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Wheezing is a common condition in childhood, and its prevalence has increased 
in the last decade. Up to one-third of preschoolers develop recurrent wheezing, 
significantly impacting their quality of life and healthcare resources. Artificial 
Intelligence (AI) technologies have recently been applied in paediatric allergology 
and pulmonology, contributing to disease recognition, risk stratification, and 
decision support. Additionally, the COVID-19 pandemic has shaped healthcare 
systems, resulting in an increased workload and the necessity to reduce access 
to hospital facilities. In this view, AI and Machine Learning (ML) approaches 
can help address current issues in managing preschool wheezing, from its 
recognition with AI-augmented stethoscopes and monitoring with smartphone 
applications, aiming to improve parent-led/self-management and reducing 
economic and social costs. Moreover, in the last decade, ML algorithms 
have been applied in wheezing phenotyping, also contributing to identifying 
specific genes, and have been proven to even predict asthma in preschoolers. 
This minireview aims to update our knowledge on recent advancements of AI 
applications in childhood wheezing, summarizing and discussing the current 
evidence in recognition, diagnosis, phenotyping, and asthma prediction, with an 
overview of home monitoring and tele-management.
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Introduction

Wheezing is a musical sound, high-pitched and continuous, emitted from the chest during 
exhalation and resulting from the narrowing of the intrathoracic airway and expiratory flow 
limitation (1). The prevalence of wheezing disorders in preschool children varies worldwide 
and appears to have increased during the last decade (2). It is estimated that about one in three 
children experiences wheezing during the first 3 years of life (3). Viral infections trigger most 
wheezing episodes, involving up to 30–50% of preschool children (4). Generally, such episodes 
are mild and transient. However, one-third of preschoolers develop recurrent wheezing, which 
is defined as four or more episodes in the previous year (5). Recurrent wheezing has a 
significant impact on quality of life as well as on healthcare resources (6). Indeed, the economic 
burden of wheezing for the European Union is estimated at EUR 5.2 billion (7).

Artificial intelligence (AI) and machine learning (ML) encompass approaches such as data 
mining methodologies, predictive analytics, and advanced statistics for pattern recognition and 
neurocomputing (8). The application of AI technologies in paediatric allergology and 
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pulmonology has increased, contributing to disease detection, risk 
profiling, and decision support (9, 10). Additionally, the COVID-19 
pandemic has shaped healthcare systems, resulting in an increased 
workload and the necessity to reduce access to hospital facilities. Indeed, 
several studies have investigated the applications of AI and ML during 
the COVID-19 pandemic (11). Overall, such approaches could help 
address current issues in managing preschool wheezing, including 
phenotyping and improving parent-led/self-management, while 
reducing economic and social costs.

This minireview aims to summarize and discuss the current 
evidence on possible applications of AI in recognizing and monitoring 
wheezing in children and predicting future asthma development, 
progressing from deep phenotyping to patient-tailored management 
(Figure 1). We conducted a literature search in the PubMed database, 
selecting articles published over the last 10 years. We used medical 
subject headings (MeSH terms) and free-text terms related to 
wheezing, machine learning, artificial intelligence, and asthma and 
limited the search to clinical trials, randomized controlled trials, meta-
analyses, and systematic reviews. Additionally, we manually consulted 
the reference lists of the retrieved articles. Manuscripts were selected 
by the authors (L.V. and S.M.), considering full manuscripts published 
in English in peer-reviewed journals.

Can artificial intelligence recognize 
and monitor wheezing in children?

Parents and doctors often use “wheezing” to describe various 
respiratory sounds, such as crackles (12). The cheapest and 
non-invasive method for assessing wheezing is auscultation using 
a phonendoscope, which is operator-dependent and does not allow 
recording. Therefore, there is an increasing demand for an 
automatic, more objective, shareable, and reproducible method to 

assist doctors in diagnosing and monitoring patients with 
respiratory diseases (13).

The electronic stethoscope is an innovative version of the classic 
model, offering the ability to record and store chest sounds, allowing 
remote access. Many devices enable sound amplification, which is helpful 
for teaching (13). However, the digital data collected are subject to 
human interpretation and inter-operator variability, challenges that can 
be  addressed by AI and ML technologies. These technologies have 
demonstrated good accuracy in recognizing respiratory sounds, 
particularly wheezing in children (Supplementary Table S1).

AI-assisted home stethoscopes can provide reliable information 
on asthma exacerbations. A recent study evaluated StethoMe for the 
automatic detection of pathological lung sounds (wheezes, crackles, 
and rhonchi) at home in 90 patients (0–18 years), demonstrating its 
efficacy in identifying asthma exacerbation across all ages (14). 
StethAid® is a device with a decision support system based on deep 
learning, an artificial neural network technology, used in an 
emergency department to recognize wheezing (15). The device 
recorded lung sounds from patients aged 2–18 years experiencing 
asthma exacerbation. These recordings were converted into 
spectrograms, serving as input for two deep learning models: 
ResNet-18 and Harmonic Networks. Both models were trained and 
validated to identify wheezing sounds from clear breathing sounds 
with good sensitivity, specificity, and accuracy. Specifically, ResNet-18 
achieved 77% sensitivity, 70.1% specificity and 73.9% accuracy, while 
Harmonic Networks achieved 83.7% sensitivity, 84.4% specificity, and 
84% accuracy.

A recent study by Ajay Kevat et  al. (16) demonstrated high 
accuracy in recognizing children’s lung sounds using AI-enhanced 
digital stethoscopes, although differences were noted between various 
devices. AI stethoscopes can store diaries of wheezing episodes, 
enabling remote monitoring (14). Limitations of these devices include 
high cost, complexity of use, incompatibility with software and/or 

FIGURE 1

Possible applications of AI in preschool wheezing.
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operating systems, and technical constraints (e.g., limited data 
memory, duration of autonomy, and varying frequency 
characteristics) (15).

Another device for analyzing lung sounds is PulmoTrack® (17–
19), which utilizes chest sensors with an external microphone to 
capture and cancel environmental noises. Its effectiveness was 
evaluated in a study (17) involving 120 infants during sleep, 
demonstrating that computerized wheezing detection is more 
objective, non-invasive, and standardized compared to medical 
auscultation. The device also proved beneficial in intensive care 
settings for managing patients with wheezing (20).

The HWZ-1000 T device (Omron Healthcare Corporation, Kyoto, 
Japan) was evaluated in a study (21) involving 374 children. Wheeze 
was detected by auscultation with a stethoscope and recorded using 
the wheeze recognition algorithm device (HWZ-1000T), based on the 
sound characteristics of wheezing. The device accurately identified 
wheezing (sensitivity 96.6%, specificity 98.5%, positive predictive 
value 98.3%, and negative predictive value 97.0%).

In the study by Dramburg et al. (22), 20 infants and preschool 
children (9–72 months) diagnosed with wheezing in the past year 
were recruited. All their families were requested to use the 
WheezeScan® digital wheeze detector (OMRON Healthcare Co., Ltd.) 
twice daily and simultaneously monitor the child’s respiratory 
symptoms through a smartphone clinical diary for 30 days. The results 
were displayed on an integrated screen that could be transmitted via 
Bluetooth to a PC or mobile device (e.g., smartphone or tablet). The 
study concluded that using the WheezeScan® Detector is 
straightforward and safe for children with wheezing. The support of a 
digital wheezing detector enhances parents’ self-efficacy in managing 
asthma and wheezing, boosting their confidence in handling their 
child’s wheezing at home. The WheezeScan® demonstrated good 
sensitivity (83.3%) and specificity (100%) in wheezing recognition, 
albeit with limited visits (22). In a more recent study (23), the analysis 
of WheezeScan® revealed no significant differences in wheeze control 
between study groups, with no impact on quality of life and minimal 
differences in parental efficacy in wheezing management.

Smartphone devices also play a role in integrating AI in Medical 
Practice. The ResAppDx® algorithm (24) analyses cough using a 
microphone integrated into the smartphone, alongside symptoms 
reported by the patient and/or parents. Automated cough analysis has 
demonstrated good diagnostic accuracy for common childhood 
respiratory diseases and it is non-invasive and feasible even in 
resource-limited environments (24). Another smartphone-based 
algorithm for detecting cough sounds was evaluated (25), comparing 
training data that included recordings of children coughing and 
ambient audio with everyday noises. The algorithm achieved an 
accuracy of 99.7% and a specificity of 99.96% when tested on the 
coughs of 21 children between 0 and 16 years hospitalized for lung 
diseases. This suggests that smartphone applications can be used for 
clinical follow-up and as a digital endpoint in clinical trials (25).

AI algorithms for wheezing recognition have some limitations, 
such as difficulty in correlating certain respiratory sounds with 
specific illnesses and considering that paediatric cough sounds 
vary with age due to respiratory and vocal system development. It 
should also be acknowledged that digital devices remain limited 
when compared to traditional lung auscultation for patients with 
severe airflow obstruction, who may have silent lungs without 
wheezing (19), and that the effectiveness of a digital device can 

be  influenced by various factors such as age and cultural 
background. In conclusion, while many studies highlight the 
effectiveness and applicability of AI digital devices in detecting 
wheezing, others have yet to achieve similar results. Therefore, 
more studies will be  necessary to assess their effectiveness in 
recognizing wheezing in children.

Can artificial intelligence predict 
asthma outcomes in children with 
wheezing?

Most children with asthma experience symptoms in early life, but 
these are typically transient, often disappearing by school age 
(6–13 years) (26). Therefore, it can be  challenging to differentiate 
asthma from other wheezing disorders at this age (26). Over the last 
few decades, considerable effort has been dedicated to predicting 
asthma in children to identify earlier those at high risk and provide 
them with the best treatment option (26).

Previous studies based on population birth cohorts have identified 
distinct wheezing phenotypes (clusters) with associated early-life 
factors and outcomes, paving the path to predict wheezing trajectory 
and thereby develop targeted management (27). In this context, 
predictive models have been developed, considering various risk 
factors associated with asthma development, such as parental history 
of atopy and asthma, eczema and atopic dermatitis, allergic 
sensitization, and eosinophilia. However, they have rarely included 
environmental exposures and socioeconomic status (28). One of the 
most widely used models is the Asthma Predictive index (API) (29) 
and its modified version (mAPI) (30). Other models, such as the Isle 
of Wight score (31) and the Prevention and Incidence of Asthma and 
Mite Allergy (PIAMA) risk score, have also been developed (32); 
however, they have included children with recurrent chest infections, 
potentially misreporting episodes of wheezing (33).

Other predictive tools include the Leicester asthma prediction 
tool (34), the University of Connecticut (ucAPI) (35), and the Asthma 
Detection and Monitoring (ademAPI) (36), which also incorporate 
predictors such as 10 exhaled breath condensate biomarkers, 17 
volatile organic compounds, and 31 genes. Although the ademAPI is 
the most comprehensive and sophisticated model, demonstrating 
reasonable specificity (88%) and sensitivity (90%), as well as the best 
positive and negative LRs (8.8 and 0.13, respectively), compared to 
other predictive models (33), its implementation in clinical practice 
remains challenging due to high cost (33). Even the original API, 
which includes only four items and a blood sample for eosinophil 
count, shows a good positive LR but a low negative LR, making it less 
effective in ruling out asthma (33). One of the more recent models is 
the CHILDhood Asthma Risk Tool (CHART) (37), which can identify 
children from 2 years of age at high risk of persistent wheezing and 
likely to develop asthma. Thanks to its simplicity, CHART could 
be used as a screening tool in primary care.

Overall, the models mentioned above indicate that the wheeze 
pattern alone cannot predict asthma progression. For this purpose, 
ML approaches have demonstrated better predictive performance and 
generalizability compared to regression-based models (27). In this 
context, artificial neural networks (ANNs) constitute a type of AI 
technique that learns the potential relationship between input–output 
mapping from a given dataset without prior knowledge or assumptions 
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about the data distribution (38). This sets them apart from common 
statistical tests and makes them suitable for classification and 
prediction tasks.

One of the initial studies in this research field (26) employed 
Principal Component Analysis (PCA) for feature extraction, followed 
by the Least Square Support Vector Machine (LSSVM) classifier for 
pattern classification, resulting in a ML model with an accuracy of 
95.54% in predicting asthma. More recently, a study (39) from the Isle 
of Wright birth cohort applied ML approaches to predict school-age 
asthma (at the age of 10 years) in early life (Childhood Asthma 
Prediction in Early life, CAPE model) and at preschool age (Childhood 
Asthma Prediction at Preschool age, CAPP model). Recursive Feature 
Elimination (RFE) with a random forest algorithm was used for 
feature selection. Seven ML classifiers were then implemented to 
identify the best classification algorithm: two Support Vector 
Machines (SVM), a decision tree, a random forest, Naive Bayes, 
Multilayer Perceptron, and K-Nearest Neighbours. Finally, the models 
were also validated in the Manchester Asthma and Allergy Study 
(MAAS) cohort. The SVM algorithms demonstrated the best 
performance for CAPE and CAPP, showing excellent sensitivity in 
predicting persistent wheezing. Interestingly, the study was implemented 
by incorporating genetic and epigenetic information (40), which 
marginally improved performance and indicated that genetic and 
epigenetic markers for the broader phenotype of “diagnosed with 
asthma” are unlikely to have clinical utility (41).

A limitation of using the scores mentioned above is the challenge 
of ruling out asthma rather than identifying it. However, in clinical 
practice, they can assist in identifying patients at high risk of 
developing asthma who are likely to respond to ICS, as shown in a 
latent class analysis (LCA) (42). This analysis showed that ICS 
treatment reduced exacerbations in children with persistent wheezing 
and conditions such as “sensitization with indoor pet exposure” and 
“multiple sensitization and eczema.”

Ultimately, the global diffusion of electronic health records (EHRs) 
created a need for automated chart review to diagnose asthma in 
children. Kaur et al. (43) developed a natural language processing (NLP) 
algorithm to identify children meeting API criteria. This NLP-API 
predicted asthma in preschoolers with a sensitivity of 86%, specificity of 
98%, positive predictive value of 88%, and negative predictive value of 
98%. Such an index has the potential to be utilized by healthcare systems 
to identify children meeting API criteria, even in early childhood (e.g., < 
3 years old), thereby improving access to preventive and therapeutic 
interventions for asthma and monitoring their outcomes (9, 43).

Nonetheless, using AI algorithms and ML for predicting asthma 
outcomes in children may raise potential ethical concerns. Firstly, AI 
algorithms are trained on a large volume of personal data from EHRs, 
including clinical, imaging, and even genomic data, so it appears clear 
that ensuring privacy is critical, while overprotection of the data 
collection, usage, and sharing can slow down the innovation in AI 
training (44). To overcome this important limitation and preserve 
privacy, new techniques are emerging in AI such as the generation of 
synthetic data that mirrors the real-world dataset, but even this approach 
can not ensure full privacy, especially in small datasets, as patients from 
a specific region (45) or in a particular age range. Moreover, if AI 
algorithms are trained in a limited dataset, they can inadvertently present 
some gender, socioeconomic, and ethnic bias, that can exacerbate health 
inequalities in underrepresented social groups (44, 46), resulting in 
incorrect predictions, and leading to misdiagnosis when these biases are 

not corrected or prevented during the elaboration of the training 
dataset (44).

For these reasons, taking also in consideration that AI can actually 
make mistakes, AI can not be held morally accountable, having a role 
only as a decision support aid for clinicians (44). If used in clinical 
practice to provide therapeutic recommendations, to inform prognosis 
or risk of future events, informed consent should be provided to patients, 
explaining to them if AI has been used, clarifying which type of AI and 
how it was involved in the decision process, informing also about 
potential pitfalls (47).

Can artificial intelligence identify 
wheezing endotypes in preschool 
children?

Wheezing has been classified into different phenotypes since the 
first population-based cohort studies aimed to understand its 
heterogeneity (41).

The initial study was the Tucson Children’s Respiratory Study (5), 
which identified three patterns of preschool wheezing (early transient, 
late-onset, and persistent), each associated with different risk factors. 
Subsequent studies have further defined additional phenotypes and 
temporal patterns, such as the Avon Longitudinal Study of Parents and 
Children (ALSPAC) (4, 48), the Prevention and Incidence of Asthma 
and Mite Allergy (PIAMA) birth cohort (49), the Viva project (50).

This approach assumes that patterns of symptoms and/or 
biomarkers assessed in longitudinal or cross-sectional studies reflect 
the underlying mechanisms, leading to the identification of asthma 
endotypes, but this assumption is uncertain (51).

ML approaches such as LCA have also been used in preschool 
wheezing (4, 52–54) and childhood asthma (55, 56).

An interesting study (57) focused on the longitudinal trajectory of 
wheezing exacerbations using an ML approach (k-means clustering), 
which identified two types of trajectories from birth to adolescence. 
The k-means clustering revealed that a shorter duration of breastfeeding 
was one of the early risk factors for frequent exacerbations. 
Additionally, children with frequent exacerbations showed increased 
airway resistance and, at 8 years of age, a lower lung function with 
higher FeNO levels, with evolution to asthma at 16 years of age.

ML approaches have also contributed to identifying specific genes, as 
demonstrated by Lin et  al. (58), who employed Weighted Gene 
Co-expression Network Analysis (WGCNA) to identify gene 
co-expression modules associated with pediatric asthma. They 
subsequently used ML algorithms (random forest, lasso regression 
algorithm, and support vector machine with recursive feature elimination) 
to classify asthma cases and controls based on the 11 identified genes that 
can potentially explain the pathophysiology of difficult asthma and serve 
as biomarkers for diagnosis and targets for future advanced treatments. 

Notably, as Saglani et al. (51) highlighted, we should be cautious 
about assuming that clusters identified in these studies represent “true” 
wheezing endotypes. The limitations of these studies include the 
identification of different risk factors for the same disease (wheezing) 
using the same technique (LCA), differences in the characteristics of the 
wheezing trajectories, the temporal description of wheezing in these 
clusters that may not align with the temporal presentation of symptoms, 
and ultimately, the diverse pathological mechanisms that can lead to 
wheezing within the same cluster. For example, persistent wheezing can 
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arise from recurrent airway infections due to impaired immunological 
responses or from allergen sensitization and exposure (51).

Considering these limitations, ML has identified more 
intermediate phenotypes with one certainty across all studies: all 
wheezing phenotypes, even the transient ones, lead to impaired lung 
function in early adulthood (41). Moreover, the results obtained so far 
need validation in further longitudinal studies involving larger 
populations of preschool children.

Conclusion

The applications of AI in preschool wheezing have encompassed 
various research topics, including phenotyping, delineating trajectories 
using data from EHR, predicting future asthma development and 
exacerbations, and identifying early risk factors and genetic markers. 
There are also several applications for clinical practice, such as wheezing 
recognition using AI-augmented stethoscopes or smartphones and 
telemonitoring (59).

Although AI could support clinicians in their daily practice, some 
questions must be  addressed, especially when caring for children. 
Regulatory requirements are of foremost importance in protecting 
sensitive data and maintaining privacy. Additionally, AI approaches and 
their results must be  rigorously validated before we  adopt them in 
our routines.

In conclusion, AI could enhance the management of preschool 
wheezing, from recognition to identifying children potentially at high 
risk of exacerbation and asthma, thereby enabling an AI-tailored 
treatment. Furthermore, we should consider AI’s utility in case of 
future pandemics, particularly in telemonitoring and telemanagement. 
However, we must be mindful of its limitations and work to address 
them to ensure the safety of children’s data.
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