic patient demographics such as 
sex, age, central corneal thickness (CCT), and blood pressure. 
Inclusion criteria comprised patients aged 18 to 85 years, 
encompassing both sex, diagnosed with GS, PACG, or POAG 
according to the American Academy of Ophthalmology guidelines 
(19–21). Exclusion criteria encompassed patients who underwent 
24-hour IOP monitoring in only one eye, had a history of ophthalmic 
surgery, other types of glaucoma, or concurrent corneal diseases.

2.2 Ethical statement

This study adheres to the principles outlined in the Helsinki 
Declaration and has received approval from the Ethics Committee of 
Shanghai Fifth People’s Hospital, affiliated with Fudan University 
(Ethics Approval No. 083). Given the retrospective nature of the study, 
the requirement for informed consent was waived.

2.3 Data preprocessing

2.3.1 Dataset formation
The 24-hour IOP monitoring was conducted under inpatient 

conditions, commencing at 10:00 AM on the first day and continuing 
with measurements taken every 2 h until 8:00 AM the following day. 
Specific measurement times were as follows: 10:00 AM, 12:00 PM 
(noon), 2:00 PM, 4:00 PM, 6:00 PM, 8:00 PM, 10:00 PM, 12:00 AM 
(midnight), 2:00 AM, 4:00 AM, 6:00 AM, and 8:00 AM. Initiating 
monitoring at 10:00 AM ensured the capture of a complete 24-hour 
cycle of IOP data within a standard clinical schedule, effectively 
covering both daytime and nighttime periods. Each eye underwent a 
minimum of three measurements, and if the fluctuation in eye 
pressure among these measurements did not exceed 3 mmHg, the 
average value was computed for the respective time point.

Systolic blood pressure (SBP) and diastolic blood pressure (DBP) 
were measured using a brachial Mercury sphygmomanometer 
(GB3053-1993) on the upper left arm, with subjects seated for at least 
3 min prior to measurement. Nursing staff expertly recorded 
parameters such as age, sex, height, weight, and blood pressure at 
10:00 AM following patient admission.
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The mean arterial pressure (MAP) was calculated using the 
formula: MAP = DBP + 1/3 (SBP - DBP). The mean ocular perfusion 
pressure (MOPP) was determined by the equation: MOPP = 2/3 (MAP - 
IOP). The systolic ocular perfusion pressure (SOPP) was calculated as 
SOPP = SBP - IOP, and the diastolic ocular perfusion pressure (DOPP) 
was calculated as DOPP = DBP - IOP. In these formulas, MAP, SBP, and 
DBP represent the mean arterial pressure, systolic blood pressure, and 
diastolic blood pressure, respectively, while IOP denotes the intraocular 
pressure. Throughout the study, blood pressure readings were 
consistently taken at 10:00 AM during the patients’ hospitalization. 
MOPP, SOPP and DOPP were calculated using the recorded blood 
pressure value at 10:00 AM and the simultaneous IOP measurement.

Intraocular pressure (IOP) was measured using non-contact 
tonometry (CT-80A, Topcon, Japan) with patients in a seated position. 
Central corneal thickness (CCT) was measured using a non-contact 
specular microscope (SP-3000P, Topcon Corporation, Tokyo, Japan). 
Refractive error (RE) was assessed with an automated vision tester 
(TOPCON, CV-5000), and the cup-to-disc (C/D) ratio was evaluated 
using an optical coherence tomography scanner (Cirrus OCT 4000). 
Intraocular pressure (IOP) values, RE, C/D ratio, and central corneal 
thickness (CCT) measurements were conducted by experienced 
physicians. Each parameter was measured three times per instance, 
with the average value recorded for analysis.

The dataset was partitioned into two subsets: 80% of the data 
served as the training set, while the remaining 20% was reserved for 
testing to evaluate model accuracy. To prevent data leakage and ensure 
robust model development in our machine learning workflow, 
we randomly divided the dataset into training and testing sets at the 
individual level, with 80% allocated for training and 20% for testing.

2.3.2 Filling the missing items
In our study, a total of 96 instances of missing CCT (central 

corneal thickness) data were identified. We addressed these missing 
values by using mean imputation of the feature.

2.3.3 Data normalization
Standardization was implemented to ensure consistency in feature 

scales, aiding in algorithm optimization for improved convergence 
and model performance. Sex was encoded into numerical values, 
streamlining data processing for algorithms and eliminating the 
necessity for extra conversion or preprocessing steps. Specifically, Sex 
was represented as 1 for males and 2 for females.

2.4 Feature description and selection

Through an extensive literature review, we identified key factors 
that may influence the onset and progression of glaucoma. 
Considering practicality in data collection, we carefully selected the 
following variables for our study: age (22–24), sex (25–27), CCT (28–
31), C/D ratio (23, 31), blood pressure (32–34), ocular perfusion 
pressure (6, 35–37), usage details of anti-glaucoma eye drops 
(including number and duration), myopic refractive error (RE) (38, 
39), Body Mass Index (BMI) (40, 41), and IOP measurements taken 
between 10 AM and 4 PM.

It is important to note that for our investigation, blood pressure 
and ocular perfusion pressure were specifically recorded at 10 AM, 
ensuring consistency in these assessments.

From our review, it became evident that studies have utilized 
varying time points for monitoring IOP (8–10, 16–18). To enhance 
predictive accuracy while minimizing the number of time points 
considered, we systematically investigated multiple combinations of 
IOP values at specific intervals throughout the day. These intervals 
included 10:00 AM, 12:00 PM, 2:00 PM, 4:00 PM, and 6:00 PM, 
covering different phases of the 24-hour period. These combinations 
were categorized into three main groups:

Group A (Three time points):
 - A1 (10:00 AM, 12:00 PM, 2:00 PM).
 - A2 (10:00 AM, 12:00 PM, 4:00 PM).
 - A3 (10:00 AM, 12:00 PM, 6:00 PM).
 - A4 (10:00 AM, 2:00 PM, 4:00 PM).
 - A5 (10:00 AM, 2:00 PM, 6:00 PM).
 - A6 (10:00 AM, 4:00 PM, 4:00 PM).
 - A7 (12:00 PM, 2:00 PM, 4:00 PM).
 - A8 (12:00 PM, 2:00 PM, 6:00 PM).
 - A9 (12:00 PM, 4:00 PM, 6:00 PM).
 - A10 (2:00 PM, 4:00 PM, 6:00 PM).

Group B (Four time points):
 - B1 (10:00 AM, 12:00 PM, 2:00 PM, 4:00 PM).
 - B2 (10:00 AM, 12:00 PM, 2:00 PM, 6:00 PM).
 - B3 (10:00 AM, 12:00 PM, 4:00 PM, 6:00 PM).
 - B4 (10:00 AM, 2:00 PM, 4:00 PM, 6:00 PM).
 - B5 (12:00 PM, 2:00 PM, 4:00 PM, 6:00 PM).

Group C (Five time points):
 - C (10:00 AM, 12:00 PM, 2:00 PM, 4:00 PM, 6:00 PM).

The correlation between each feature and both 24-hour peak IOP 
and average IOP was assessed, with a specific focus on selecting 
features demonstrating statistically significant relationships with these 
target variables (p < 0.05).

2.5 Model construction and methodology

This study employed five different machine learning algorithms: 
Logistic Regression (LR), Nearest Neighbors Regression (NNR), 
Random Forest Regression (RFR), Support Vector Regression (SVR) 
and K-Nearest Neighbors Regression (KNN). These algorithms were 
chosen to comprehensively evaluate their performance in predicting 
intraocular pressure, aiming to identify the most suitable models for 
achieving the study’s objectives. Through comparative analysis of their 
predictive capabilities, we aimed to understand their strengths and 
limitations in intraocular pressure prediction and select the optimal 
model to enhance prediction accuracy.

The model training process for predicting 24-hour peak and 
average intraocular pressure, as depicted in Figure 1, began with 
retrieving electronic medical records of 582 patients who underwent 
24-hour intraocular pressure monitoring at the Fifth People’s Hospital 
of Fudan University between January 2014 and May 2024. After 
applying inclusion and exclusion criteria, data from 65 patients were 
excluded, leaving a dataset of 514 patients for model construction. 
Our study aims to explore how different combinations of time points 
(10:00 AM, 12:00 PM, 2:00 PM, 4:00 PM, and 6:00 PM) impact 
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prediction models. To ensure precision, we employ combinations of 
three, four, and five time points to construct our predictive models. 
The intraocular pressure readings were categorized into three groups 
based on combinations of measurement time points: Group A 
included 10 different combinations of any three time points, Group 
B consisted of 5 different combinations of any four time points, and 
Group C encompassed a single combination of all five time points. 
The dataset was then split into a training set (80% of the data) and a 
testing set (20% of the data). Five algorithms were utilized to develop 
predictive models using the training data. Subsequently, the 
performance of these models was evaluated using the testing set, and 
evaluation metrics were obtained to gauge their predictive accuracy.

2.6 Model evaluation

The performance evaluation of machine learning models typically 
involves multiple parameters and metrics, which contribute to 
assessing the model’s accuracy, generalization ability, and stability. In 
this study, the machine learning evaluation parameters focused on 
are Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), and R-squared (R2). These evaluation 
parameters provide a comprehensive assessment of the model’s 
performance in regression tasks, offering insights into its predictive 
capabilities for the target variable.

2.7 Statistical analysis

Sex data and the number of anti-glaucoma drugs used are 
discrete variables; therefore, Spearman correlation was used to 
analyze their relationship with the 24-hour average and peak 
IOP. Continuous variables such as IOP values, blood pressure, 
ocular perfusion pressure, age, C/D ratio, BMI, and CCT were 
analyzed using Pearson correlation. The correlation analysis was 
conducted using the Scipy library in Python. The model training 
and evaluation were carried out using the Sklearn library in Python.

3 Results

3.1 Demographic characteristics and data 
distribution of the training and testing sets

The demographic characteristics of the Overall Data, the Training 
Set and the Testing Set are demonstrated in Table 1. Data from 517 
patients (1,034 eyes) were included in the study, obtained from 
electronic medical records. In this study, daytime IOP refers to 
measurements taken between 10:00 AM and 6:00 PM. Additionally, 
during our data preprocessing, we  performed imputation for 96 
missing corneal thickness data points.

FIGURE 1

Flow of model construction.
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Variables in Table 1 include ‘y’ for year, ‘n’ for number, ‘D’ for 
diopters, ‘number of drugs’ indicating the count of anti-glaucoma 
medications used, and ‘duration of drugs’ specifying the duration of 
administration for these medications.

3.2 Analysis of 24-hour intraocular 
pressure distribution using box plots

The box plot for 24-hour IOP is presented in Figure 2, showing 
the 24-hour IOP data from the training and validation sets measured 
every 2 h, starting from 10:00 AM on the first day until 8:00 AM on 

the second day, resulting in a total of 12 IOP readings. The box plot 
illustrates the distribution of intraocular pressure (IOP) values at 
different time points. The central line within each box represents the 
median IOP, with the upper and lower boundaries indicating the 
third quartile (Q3) and first quartile (Q1), respectively, and the 
length of the box representing the range of IOP distribution 
(Figure 2).

From the box plot, it is evident that the lowest levels of IOP, 
including maximum, median, and minimum values, occur at 8:00 PM 
and 10:00 PM. Conversely, the highest IOP levels are observed at 
2:00 AM and 4:00 AM. Additionally, notably high outlier values are 
apparent between midnight and 6:00 AM, highlighting significant IOP 
fluctuations during these hours.

TABLE 1 Demographic and clinical information of the patients on the study.

Characteristics Overall data Training set Testing set

Number of eyes 1,034 828 206

Number of participants 517 414 103

Mean age, y(SD) 51.62 ± 16.86 51.85 ± 17.05 50.66 ± 16.03

Male–female subjects, n (%) 300/217, (58.03/41.97) 240/174, (57.97/42.03) 60/43, (58.25/41.75)

C/D ratio 0.62 ± 0.17 0.63 ± 0.19 0.58 ± 0.18

Mean CCT (um)(SD) 529.2 ± 34.07 527.56 ± 33.83 535.78.92 ± 35.51

Mean BMI (kg/m2), (SD) 23.54 ± 2.85 23.61 ± 2.61 23.26 ± 3.23

Mean RE(D), (SD) −2.52 ± 3.26 −2.50 ± 3.29 −2.61 ± 3.22

Diagnosis by eye, n (%)

  Glaucoma suspect 626, (60.54) 500, (60.39) 126, (61.16)

  Primary open-angle glaucoma 320, (30.95) 259, (31.28) 61, (29.61)

  Primary angle-closure glaucoma 88, (8.51) 69, (8.33) 19, (9.23)

Number of drugs by eye, n (%)

  None, n (%) 715, (69.15) 577, (69.69) 138, (66.99)

  1, n (%) 230, (22.24) 183, (22.1) 47, (22.81)

  2, n (%) 79, (7.64) 61,(7.36) 18, (8.73)

  3, n (%) 8, (0.78) 5, (0.61) 3, (1.47)

  4, n (%) 2, (0.19) 2, (0.24) 0, (0)

Mean duration of drugs(y), (SD) 0.32 ± 0.75 0.34 ± 0.77 0.24 ± 0.69

Mean IOP10(mmHg)(SD) 18.49 ± 4.69 18.38 ± 4.76 18.93 ± 4.40

Mean IOP12(mmHg)(SD) 18.23 ± 4.70 18.13 ± 4.74 18.62 ± 4.55

Mean IOP14(mmHg)(SD) 17.75 ± 4.67 17.66 ± 4.73 18.09 ± 4.42

Mean IOP16(mmHg)(SD) 17.78 ± 4.69 17.72 ± 4.76 18.02 ± 4.40

Mean IOP18(mmHg)(SD) 17.67 ± 4.58 17.62 ± 4.6 17.87 ± 4.48

24-hour peak IOP (mmHg)(SD) 22.17 ± 5.67 22.08 ± 5.76 22.54 ± 5.33

24-hour average IOP (mmHg)(SD) 18.24 ± 4.34 18.15 ± 4.41 18.60 ± 4.05

24-fluctuation IOP (mmHg)(SD) 7.04 ± 3.12 7.01 ± 3.12 7.16 ± 3.14

Mean SBP10am(mmHg)(SD) 121.4 ± 15.18 121.79 ± 15.28 119.83 ± 14.79

Mean DBP10am(mmHg)(SD) 75.32 ± 10.04 75.4 ± 10.28 75.00 ± 9.08

Mean MAP10am(mmHg)(SD) 90.68 ± 10.45 90.87 ± 10.72 89.94 ± 9.38

Mean SOPP10am(mmHg)(SD) 102.90 ± 15.67 103.6 ± 15.98 100.09 ± 14.42

Mean DOPP10am(mmHg)(SD) 56.82 ± 10.80 57.01 ± 10.92 56.07 ± 10.32

Mean MOPP10am(mmHg)(SD) 41.85 ± 7.99 42.05 ± 8.04 41.07 ± 7.79
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3.3 Correlation analysis of features

The results of the correlation analysis between various features 
and the 24-hour peak IOP are presented in Table  2. The analysis 
indicates that sex, C/D ratio, MOPP10am, SOPP10am, and 
DOPP10am are negatively correlated with 24-hour average IOP, with 
statistical significance (p < 0.05). BMI, DBP10am, CCT, IOP10am, 
IOP2pm, IOP4pm, and IOP6pm show a positive correlation with 
24-hour peak IOP, also statistically significant (p < 0.05). However, age, 
RE, duration of anti-glaucoma drug use, number of anti-glaucoma 
drugs used, SBP10am, and MAP10am exhibit no statistically 
significant correlation with 24-hour peak IOP. Based on these results, 
these 12 features (p < 0.05) were utilized in constructing the predictive 
model for 24-hour peak IOP.

The results of the correlation analysis between various features 
and the 24-hour average IOP are presented in Table 3. The analysis 
indicates that sex, the number of anti-glaucoma drugs used, C/D ratio, 
MOPP10am, SOPP10am, and DOPP10am are negatively correlated 
with 24-hour average IOP, with statistical significance (p < 0.05). BMI, 
CCT, IOP10am, IOP2pm, IOP4pm, and IOP6pm show a positive 
correlation with 24-hour average IOP, also statistically significant 
(p < 0.05). However, age, RE, duration of anti-glaucoma drug use, 
SBP10am, DBP10am, and MAP10am exhibit no statistically 
significant correlation with 24-hour average IOP. Based on these 
findings, these 12 features (p < 0.05) were used in developing the 
predictive model for 24-hour average IOP.

“*” indicates results with p < 0.05, “Number of drugs” represents 
the count of anti-glaucoma medications used, and “duration of drugs” 

indicates the duration of administration for these medications in 
Tables 2, 3.

3.4 Comparative performance of five 
algorithms based on different time point 
combinations

The performance of the 24-hour peak IOP prediction models 
using the best-performing time point combinations in Groups A, 
B, and C across five algorithms is illustrated in Table  4. The 
optimal combinations were A5 and A8 for Group A, B2 for Group 
B, and C for Group C. The combination B2 (10:00 AM, 12:00 PM, 
2:00 PM, and 6:00 PM) using the RFR algorithm demonstrated the 
highest overall performance in predicting 24-hour peak IOP, 
achieving an MSE of 5.248, RMSE of 2.291, MAE of 1.694, and R2 
value of 0.823.

The performance of the 24-hour average IOP prediction models 
using the best-performing time point combinations in Groups A, B, 
and C across five algorithms is illustrated in Table 5. The optimal 
combinations were A8 for Group A, B3 for Group B, and C for Group 
C. The combination B3 (10:00 AM, 12:00 PM, 4:00 PM, and 6:00 PM) 
using the RFR algorithm demonstrated the highest overall 
performance in predicting 24-hour average IOP, achieving an MSE of 
1.374, RMSE of 1.172, MAE of 0.869, and R2 value of 0.918.

Summarizing the results of Tables 4, 5, the RFR algorithm 
consistently outperformed other algorithms in predicting both the 
24-hour peak IOP and average IOP. Time point combination B2 

FIGURE 2

The box plot for 24-hour IOP.
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demonstrated the highest values for peak IOP, while combination B3 
exhibited the highest values for average IOP.

3.5 Scatter plots and residual plots for 
optimal time point combinations and 
algorithms

The performance of models with the best time point combinations 
for predicting IOP, both utilizing the RFR algorithm, is illustrated in 
Figure  3. The scatter plot for the RFR model with time point 
combination B2, which predicts 24-hour peak IOP, is shown, as 
illustrated in Figure 3A. The corresponding residuals for this model are 
displayed in Figure 3C. The scatter plot in Figure 3A demonstrates that 
the predicted values are closely aligned with the actual peak IOP values, 
while Figure 3C indicates that the residuals are distributed around zero, 
with an R2 value of 0.823, suggesting that most residuals are near zero.

Similarly, the scatter plot for the RFR model using time point 
combination B3 to predict 24-hour average IOP is presented in 
Figure 3B. The residuals for this model are shown in Figure 3D. The 
scatter plot in Figure  3B reflects a close alignment between the 
predicted and actual average IOP values, and Figure 3D shows that the 
residuals are uniformly distributed around zero, with an R2 value of 
0.918. The histogram on the right of Figure 3D further indicates that 
a substantial proportion of residuals are near zero.

3.6 Feature importance

We utilized SHAP (Shapley Additive Explanations) to assess the 
importance of features in predicting both 24-hour peak and average 

IOP. The two models employed different sets of 12 features. The 
analysis focused on the top-performing models, each integrating 
specific time point combinations with the RFR algorithm.

The SHAP values for the model predicting 24-hour peak IOP, 
which employed the B2 time point combination, are illustrated in 
Figure  4A. Among the features, IOP measurements at 6:00 PM, 
2:00 PM, 12:00 PM, and 10:00 AM demonstrated the highest average 
absolute SHAP values, indicating their significant predictive 
importance. Other features such as CCT, BMI, C/D ratio, SOPP10am, 
sex, MOPP10am, DBP10am, and DOPP10am had lower average SHAP 
values, reflecting their relatively lesser impact on the 
model’s predictions.

The SHAP values for the model predicting 24-hour average IOP, 
utilizing the B3 time point combination, are presented in 
Figure  4B. Among the features, IOP measurements at 4:00 PM, 
6:00 PM, 12:00 PM, and 10:00 AM had the highest average absolute 
SHAP values, indicating their significant contribution to the model’s 
predictive power. Other features, including CCT, BMI, the number of 
drugs, MOPP10am, SOPP10am, DOPP10am, C/D ratio, and sex, also 
showed predictive capability but with lower average SHAP values, 
signifying their relatively lesser importance.

We selected two patients for analysis: one with the highest 24-hour 
IOP fluctuation of 31 mmHg and the other with the lowest IOP 
fluctuation of 1.69 mmHg. SHAP force plots, which provide 
individualized explanations for IOP predictions based on test set 
patient samples, are presented in Figures 5A–D. In these plots, the blue 
bars on the right represent features that contribute to lower IOP 
predictions, while the red bars on the left correspond to features that 
contribute to higher IOP predictions.

The predictions for peak and mean IOP in patients with low 24-hour 
IOP fluctuation, with predicted values of 16.17 and 14.97 respectively, are 
presented in Figures 5A,B. Key features influencing peak IOP predictions 
include IOP measurements at different times (such as 6:00 PM, 2:00 PM, 
and 12:00 PM), as well as CCT and BMI. These features are shown in 
blue, indicating that they collectively contribute to lower predicted IOP 
values. For mean IOP predictions, influential factors include IOP 
measurements at 4:00 PM, 12:00 PM, and 6:00 PM, along with CCT, all 
shown in blue, leading to lower mean IOP predictions.

The predictions for peak and mean IOP in patients with high 
24-hour IOP fluctuation, with predicted values of 40.66 and 28.28, 
respectively, are shown in Figures 5C,D. Key factors affecting peak IOP 
predictions include higher IOP values at 10:00 AM, 12:00 PM, and 
2:00 PM, and thinner CCT, which are displayed in red, indicating that 
these features lead to higher predicted IOP values. For mean IOP 
predictions, influential factors include higher SOPP at 10:00 AM, 
thinner CCT, and higher IOP measurements at 12:00 PM, 6:00 PM, and 
4:00 PM, also shown in red, contributing to higher mean IOP predictions.

4 Discussion

4.1 Analysis of correlation findings

The significant correlations identified in our study highlight the 
complex interplay of factors influencing 24-hour peak and average 
intraocular pressure (IOP) in glaucoma management. Key findings 
include the strong correlation of specific IOP measurement times with 
peak and average IOP, sex differences indicating higher IOP in males 

TABLE 2 Correlation analysis results of factors and 24-hour peak IOP.

Feature Correlation p Value

Age −0.050 0.119

Sex −0.188 <0.0001*

BMI 0.134 <0.0001*

RE 0.051 0.115

Duration of drugs −0.048 0.139

Number of drugs −0.023 0.478

SBP10am 0.012 0.710

DBP10am 0.066 0.040*

MAP10am 0.048 0.140

CCT 0.435 <0.0001*

C/D ratio −0.141 <0.0001*

IOP10am 0.781 <0.0001*

IOP12pm 0.806 <0.0001*

IOP2pm 0.825 <0.0001*

IOP4pm 0.842 <0.0001*

IOP6pm 0.837 <0.0001*

MOPP10am −0.423 <0.0001*

SOPP10am −0.238 <0.0001*

DOPP10am −0.296 <0.0001*
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(15, 25–27), and diastolic blood pressure (32–34) on IOP, and the 
importance of ocular perfusion pressure (6, 35–37). Additionally, anti-
glaucoma medications effectively reduce average IOP, and higher BMI 
(40, 41) is associated with increased IOP.

Our study demonstrates a positive correlation between CCT and 
both 24-hour peak IOP and average IOP (p < 0.05). While thin CCT is 
commonly recognized as a risk factor for glaucoma (28–31), this 
finding appears contradictory to our results. This discrepancy may 
stem from differences in IOP measurement methods. Previous research 
(42) has shown that IOP values measured by NCT are generally higher 
than those measured by Goldmann Applanation Tonometry (GAT), 
with a difference of 0.95 ± 2.03 mmHg, suggesting that NCT may 
overestimate IOP values. Our study found that thicker CCT was 
associated with higher IOP measurements, which may be due to NCT’s 
heightened sensitivity to corneal thickness, leading to higher readings 
for thicker corneas. While GAT is considered the gold standard for IOP 
measurement (43, 44), it has certain drawbacks. GAT requires a skilled 
technician or ophthalmologist, along with a slit lamp, fluorescein 
staining, and topical anesthesia, which adds to the complexity of the 
procedure and increases the risk of infection. Additionally, if the 
examiner holds the eyelids during the measurement, this may lead to 
artificially elevated IOP readings. Despite these limitations, GAT 
remains highly reliable and widely accepted. In contrast, NCT 
measures IOP using an air puff, which avoids direct contact with the 
cornea, thereby reducing the risk of infection and eliminating the need 
for anesthesia and staining. Our retrospective study employing NCT 
revealed that it is significantly influenced by CCT, indicating that 
special attention should be given to CCT factors when using NCT to 
measure IOP to minimize measurement errors. Future research should 
further explore the comparative effectiveness of different measurement 

TABLE 5 Performance of five algorithms in predicting average IOP: best 
time points from groups A, B, and C.

Performance 
metrics

LR NNR RFR SVR KNN

A8 (12:00 PM, 2:00 PM, 6:00 PM)

  MSE 1.76 2.116 1.476 1.819 3.144

  RMSE 1.327 1.455 1.215 1.349 1.773

  MAE 1.006 1.093 0.919 1.019 1.385

  R2 0.895 0.874 0.912 0.892 0.813

B3 (10:00 AM, 12:00 PM, 4:00 PM, 6:00 PM)

  MSE 1.547 2.726 1.374 1.602 2.891

  RMSE 1.244 1.651 1.172 1.266 1.7

  MAE 0.955 1.318 0.869 0.965 1.306

  R2 0.908 0.838 0.918 0.905 0.828

C (10:00 AM, 12:00 PM, 2:00 PM, 4:00 PM, 6:00 PM)

  MSE 1.459 1.99 1.413 1.471 2.432

  RMSE 1.208 1.411 1.189 1.213 1.559

  MAE 0.961 1.123 0.929 0.951 1.232

  R2 0.913 0.882 0.916 0.913 0.855

LR, logistic regression; NNR, neural network regression; RFR, random forest regression; 
SVR, support vector regression; and KNN, k-nearest neighbors. MSE, mean squared error; 
RMSE, root mean squared error; MAE, mean absolute error; and R2, R-squared.

TABLE 3 Correlation analysis results of factors and 24-hour average IOP.

Feature Correlation p Value

Age −0.045 0.168

Sex −0.158 <0.0001*

BMI 0.143 <0.0001*

RE 0.009 0.771

Duration of drugs −0.033 0.305

Number of drugs −0.076 0.019*

SBP10am −0.006 0.849

DBP10am 0.041 0.200

MAP10am 0.023 0.472

CCT 0.482 <0.0001*

C/D ratio −0.187 <0.0001*

IOP10am 0.853 <0.0001*

IOP12pm 0.876 <0.0001*

IOP2pm 0.901 <0.0001*

IOP4pm 0.914 <0.0001*

IOP6pm 0.916 <0.0001*

MOPP10am −0.486 <0.0001*

SOPP10am −0.278 <0.0001*

DOPP10am −0.352 <0.0001*

TABLE 4 Performance of five algorithms in predicting peak IOP: best time 
points from groups A, B, and C.

Performance 
metrics

LR NNR RFR SVR KNN

A5 (10:00 AM, 2:00 PM, 6:00 PM)

  MSE 7.032 8.628 5.905 7.807 8.724

  RMSE 2.652 2.937 2.430 2.794 2.954

  MAE 1.988 2.196 1.824 1.955 2.229

  R2 0.762 0.708 0.800 0.736 0.705

A8 (12:00 PM, 2:00 PM, 6:00 PM)

  MSE 6.880 6.878 5.920 7.621 7.943

  RMSE 2.623 2.623 2.433 2.761 2.818

  MAE 1.952 1.938 1.808 1.894 2.144

  R2 0.767 0.768 0.800 0.742 0.732

B2 (10:00 AM, 12:00 PM, 2:00 PM, 6:00 PM)

  MSE 6.881 9.993 5.248 7.708 7.563

  RMSE 2.623 3.161 2,291 2.776 2.75

  MAE 1.952 2.786 1.694 1.896 2.092

  R2 0.767 0.662 0.823 0.739 0.744

C (10:00 AM, 12:00 PM, 2:00 PM, 4:00 PM, 6:00 PM)

  MSE 6.758 7.496 5.925 7.289 7.134

  RMSE 2.600 2.738 2.434 2.7 2.671

  MAE 1.974 1.908 1.776 1.861 2.000

  R2 0.772 0.747 0.800 0.754 0.759

LR, logistic regression; NNR, neural network regression; RFR, random forest regression; 
SVR, support vector regression; and KNN, k-nearest neighbors. MSE, mean squared error; 
RMSE, root mean squared error; MAE, mean absolute error; and R2, R-squared.
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methods and how to optimize IOP measurement in clinical settings to 
enhance early glaucoma diagnosis and management.

Studies indicate that a larger C/D ratio is a significant risk factor 
for disease progression in primary open-angle glaucoma (23, 31). Our 
research found a negative correlation between the C/D ratio and both 
24-hour peak IOP and average IOP. This result supports Stewart et al. 
(45), who linked lower average treated IOP levels with progressive 
optic disc damage. This may be explained by the fact that patients with 
a larger C/D ratio often present with more advanced glaucoma and are 
consequently treated with a greater number of anti-glaucoma 
medications, which can result in lower IOP due to more aggressive 
therapeutic interventions.

Although age is recognized as a major risk factor for glaucoma 
(22–24), our study did not demonstrate a significant correlation 
between age and 24-hour peak or average IOP. We hypothesize that this 
may be due to selection bias in our sample population. In our dataset, 
younger individuals were predominantly glaucoma suspects who had 
not yet been diagnosed or initiated IOP-lowering treatment, potentially 
leading to greater IOP variability. In contrast, older individuals were 
mostly diagnosed glaucoma patients already receiving treatment, 
resulting in more stable IOP levels. These differences in cohort 
characteristics may have confounded the potential association between 
age and IOP. Future studies could address this limitation by including 
a larger and more balanced sample of both untreated and treated 

glaucoma patients, which may provide a clearer understanding of the 
true relationship between age and IOP.

Research has indicated that for each diopter (D) increase in 
myopia, the risk of glaucoma increases by approximately 20%, with a 
notably non-linear relationship observed, especially in cases of high 
myopia (46). However, our study did not find a significant correlation 
between RE and 24-hour peak IOP or average IOP (p < 0.05). This 
result may be  attributed to the characteristics of our sample, 
particularly the relatively low proportion of patients with high 
myopia. Given the non-linear nature of myopia’s impact on glaucoma 
risk, future research should further explore the effects of varying 
degrees of myopia on IOP and glaucoma risk.

4.2 Algorithm selection for IOP prediction

In our model training, we  evaluated five algorithms-Logistic 
Regression (LR), Neural Network Regression (NNR), Random Forest 
Regression (RFR), Support Vector Regression (SVR), and k-Nearest 
Neighbors Regression (KNN)-to assess various data features and 
patterns. Each algorithm has distinct processing methods and 
assumptions that capture different aspects of the data. By comparing 
their performances, we aimed to identify the most effective algorithm 
for improving the accuracy and stability of 24-hour IOP predictions.

FIGURE 3

Performance of the best-performing models in predicting 24-hour IOP. (A) Peak IOP scatter plot and fitted curve for time point combination B2 with 
RFR model. (B) Average IOP scatter plot and fitted curve for time point combination B3 with RFR model. (C) Residuals for peak IOP model using time 
point combination B2 with RFR model. (D) Residuals for average IOP model using time point combination B3 with RFR model.
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Our results indicate that RFR outperformed the other 
algorithms in predicting both 24-hour peak and average IOP. This 
performance highlights RFR’s effectiveness in capturing the 
complexities of IOP fluctuations throughout the day. This 
performance is likely due to RFR’s ensemble learning approach, 
which reduces overfitting by combining multiple decision trees and 
enhances prediction accuracy. Additionally, RFR handles nonlinear 
relationships and high-dimensional data effectively, demonstrating 
stability and robustness.

4.3 Optimal time point combinations for 
predicting 24-hour IOP

Considering that using multiple time points to predict 24-hour 
intraocular pressure (IOP) can enhance prediction accuracy, it also 
increases clinical costs and reduces convenience for patients and 
doctors. Conversely, choosing too few time points may result in 
insufficient data, thereby affecting the accuracy of 24-hour IOP 
predictions. Therefore, this study selected five time points (10:00 AM, 

FIGURE 4

SHAP value analysis for peak and average IOP prediction models. (A) SHAP values for peak IOP prediction model. (B) SHAP values for average IOP 
prediction model.

FIGURE 5

SHAP force plot interpretation of individual prediction results. (A,B) a case with the smallest 24-hour IOP fluctuation (1.69  mmHg) and (C,D) a case with 
the largest 24-hour IOP fluctuation (31.00  mmHg) are presented based on the SHAP force plot. In these plots, the blue bars on the right represent 
features that contribute to a decrease in the predicted IOP values, while the red bars on the left indicate features that lead to an increase in the 
predicted IOP values.
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12:00 PM, 2:00 PM, 4:00 PM, and 6:00 PM) for IOP measurements and 
explored various combinations of these time points.

In predicting 24-hour peak IOP, the combination of 10:00 AM, 
12:00 PM, 2:00 PM, and 6:00 PM (B2) performed the best. For predicting 
24-hour average IOP, the combination of 10:00 AM, 12:00 PM, 4:00 PM, 
and 6:00 PM (B3) also yielded the optimal results. These findings 
suggest that selecting four well-distributed time points can provide the 
best balance between prediction accuracy and clinical feasibility.

4.4 Interpretation of feature importance 
using SHAP in prediction models

In this study, we employed SHAP to evaluate the importance of the 
best models for predicting 24-hour peak IOP and average IOP, as 
shown in Figures 4A,B. We also selected cases with the smallest and 
largest 24-hour IOP variability to further interpret the predictions for 
peak and average IOP using SHAP, as illustrated in Figures 5A–D. The 
results demonstrate that measurements of IOP at specific time points 
significantly impact the prediction of 24-hour IOP, while other features 
have relatively minor effects. Based on these findings, future research 
should explore additional relevant features and consider employing 
alternative machine learning models to enhance predictive 
performance. Furthermore, investigating the physiological mechanisms 
underlying the significance of specific IOP measurement times will 
contribute to a deeper understanding of glaucoma pathophysiology.

4.5 Limitations

Despite our positive findings, our study has several limitations. 
Firstly, our data sources and sample scope are limited, requiring broader 
data validation and external verification to ensure the model’s 
universality and reliability. Additionally, while the Goldmann 
applanation tonometer (GAT) is widely regarded as the standard for 
IOP measurement (43, 44), our retrospective study used the CT-80 
non-contact tonometer (NCT) for 24-hour IOP monitoring. NCT may 
be influenced by corneal characteristics such as thickness and elasticity, 
potentially leading to an overestimation of IOP, especially in patients 
with thicker corneas (23, 29). Therefore, future research should focus 
on improving measurement methods to enhance the accuracy of IOP 
assessments and better understand disease progression. Additionally, 
regarding nocturnal IOP monitoring, Weber et al. observed that supine 
IOP is typically higher than seated IOP due to postural changes affecting 
fluid dynamics (47). Since our study measured nocturnal IOP in the 
seated position, future research should enhance IOP monitoring 
methodologies to better understand nocturnal IOP fluctuations. 
We also appreciate the feedback on the feasibility of implementing 
machine learning models for predicting 24-hour peak and average IOP 
in clinical settings. We  fully recognize that obtaining multiple IOP 
measurements throughout the day is not practical in routine outpatient 
environments due to constraints such as time, manpower, and resources. 
Typically, only 1–2 IOP measurements are obtained during a clinic visit, 
which limits the direct applicability of models requiring more frequent 
measurements. Despite these challenges, our study represents an initial 
step toward bridging the gap between current clinical practices and the 
potential for more comprehensive IOP monitoring.

5 Conclusion

Our study has developed machine learning models capable of 
relatively accurate predictions for 24-hour peak and average 
IOP. These models may offer new insights into glaucoma management. 
We have made progress in balancing cost with prediction accuracy 
while enhancing the interpretability and applicability of the models. 
To further improve the clinical utility of these models, future work 
should focus on identifying the most representative 1–2 IOP 
measurement time points and integrating additional clinical features, 
such as visual field test results and retinal nerve fiber layer (RNFL) 
data, to enhance the models’ predictive power and clinical value. 
Additionally, exploring the integration of these models with home 
monitoring devices represents an important direction for improving 
practical application. Home-based tonometers could enable patients 
to measure their IOP multiple times a day, potentially reducing the 
need for frequent clinic visits. Combining machine learning models 
with these home monitoring tools may provide physicians with more 
comprehensive daily IOP data, which could assist in optimizing 
treatment decisions.
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Due to space constraints, we  have abbreviated the results 
regarding the prediction models for 24-hour peak and average 
intraocular pressure (IOP) using different time point combinations 
(Groups A, B, and C) and five machine learning algorithms. We have 
retained in the main text only the best-performing time point 
combinations from each group across the five algorithms. The 
complete dataset is provided in the Supplementary Table S1 for 
24-hour peak IOP and Supplementary Table S2 for average 
IOP predictions.
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