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Objective: Previous observational studies have suggested associations between 
various inflammatory cytokines with type 2 diabetes mellitus and diabetic 
nephropathy. However, the causal association remains uncertain.

Method: Summary statistics for type 2 diabetes mellitus and diabetic nephropathy 
were obtained from a publicly available genome-wide association study. Data on 
inflammatory cytokines were sourced from a genome-wide association study 
on protein quantitative trait loci. The inverse variance-weighted method was 
applied as the primary method for causal inference. MR-Egger, weighted mode, 
and weighted median method were employed as supplementary analyses. 
Sensitivity analyses were performed to detect heterogeneity and potential 
horizontal pleiotropy in the study.

Result: Genetic evidence indicated that elevated levels of fibroblast growth 
factor 19 levels promoted the occurrence of type 2 diabetes mellitus, and 
increased concentrations of fibroblast growth factor 21 levels, C-C motif 
chemokine 19 levels, eotaxin levels, and interleukin-10 mitigated the risk of 
developing type 2 diabetes mellitus, while type 2 diabetes mellitus did not exert 
a significant influence on said proteins. Elevated levels of tumor necrosis factor 
ligand superfamily member 14 and TNF-related activation-induced cytokine 
were associated with an increased risk of diabetic nephropathy, and increased 
concentrations of interleukin-1-alpha and transforming growth factor-alpha 
were potentially correlated with a diminished risk of diabetic nephropathy. 
Sensitivity analyses further ensure the robustness of our findings.

Conclusion: Mendelian randomization analysis highlights a causal association 
between inflammatory cytokines with type 2 diabetes mellitus and diabetic 
nephropathy, offering valuable evidence and reference for future research.
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1 Introduction

Type 2 diabetes mellitus (T2DM) is a common chronic metabolic 
disease (1). Persistent hyperglycemia in the blood may cause multiple 
system complications, which may pose significant risks to the health 
and life span of patients. Diabetic nephropathy (DN) is a common 
microvascular complication of T2DM, affecting about 40% of patients 
with T2DM (2, 3). It is also a major cause of end-stage renal disease 
(ESRD). Despite advances in treatment, the molecular mechanisms 
underlying DN remain unclear, and current therapies, including 
angiotensin-converting enzyme inhibitors (ACEIs), angiotensin II 
receptor blockers (ARBs), and sodium-glucose cotransporter 2 
inhibitors (SGLT-2i), are primarily symptomatic (4–6). The 
pathogenesis of DN involves multiple factors, including dysregulation 
of kidney signaling pathways that affect metabolism, hemodynamics, 
inflammation, and autophagy, ultimately leading to ESRD (7–10).

Immune response and inflammatory modulators are closely 
related to pancreatic β cell dysfunction and insulin resistance in 
patients with T2DM. Pro-inflammatory cytokines such as 
interleukin-1β (IL-1β) can inhibit insulin secretion and pancreatic 
β cell proliferation by increasing the transcription and secretion of 
chemokines (11). Inhibition of inflammatory factors in diabetic 
mice can effectively protect islet cells and delay the progress of 
hyperglycemia (12). Oxidative stress and inflammation are central 
to the progression of DN. Increased oxidative stress in DN arises 
from an imbalance between hyperglycemia-induced reactive oxygen 
species (ROS) production and the antioxidant defense mechanisms 
(13, 14). DN-induced hemodynamic or metabolic dysfunction 
triggers inflammatory processes, leading to the release of 
chemokines and pro-inflammatory cytokines, such as IL-1β, 
interleukin-6 (IL-6), interleukin-18 (IL-18), and adhesion molecules 
like vascular cell adhesion protein-1 (VCAM-1) and intercellular 
adhesion molecule-1 (ICAM-1) (15, 16). Furthermore, chemokine 
signaling recruits immune cells, including macrophages and T 
lymphocytes, which release additional pro-inflammatory mediators, 

exacerbating renal inflammation (17, 18). ROS not only cause 
oxidative tissue damage but also promote the aggregation of 
inflammatory cells, leading to the production of inflammatory 
cytokines, growth factors, and transcription factors linked to DN 
pathogenesis (19). The infiltration of inflammatory cells, such as 
lymphocytes, neutrophils, and macrophages, is a key driver of 
kidney damage in DN (20). The recruitment and differentiation of 
these immune cells are regulated by various inflammatory cytokines 
(6, 21, 22). For example, upon stimulation by ROS, NF-kB 
translocates to the nucleus, binds to NF-kB binding sites, and 
activates transcription. This leads to the release of adhesion 
molecules and pro-inflammatory factors, including monocyte 
chemoattractant protein-1 (MCP-1), ICAM-1, transforming growth 
factor-β1 (TGF-β1), IL-1β, IL-6, and tumor necrosis factor-α 
(TNF-α), which can also regulate ROS levels (23). High glucose 
(HG) can induce NF-kB receptor activators in podocytes, further 
promoting DN progression (24). The NOD-like receptor protein 
(NLRP) 3 inflammasome regulates inflammation by cleaving 
pro-inflammatory cytokines, such as pro-IL-1β and pro-IL-18, into 
their active forms (25). Bruton’s tyrosine kinase (BTK) is activated 
in the kidneys of DN patients, and its knockdown can reduce 
macrophage-induced inflammation in diabetic mice by inhibiting 
NLRP3 inflammasome activity (26). High-mobility group box 1 
(HMGB1), a nuclear non-histone protein, can enter the nucleus 
through active secretion or passive release. Once in the cytoplasm, 
HMGB1 participates in immune responses. When released 
extracellularly, HMGB1 acts as a potent inflammatory mediator, 
either alone or as part of a pro-inflammatory cascade, stimulating 
the immune system (27). HMGB1 is regulated by ROS and the 
NLRP3 inflammasome, which facilitate its translocation from the 
nucleus to the cytoplasm. Once in the cytoplasm, HMGB1 binds to 
Toll-like receptor 4 (TLR4), activates NF-kB, and induces an 
inflammatory response (28). Overall, numerous studies demonstrate 
that oxidative stress and inflammation are interdependent processes 
that coexist within an inflammatory environment. Inflammatory 
cells release substantial amounts of ROS at inflammation sites, 
resulting in increased oxidative damage.

Current research indicates that inflammatory cytokines play a role 
in the treatment of T2DM and DN. In a long-term randomized 
controlled trial, it was observed that the plasma total FGF-21 level and 
biological activity level of patients with T2DM decreased (29). A 
cross-sectional study found that the serum concentration of hGDNF 
in patients with T2DM was lower than that in the control group, and 
the level of hGDNF in patients with poor blood sugar control was also 
significantly reduced (30). Zhang et  al. (31) demonstrated that 
interleukin-17C (IL-17C) contributes to DN and suggested that 
inhibiting IL-17C could offer a therapeutic approach. Murakoshi et al. 
(32) found that IL-6 is essential for the proliferation of glomerular 
mesangial cells and the activation and expansion of B cells. As a 
pleiotropic cytokine, IL-6 has diverse effects on the body and directly 
impacts the inflammatory response in DN. Nakamura et  al. (33) 
identified MCP-1 as an early marker of kidney function changes in 
DN, with its levels reflecting disease progression (34, 35). Additionally, 
research has shown that DN progression may be influenced by the 
activation of various signaling pathways mediated by inflammatory 
cytokines (36, 37) and other biomarkers (38, 39). However, the precise 
genetic impact of these cytokines on T2DM and DN remains unclear, 
underscoring the need for further investigation.

Abbreviations: ACEIs, Angiotensin-converting enzyme inhibitors; ARBs, Angiotensin 

II receptor blockers; BTK, Bruton’s tyrosine kinase; CCL11, Eotaxin levels; CCL19, 

C-C motif chemokine 19; CCL28, C-C motif chemokine 28; CI, Confidence 

interval; DN, Diabetic nephropathy; ESRD, End-stage renal disease; FGF19, 

Fibroblast growth factor 19; FGF21, Fibroblast growth factor 21; ICAM-1, Intercellular 

cell adhesion molecule-1; IL-1α, Interleukin-1-alpha; IL-1β, Interleukin-1β; IL-6, 

Interleukin-6; IL-10, Interleukin-10; IL-18, Interleukin-18; IVW, Inverse variance 

weighted; IVs, Instrumental variables; GDNF, Glial cell line-derived neurotrophic 

factor; GWAS, Genome-wide association study; HG, High glucose; HMGB1, High-

mobility group box 1; LIFR, Leukemia inhibitory factor receptor; LOO, Leave-

one-out; MCP-1, Monocyte chemoattractant protein-1; MR, Mendelian 

randomization; NLRP, NOD-like receptor protein; OR, Odds ratio; PD-L1, 

Programmed cell death 1 ligand 1; ROS, Reactive oxygen species; SGLT-2i, Sodium-

dependent glucose transporters 2 inhibitors; SNPs, Single nucleotide 

polymorphisms; T2DM, Type 2 diabetes mellitus; TGF-α, Transforming growth 

factor-alpha; TGF-β1, Transforming growth factor-β1; TLR4, Toll-like receptor 4; 

TNF-α, Tumor necrosis factor-α; TNF-β, TNF-beta; TNFSF14, Tumor necrosis factor 

ligand superfamily member 14; TRANCE, TNF-related activation-induced cytokine; 

TRAIL, TNF-related apoptosis-inducing ligand; VEGFA, Vascular endothelial growth 

factor A; VCAM-1, Vascular cell adhesion protein-1; WM, Weighted mode; WME, 

Weighted median.
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Mendelian randomization (MR) analysis is a powerful method for 
elucidating causal associations between exposures and outcomes, 
utilizing SNPs as instrumental variables (IVs) (40, 41). Recently, MR 
has become a valuable tool for assessing these causal relationships (42). 
In our study, we employed a two-sample bidirectional MR analysis to 
examine the causal association between inflammatory cytokines with 
T2DM and DN, providing genetic evidence for this association. The 
procedural framework of our study is illustrated in Figure 1A.

2 Material and method

2.1 Exposure and outcome data sources

To estimate SNP effects associated with inflammatory cytokines, 
we used genome-wide association studies (GWAS) summary statistics 
(GSCT90274758–GSCT90274848) provided by Zhao et al. (43), which 
include data on 91 inflammatory cytokines from 14,824 individuals of 
European ancestry. Summary statistics for T2DM and DN were 
obtained from a publicly available GWAS analysis, which comprising 
38,841 T2DM cases and 451,248 controls of European ancestry (ebi-a-
GCST90018926), 1,032 DN cases and 451,248 controls of European 
ancestry (ebi-a-GCST90018832), 220 DN cases and 132,764 controls 
of East Asian ancestry (ebi-a-GCST90018612), sourced from the IEU 
OpenGWAS Project website.1 The dataset for T2DM European 
ancestry included 490,089 individuals and 24,167,560 SNPs (44). The 
dataset for DN European ancestry included 452,280 individuals and 

1 https://gwas.mrcieu.ac.uk

24,190,738 SNPs, while the dataset for East Asian ancestry included 
132,984 individuals and 12,447,074 SNPs (44).

Since this study relies on publicly available data, no additional 
ethical approval or consent was required. To minimize the impact of 
race-related confounding factors, the study population predominantly 
comprised individuals of European ancestry. Data from individuals of 
East Asian descent were also included to enhance the robustness and 
generalizability of the findings.

2.2 Instrumental variables selection

The selection of genetic variants as IVs for inflammatory cytokines 
followed the three-hub hypothesis (Figure  1B). First, SNPs were 
screened from the GWAS data, considering only those with a 
significance threshold of p < 5 × 10−6. A linkage disequilibrium test was 
then performed on these SNPs to ensure they met the independence 
criterion. SNP selection was carefully controlled with parameters set 
to R2 < 0.001 and a maximum distance of 10,000 kb to reduce linkage 
disequilibrium and identify independent SNPs (45). Second, the 
PhenoScanner database was used to validate whether the identified 
SNP loci were associated with other potential confounding factors 
(46). Finally, to evaluate the susceptibility of the selected SNPs to weak 
IV bias, F statistics were calculated with a threshold set at F > 10 (using 
the formula F = β2/SE2, where β represents the effect size and SE the 
standard error). SNPs with F < 10 were deemed susceptible to weak IV 
bias and excluded to avoid their influence on the results. Higher F 
statistics indicate that the genetic markers are likely to cause 
phenotypic variations, which can lead to divergence in results due to 
these variations (47, 48). The selection of genetic variants as IVs was 
associated with the exposure of inflammatory cytokines.

FIGURE 1

Study overview. (A) The protocol of our study procedure. T2DM, type 2 diabetes mellitus; DN, diabetic nephropathy; SNPs, single nucleotide 
polymorphisms; GWAS, genome-wide association study; LOO, leave-one-out; MR, Mendelian randomization; WM, weighted mode; WME, weighted 
median; IVW, inverse variance weighted. (B) The three hub hypothesis of the MR analysis.

https://doi.org/10.3389/fmed.2024.1459752
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://gwas.mrcieu.ac.uk


Song et al. 10.3389/fmed.2024.1459752

Frontiers in Medicine 04 frontiersin.org

2.3 Statistical analysis

2.3.1 MR analysis
To uncover the causal association between inflammatory 

cytokines with T2DM and DN, we employed a range of analytical 
methods, including inverse variance weighted (IVW), weighted 
median (WME), weighted mode (WM), MR-Egger regression, and 
forest plot visualization (49, 50). Using multiple analytical approaches 
aimed to enhance the robustness and reliability of our findings. A 
significance threshold of p < 0.05 was used to determine causal 
associations between inflammatory cytokines with T2DM and DN 
(45, 51).

To address the potential for specific errors and account for 
multiple testing, we applied the q value to adjust for the false discovery 
rate (FDR). A q value <0.1 indicates a significant association, while a 
p < 0.05 but q value ≥0.1 suggests a more tentative association (52).

2.3.2 Sensitivity analysis
The p-value from Cochran’s Q statistics of the IVW method was 

used to assess the heterogeneity of the IVs. A p-value ≥0.05 indicates 
the absence of heterogeneity in the causal analysis (53, 54). 
Additionally, a funnel plot was employed as a visual tool to detect 
heterogeneity, with a symmetrical distribution of SNPs suggesting 
homogeneity in the results (55). Depending on the presence or 
absence of heterogeneity, either a random-effects model or a fixed-
effects model was chosen.

Pleiotropy was assessed using MR-Egger regression, with the 
intercept of the MR-Egger regression in a scatter plot providing 
insights into potential pleiotropic effects (56, 57). Leave-one-out 
(LOO) analysis was also conducted to evaluate the stability of the 
results by identifying SNPs with significant influence when 
individually removed (58). The risk association between inflammatory 
cytokines with T2DM and DN was quantified using odds ratios (OR) 
and 95% confidence intervals (CI), with statistical significance defined 
as p < 0.05.

2.3.3 Bidirectional MR analysis
A two-sample bidirectional MR analysis was conducted to explore 

the potential reverse causal association between T2DM, DN 
(exposure) and inflammatory cytokines (outcome). The procedural 
steps for this bidirectional MR analysis closely followed those outlined 
for the previous MR analysis.

2.3.4 Statistical software
All MR analyses were conducted using R (version 4.3.1) with the 

TwoSampleMR package.

3 Results

3.1 Instrumental variables selection

We selected 21 SNPs related to inflammatory cytokines in T2DM 
dataset, including 4 SNPs from Fibroblast growth factor 21 levels 
(FGF21), 4 SNPs from C-C motif chemokine 19 levels (CCL19), 3 
SNPs from fibroblast growth factor 19 levels (FGF19), 6 SNPs from 
eotaxin levels (CCL11), 4 SNPs from Interleukin-10 (IL-10) 
(Figure 2A).

Among individuals of European ancestry in DN dataset, a total 
of 14 SNPs were extracted from tumor necrosis factor ligand 
superfamily member 14 (TNFSF14), 14 SNPs from TNF-related 
activation-induced cytokine (TRANCE), 26 SNPs from 
interleukin-1 alpha (IL-1α), and 29 SNPs from transforming growth 
factor alpha (TGF-α). For individuals of East Asian ancestry in DN 
dataset, 20 SNPs were extracted from glial cell line-derived 
neurotrophic factor (GDNF) (Figure 2B). Notably, the F statistics 
for the IVs used in this study exceeded 10, indicating minimal bias 
from weak IVs and ensuring the robustness of the results 
(Supplementary Table S1).

The substantial differences between European and East Asian 
populations stem from factors like genetic allele frequency variations, 
environmental factors, and lifestyle differences, which may result in 
distinct research outcomes. For instance, a particular SNP might 
be common in one population but rare in another. If racial differences 
are not considered, these frequency disparities could impact effect 
estimates in MR analyses, leading to biased conclusions. Beyond 
genetic differences, ethnic groups vary in terms of diet, lifestyle, 
culture, and socioeconomic status. These environmental distinctions 
could also influence outcomes through gene-environment 
interactions. To minimize race-related confounding, we  focused 
primarily on individuals of European descent. However, data from 
those of East Asian ancestry were also included to improve the 
robustness and generalizability of our findings.

3.2 MR analysis

Genetic evidence indicated that elevated levels of FGF19 levels 
(OR = 1.100, 95% CI 1.020–1.180, p = 0.030) promoted the 
occurrence of T2DM, and increased concentrations of FGF21 
levels (OR = 0.770, 95% CI 0.610–0.960, p = 0.020), CCL19 
(OR = 0.050, 95% CI 0.930–0.990, p = 0.030) levels, CCL11 levels 
(OR = 0.930, 95% CI 0.870–1.000, p = 0.050), and IL-10 (OR = 0.920, 
95% CI 0.840–1.000, p = 0.040) mitigated the risk of developing 
T2DM (Figures 3, 4).

Among individuals of European ancestry in DN dataset, the 
IVW analysis revealed a significant positive causal association 
between the gene expression of TNFSF14 (OR = 1.249, 95% CI 
1.018–1.532, p = 0.033) and TRANCE (OR = 1.287, 95% CI 1.051–
1.577, p = 0.015) with DN. In contrast, gene expression of IL-1α 
(OR = 0.712, 95% CI 0.514–0.984, p = 0.040) and TGF-α (OR = 0.701, 
95% CI 0.493–0.998, p = 0.049) showed a significant negative causal 
association with DN. Among individuals of East Asian ancestry in 
DN dataset, gene expression of GDNF was significantly negatively 
associated with DN (OR = 0.391, 95% CI 0.163–0.931, p = 0.034) 
(Supplementary Figure S1).

Given that all SNPs functioned as effective IVs without horizontal 
pleiotropy and that the IVW analysis results remained unbiased, the 
IVW method was considered more reliable for providing effect 
estimates compared to alternative methodologies (59). This supports 
the conclusion that inflammatory cytokines have a causal association 
with T2DM and DN.

However, after FDR correction, only FGF21 (q value = 0.001) and 
CCL19 (q value = 0.025) levels showed a significant causal association 
with T2DM, while the gene expression of IL-1α showed a significant 
negative causal association with DN (q value = 0.050). The associations 
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for the other inflammatory cytokines were considered suggestive of a 
link to T2DM and DN.

3.3 Sensitivity analysis

In both T2DM and DN datasets, Cochran’s Q test revealed no 
evidence of heterogeneity among the included IVs (p > 0.05). 
Additionally, the MR-Egger regression intercept test indicated 
that pleiotropy did not bias the results (p > 0.05) 
(Supplementary Table S2). Funnel plots visually confirmed that 
potential confounders were unlikely to affect the causal inferences 
(Figure 5; Supplementary Figure S2). The LOO sensitivity analysis 
showed that removing individual SNPs did not significantly alter 
the analysis results (Figure 6; Supplementary Figure S3).

3.4 Bidirectional MR analysis

The reverse MR analysis revealed there is no causal association 
between T2DM, DN and the positive inflammatory cytokines 
previously identified (Figures 7A,B).

4 Discussion

In this study, we conducted a comprehensive analysis using large-
scale GWAS data to investigate the causal association between 
inflammatory cytokines with T2DM and DN. To address the three 
hypotheses, we  first included only SNPs that met the criteria of 
p < 5 × 10−6, R2 < 0.001, and a maximum distance of 10,000 kb. Second, 
the PhenoScanner database was used to exclude potential confounding 
factors. Finally, only SNPs with F > 10 were included in the analysis. 
Genetic evidence indicated that elevated levels of FGF19 levels 
promoted the occurrence of T2DM, and increased concentrations of 
FGF21 levels, CCL19 levels, CCL11 levels, and IL-10 mitigated the risk 
of developing T2DM, while T2DM did not exert a significant influence 
on said proteins. Elevated levels of TNFSF14 and TRANCE were 
associated with an increased risk of DN, and increased concentrations 
of IL-1α and TGF-α were potentially correlated with a diminished risk 
of DN. Subsequent sensitivity analyses confirmed the robustness and 
consistency of these findings.

FGF19 is primarily secreted by the ileum and functions as an 
endocrine factor. It plays a crucial role in inhibiting bile acid synthesis 
and regulating hepatic metabolism (60). Previous studies have 
suggested that FGF19 may be involved in the regulation of glucose 

FIGURE 2

Forest plots of MR analysis. (A) Forest plot of the MR analysis results in T2DM dataset. (B) Forest plot of the MR analysis results in DN dataset. Exposure 
represents the inflammatory cytokines, nSNP represents the number of SNPs, and pval represents the p-value.
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and lipid metabolism, as well as the maintenance of energy 
homeostasis. Additionally, it may play a protective role in preserving 
β-cell function (61). Zhang et al. (62) demonstrated in their study 
that FGF19 levels in subjects with normal glucose tolerance were 

significantly lower than those in subjects with impaired fasting 
glucose or impaired glucose tolerance. Moreover, when compared to 
patients with T2DM, FGF19 levels were markedly reduced in T2DM 
patients with metabolic syndrome. Human studies have found that 

FIGURE 3

Forest plot of single SNP MR results in T2DM dataset. (A) Gene expression of FGF21. (B) Gene expression of CCL19. (C) Gene expression of FGF19. 
(D) Gene expression of CCL11. (E) Gene expression of IL-10. In this representation, each black dot symbolizes the T2DM with increased standard 
deviation (SD) in the inflammatory cytokine, generated by utilizing each SNP as an individual IV. Conversely, the red dot denotes the causal estimation 
derived from all SNP combinations using various MR methods. The horizontal line segment represents the 95% CI. Specifically, the IVW causal estimate 
illustrates how the overall estimate (depicted by the red horizontal line) might be disproportionately influenced by the removal of a single variant 
(indicated by the black horizontal line).

FIGURE 4

Scatter plots of SNP analysis in T2DM dataset. (A) Gene expression of FGF21. (B) Gene expression of CCL19. (C) Gene expression of FGF19. (D) Gene 
expression of CCL11. (E) Gene expression of IL-10. The X-axis denotes the impact of the SNP on the inflammatory cytokine, while the Y-axis represents 
the SNP’s influence on T2DM. Each black dot signifies a single SNP, with the line segment depicting the 95% CI. The slope of the straight line reflects 
the causal estimation derived from the MR method. In this visualization, the green line corresponds to the IVW method, the blue line represents the MR 
Egger method, the dark line signifies the WME method, the reseda green line represents the Simple median method and the red line represents the 
WM method.
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serum FGF19 levels are lower in patients with T2DM compared to 
control groups. However, after weight loss induced by partial 
gastrectomy or gastroenterostomy, FGF19 levels increase, 
accompanied by improvements in glucose metabolism indicators 
(63). Previous studies have indicated that FGF19 acts as a protective 
factor against T2DM. However, the MR results suggest that FGF19 
may serve as a risk predictor for T2DM. This discrepancy could 

be influenced by various factors, such as environmental conditions 
and innate genetic variations.

FGF21 is a key regulator of endocrine metabolism. It promotes 
glucose uptake in skeletal muscle by activating the phosphoinositide 
3-kinase/protein kinase C (PI3K/PKC) signaling pathway, which 
mediates the translocation of glucose transporter 4 (GLUT4) (64). 
Additionally, FGF21 enhances glucose uptake in adipose tissue 

FIGURE 5

Funnel plots of sensitivity analysis in T2DM dataset. (A) Gene expression of FGF21. (B) Gene expression of CCL19. (C) Gene expression of FGF19. 
(D) Gene expression of CCL11. (E) Gene expression of IL-10. The light blue represents the IVW method, and the dark blue represents the MR Egger 
method.

FIGURE 6

Forest plots of LOO analysis in T2DM dataset. (A) Gene expression of FGF21. (B) Gene expression of CCL19. (C) Gene expression of FGF19. (D) Gene 
expression of CCL11. (E) Gene expression of IL-10. In this representation, each black dot symbolizes the T2DM with increased standard deviation (SD) in 
the inflammatory cytokine, generated by utilizing each SNP as an individual IV. Conversely, the red dot denotes the causal estimation derived from all 
SNP combinations using various MR methods. The horizontal line segment represents the 95% CI. Specifically, the IVW causal estimate illustrates how 
the overall estimate (depicted by the red horizontal line) might be disproportionately influenced by the removal of a single variant (indicated by the 
black horizontal line).
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through the activation of the extracellular signal-regulated kinase 1/2 
(ERK1/2) signaling pathway, thereby helping to maintain glucose and 
lipid homeostasis (65). FGF21 also induces the nuclear translocation 
of nuclear factor erythroid 2-related factor 2 (Nrf2), promoting the 
expression of antioxidant genes, which alleviates oxidative stress and 
improves insulin resistance (66).

CCL19 is a chemokine that plays a role in immune cell 
migration and inflammatory responses. Its relationship with the 
development of T2DM is linked to its involvement in chronic 
inflammation, a key factor in the pathogenesis of T2DM. In 
individuals with T2DM, persistent low-grade inflammation 
contributes to insulin resistance, pancreatic β-cell dysfunction, and 
metabolic disturbances (67). CCL19 is elevated in patients with 
T2DM and may promote the infiltration of immune cells into 
tissues such as adipose tissue, pancreas, and liver. This can 
exacerbate local inflammation and insulin resistance, contributing 
to the progression of T2DM. Moreover, CCL19 has been studied in 
relation to its effects on endothelial dysfunction and atherosclerosis, 
which are common complications of T2DM (68). The chemokine 
may accelerate vascular inflammation, increasing the risk of 
cardiovascular diseases in patients with diabetes. CCL19 is 
associated with T2DM through its role in promoting inflammation, 
contributing to insulin resistance, and possibly aggravating 
cardiovascular complications. CCL11 also known as eotaxin-1, is a 
chemokine primarily involved in the recruitment of eosinophils and 
other immune cells to sites of inflammation. Its relationship with 
T2DM has been increasingly recognized in recent years (69). 
CCL11 contributes to the development and progression of T2DM 
by enhancing inflammatory responses and promoting insulin 
resistance. A meta-analysis revealed that the expression levels of 
CCL11 are significantly higher in patients with T2DM compared to 
control groups (70). The upregulation of CCL19 and CCL11 have 
been confirmed in both T2DM datasets and high-glucose in vitro 
experiments. However, the MR results indicate that CCL19 and 

CCL11 act as a protective factor in T2DM, which may be attributed 
to genetic variations.

IL-10 is a multifunctional inflammatory cytokine that primarily 
regulates the body’s inflammatory response and immune balance 
through mechanisms such as humoral immune stimulation (71). It is 
an inhibitory cytokine that can attenuate the apoptosis of β-cells, 
suppression of insulin secretion, and peripheral insulin resistance 
induced by pro-inflammatory cytokines such as IL-6 and TNF-α. By 
improving pancreatic signaling pathways, IL-10 helps reduce the risk 
of developing T2DM (72).

TNFSF14 is involved in promoting renal fibrosis (73). IL-1 is 
pivotal in immune regulation and inflammatory response 
orchestration. Elevated serum levels and gene expression of IL-1 are 
consistently observed in patients with DN, which correlates with 
studies linking IL-1 gene polymorphisms to increased risk of 
end-stage DN (74, 75). Clinical studies have demonstrated that 
inhibiting EGFR with TGF-α monoclonal antibodies significantly 
delays the onset and progression of DN (76). Experimental evidence 
shows that TNF-α induces the production of inflammatory mediators, 
including prostaglandins, leukotrienes, and IL-1, in cultured human 
mesangial cells. These mediators are implicated in the pathogenesis of 
DN (77). Diabetic mice exhibit decreased GDNF levels, but local 
administration or overexpression of the GDNF gene in these mice has 
been shown to reduce apoptosis, improve β-cell quality and 
proliferation, enhance insulin secretion, and improve local tissue 
function. Despite these benefits, the efficacy of GDNF in blood sugar 
control remains a topic of debate (78, 79).

The inflammatory cytokines identified in this study not only a 
unique risk for DN, but also associated with other systemic diseases. 
For example, Huang et al. (80) found that TNFSF14 mediates the 
impact of docosahexaenoic acid on atopic dermatitis. Yan et al. (81) 
found that a decrease in IL-1α levels has been associated with the 
development of intervertebral disc degeneration. TGF-α holds 
diagnostic value in various diseases, including endometrial cancer 

FIGURE 7

Forest plots of bidirectional MR analysis. (A) Forest plot of the MR analysis results in T2DM dataset. (B) Forest plot of the MR analysis results in DN 
dataset. Outcome represents the positive identified inflammatory cytokines, nSNP represents the number of SNPs, and pval represents the p-value.
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(82) and non-small cell lung cancer (83). Its expression levels can 
serve as a biomarker, aiding in the early detection and diagnosis of 
these malignancies. However, there is still a lack of MR research 
evidence linking these inflammatory cytokines to systemic diseases. 
Future studies are needed to further investigate these associations and 
establish more robust causal relationships.

Unlike previous MR analyses that explored the relationship 
between immune cells or inflammatory cytokines and DN, this study 
stands out in several ways. First, we applied a more stringent threshold 
of p < 5 ×10−6, whereas others set it at 1 ×10−5, which led to a more 
selective identification of instrumental variables and a lower risk of 
pleiotropy. Second, this study assessed 91 inflammatory cytokines, as 
opposed to the 41 analyzed in earlier research. Third, we used a larger 
GWAS dataset with a greater number of cases, and we validated our 
findings using other ethnic GWAS datasets, ensuring the robustness 
and lack of bias in our results. Fourth, differences in the exposure and 
outcome datasets led to conclusions that contrast with those of prior 
studies. Fifth, a FDR correction was implemented, reducing the 
probability of false positives in the MR results. Additionally, a 
bidirectional MR analysis was carried out to reliably estimate the causal 
connection between exposure and disease, thus addressing the reverse 
causality issue often seen in traditional observational research. Finally, 
the PhenoScanner database was employed to eliminate potential 
confounders related to DN. However, certain limitations need to 
be acknowledged. Firstly, the outcome data originate from European 
and East Asian populations, other populations should be validated 
using local data. Secondly, the lack of detailed information, such as 
type, severity, and duration of diabetes, hinders the possibility of 
conducting further subgroup analyses. Therefore, they must 
be validated in future large-sample clinical trials. Thirdly, while MR 
facilitates the evaluation of the enduring impacts of genetically 
predisposed inflammatory cytokines throughout an individual’s 
lifespan, it may not directly encapsulate the attenuation of these factors 
in adulthood due to the influence of diverse unreported regulators. 
Fourthly, while we employed various procedures in MR to effectively 
exclude confounders, there remain potential confounding factors that 
may affect the study’s accuracy. For example, certain genetic variants 
can simultaneously influence multiple phenotypes (84). Additionally, 
for inflammatory factors that did not show statistical significance in our 
analysis, it is still possible that a causal relationship with DN or T2DM 
exists, which may not have been detected due to the limited SNPs 
available for these inflammatory factors (85). Finally, to conduct 
sensitivity and horizontal pleiotropy analyses, more SNPs needed to 
be included as IVs, so instead of the traditional significance threshold 
(p < 5 ×10−8), we chose 5 ×10−6.

5 Conclusion

This study revealed pivotal contributions of FGF19, FGF21, 
CCL19, CCL11, and IL-10  in the advancement of T2DM. The 
importance of TNFSF14, TRANCE, IL-1α, TGF-α, and GDNF in the 
progress of DN. These findings offered favorable implications for the 
treatment and prevention of T2DM and DN, laying the groundwork 
for novel clinical approaches and management strategies. However, 
additional experimental and clinical investigations are necessary to 
elucidate the functions and molecular mechanisms of these 
inflammatory factors in future studies.
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