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Background: This study assesses the worldwide cardiovascular disease (CVD) 
burden attributed to air pollution, utilizing data from the Global Burden of 
Disease Study 2021.

Methods: We explored the impact of air pollution on CVDs globally, regionally, 
and nationally, while considering correlations with age, gender, and socio-
demographic index (SDI). A decomposition analysis was conducted to discern 
the contributions of aging, population growth, and epidemiological shifts to the 
changes in disability-adjusted life years (DALYs) from 1990 to 2021. Additionally, 
an ARIMA model was used to forecast the future CVD burden through 2050.

Results: In 2021, air pollution was responsible for approximately 2.46 million 
deaths and 58.3 million disability-adjusted life years (DALYs) attributable to CVDs, 
with a discernible decrease over the period studied. The greatest impacts were 
observed in individuals aged 75–79 and over 80, particularly among males. The 
decomposition analysis indicated that shifts in epidemiology were the primary 
factors driving these changes. Future projections suggest potential increases 
in mortality and DALY rates in regions with low and high-middle SDI, alongside 
rising age-standardized death and mortality rates in high SDI areas.

Conclusion: These findings underscore the urgency of implementing targeted 
CVD prevention and air pollution control strategies to mitigate the impact on 
public health.
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1 Introduction

Air pollution, a complex mixture of particulate matter and gases, is 
associated with approximately 8.8 million additional deaths annually. 
Nearly half of these deaths are linked to external environmental 
pollutants, while the remainder result from indoor pollution, 
substantially increasing the global health burden (1, 2). According to the 
World Health Organization (WHO) and the Global Burden of Disease 
Study, air pollution ranks as the fourth leading global cause of death and 
disease, just behind high blood pressure, tobacco use, and dietary risks 
(3). While the effects of air pollution on respiratory health are well-
known, it is important to emphasize that cardiovascular diseases 
(CVDs) account for half of the deaths associated with air pollution (2). 
Additionally, solid evidence worldwide shows that approximately 20% 
of CVD deaths are related to exposure to air pollutants such as PM2.5, 
PM10, ozone (O3), and nitrogen dioxide (NO2) (4, 5). Beyond traditional 
risk factors, the impact of environmental factors like ambient air 
pollution is increasingly recognized as critical (6).

Extensive epidemiological studies demonstrate that air pollution 
aggravates cardiovascular risk factors including hyperlipidemia, 
hypertension, atherosclerotic changes, and diabetes, thus elevating the 
risk of cardiovascular conditions such as ischemic heart diseases, heart 
failure, and strokes (7–9). Several mechanisms, including oxidative 
stress induction, inflammation, disturbances in autonomic and 

neuroendocrine functions, increased vasoconstriction and 
coagulation, and particulate matter penetration into the bloodstream, 
are proposed to explain the connection between air pollution and 
CVDs (10, 11). Consequently, the link between air pollution and 
cardiovascular health has emerged as a critical issue in environmental 
and public health, necessitating comprehensive research to effectively 
identify and address this challenge.

In this research, we examined the impact of air pollution on the 
cardiovascular health burden, analyzing trends in mortality and 
DALYs across different age groups, genders, and socio-demographic 
indices from 1990 to 2021. We also projected future trends using the 
autoregressive integrated moving average (ARIMA) model, validated 
by multiple prior studies (12, 13). These results are intended to aid in 
decision-making regarding the prevention of cardiovascular diseases 
and the management of air pollution.

2 Method

2.1 Study data

Data for our study were obtained from the Global Burden of 
Disease Study (GBD) 2021, which is available at http://ghdx.healthdata.
org/gbd-results-tool. The GBD 2021 provides a comprehensive 
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assessment of 369 diseases and injuries, along with 87 risk factors 
across 204 countries spanning from 1990 to 2021 (2).

The specific methodologies employed to calculate the burden of 
cardiovascular diseases (CVDs) are elaborated in additional 
references [14, 15]. This summary describes the approach adopted in 
GBD 2021. Sources for CVD mortality data included vital registration 
systems, surveillance data, and verbal autopsies. This vital registration 
data was then refined to enhance accuracy, addressing data gaps and 
miscoding issues (16). These adjusted datasets were analyzed using 
the Cause of Death Ensemble model (CODEm), which generated 
estimates of CVD mortality segmented by location, year, age, and 
gender (15, 17). Furthermore, a comparative risk assessment was 
conducted to identify principal risk factors for CVDs. The population 
attributable fraction (PAF) was computed to quantify the contribution 
of air pollution to the CVD burden. Estimates for CVD mortality and 
disability-adjusted life years (DALYs) related to air pollution were 
derived by applying these specific PAFs to the mortality and DALY 
figures across different demographics (2).

DALYs serve as an inclusive metric of disease impact, combining 
years lost due to premature mortality (YLLs) and years lived with 
disability (YLDs). YLLs were calculated by multiplying the number of 
deaths from cardiovascular diseases in each age group by the remaining 
life expectancy for that age group. YLDs were determined by 
multiplying the prevalence of CVDs by the severity-adjusted disability 
weights (DWs) (16). The Socio-Demographic Index (SDI), a composite 
indicator ranging from 0 (worst) to 100 (best), was derived from three 
factors: the total fertility rate for individuals under 25 years old 
(TFU25), average educational attainment for those over 15 years old 
(EDU15+), and adjusted per capita income. Based on the SDI, the 204 
countries and territories were classified into five categories: low SDI, 
low-middle SDI, middle SDI, high-middle SDI, and high SDI (16).

2.2 Risk factor estimate

In the Global Burden of Disease (GBD) study, the estimation of 
risk factors is guided by the comparative risk assessment (CRA) 
framework. This approach begins by determining the relative risk 
(RR) of specific health outcomes associated with exposure to risk 
factors, utilizing meta-regression and systematic reviews. Subsequent 
steps involve Bayesian statistical models, such as spatio-temporal 
Gaussian process regression (ST-GPR) and disease model meta-
regression (DisMod-MR), to estimate the levels and distribution of 
exposure for each risk factor. Additionally, theoretical minimum risk 
exposure levels (TMREL) are established. These represent the 
exposure levels that would ideally minimize health risks. Based on 
these assessments, population attributable fractions (PAF) and 
summary exposure values (SEV) are calculated. These metrics indicate 
the potential changes in health outcomes that could result if exposures 
were reduced to TMREL. These calculations are essential for assessing 
the disease burden attributable to various risk factors.

2.3 Statistical analysis

Age-standardized rates (ASR) were utilized to normalize mortality 
and DALY rates across nations with varying age distributions and 
demographic profiles. A linear model was applied to the natural logarithm 
of these rates over time, formulated as y = α + βx + ϵy, where xxx represents 

the year, and y is the natural logarithm of the rate. The estimated annual 
percentage change (EAPC) was calculated as 100 × (eβ − 1)100, along with 
a 95% confidence interval (95% CI). An increase in ASR was identified 
when both the EAPC and the lower boundary of the 95% CI were 
positive. Conversely, a decrease was noted if the EAPC and the upper 
boundary of the 95% CI were negative. If neither condition was met, ASR 
was considered stable during the study period (18, 19).

The relationship between ASR and the socio-demographic index 
(SDI) was examined using a Gaussian process regression framework 
with Loess smoothing and assessed through Spearman rank order 
correlation tests (18, 20). A decomposition analysis quantified the 
impacts of aging populations, population growth, and epidemiological 
shifts on overall DALY changes from 1990 to 2021, with methodologies 
detailed in earlier publications (21).

Additionally, the ARIMA model was employed to evaluate the 
influence of air pollution on CVD trends and forecast global, regional, 
and national trends from 2020 to 2050. Known formally as the 
“integral moving average autoregressive model,” the ARIMA model 
integrates differential, integral, moving average, and autoregressive 
components. In the ARIMA model (p, d, q), “AR” signifies 
autoregressive, with ppp denoting the number of autoregressive terms; 
“MA” represents the moving average component, with qqq as the 
number of moving average terms; and ddd refers to the number of 
differencing steps to achieve stationarity (22). Model selection was 
optimized using the Akaike information criterion (AIC) and the 
Bayesian information criterion (BIC).

A 95% uncertainty interval (UI) was calculated for all 
measurements. Rates were expressed per 100,000 individuals. Data 
management, analysis, and visualization were performed using R 
software version 4.3.2.

3 Result

3.1 Spatiotemporal patterns of CVD 
attributable to air pollution

In 2021, CVD led to about 19.41 million deaths and 428.33 
million disability-adjusted life years (DALYs). Among them, air 
pollution led to approximately 2.46 million deaths and 58.30 million 
DALYs due to cardiovascular diseases (CVDs), with an 
age-standardized mortality rate (ASMR) of 53.62 (95% UI, 42.70–
64.57) and an age-standardized DALY rate (ASDR) of 1161.77 (95% 
UI, 939.61–1380.37) per 100,000 population. Over the last thirty 
years, the CVD burden from air pollution has shown a significant 
decline (Tables 1, 2; Supplementary Table S1).

Regarding socio-demographic index (SDI) regions, higher SDI 
regions experienced a notably lower CVD burden due to air pollution. 
In contrast, the low, low-middle, and middle SDI regions observed 
substantial increases in CVD burdens linked to air pollution. All SDI 
regions recorded slight reductions in both ASMR and ASDR due to 
air pollution. This spatiotemporal pattern of CVD burden was aligned 
with this (Table 1; Supplementary Table S1; Table 2, and Figure 1).

Regionally, East Asia, Southeast Asia, and East Asia reported the 
highest CVD burdens from air pollution, marked by the greatest 
numbers of deaths and DALYs. Conversely, Oceania, Central 
Sub-Saharan Africa, and Western Sub-Saharan Africa recorded the 
highest rates of ASDR and ASMR. While increases in ASMR due to 
air pollution were noted across all regions, decreases were seen in the 
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TABLE 1 Global and regional deaths and DALYs of CVDs attributable to air pollution in 1990 and 2021 in 27 global regions and different genders.

Location Deaths number 
in 1990

Deaths number 
in 2021

ASMR in 
2021

DALY number in 
1990

DALY number in 
2021

ASDR in 
2021

Global

1695327.4670 

(1977170.5901, 

1427078.5915)

2468592.2959 

(2971801.8642, 

1953863.3588)

53.6174 (64.5662, 

42.6994)

43362305.0129 

(50272581.2571, 

36668710.4699)

58299045.0825 

(69763497.3333, 

46981815.3298)

1161.7722 

(1380.3722, 

939.6053)

Gender

Male

1695327.4670 

(19771705901, 

1427078.5915)

2468592.2959 

(2971801.8642, 

1953863.3588)

66.2955 (80.0582, 

52.1721)

43362305.0129 

(50272581.2571, 

36668710.4699)

58299045.0825 

(69763497.3333, 

46981815.3298)

1452.7201 

(1738.2851, 

1168.4189)

Female

1630076.9204 

(1927676.1020, 

1357969.1191)

2013903.9322 

(2422658.2196, 

1592567.0145)

43.2348 (51.9769, 

34.2335)

35510624.1810 

(41686369.9278, 

29789730.0616)

41338792.0101 

(49169185.9168, 

33240171.4369)

900.6461 

(1071.2889, 

724.6623)

Region

East Asia

995635.1048 

(1184133.8618, 

820235.5094)

1516109.2462 

(1921799.6028, 

1159124.9502)

79.4032 

(100.0644, 

60.9000)

24088329.7918 

(28642768.5871, 

19747638.0085)

29566224.4247 

(37600098.9963, 

22695124.2268)

1432.5120 

(1818.5155, 

1105.6533)

Southeast Asia

292409.4259 

(341167.7601, 

239156.6766)

414478.2168 

(524871.4679, 

310254.2424)

72.8560 (91.8257, 

54.3598)

7702975.3625 

(9009587.4587, 

6351206.5927)

10202762.5808 

(13097329.4276, 

7643198.8456)

1566.8157 

(1993.6971, 

1173.1989)

Oceania
3929.2258 (5022.2345, 

3006.3087)

8135.5507 

(10428.4797, 

6025.1548)

128.1500 

(161.9897, 

96.6313)

115694.5127 

(149599.5885, 

87715.1994)

235289.2364 

(306964.9383, 

172427.2916)

2941.5803 

(3758.2603, 

2174.6057)

Central Asia

54552.0623 

(76539.5652, 

35526.7865)

65599.1344 

(82696.3388, 

49613.5264)

98.4258 

(124.2898, 

74.0839)

1195900.0039 

(1687856.4669, 

778351.2762)

1431146.6198 

(1794120.5349, 

1078832.1102)

1872.0913 

(2343.7756, 

1413.9035)

Central Europe

177291.2836 

(239604.7043, 

114951.4549)

90168.6410 

(121110.2728, 

67837.2020)

37.9224 (50.9129, 

28.5961)

3572446.0165 

(4806187.2707, 

2325299.1638)

1522029.8266 

(2041946.1803, 

1155972.7451)

676.7089 

(907.4438, 

514.0276)

Eastern Europe

310543.6613 

(458160.8375, 

164812.6808)

153473.3540 

(229652.7298, 

96088.6386)

42.9521 (64.2367, 

26.9005)

6153494.9567 

(9048930.7816, 

3285095.5912)

2797506.8040 

(4112752.6421, 

1770610.3146)

802.1190 

(1178.6264, 

508.1216)

High-income 

Asia Pacific

38250.0681 

(72961.7274, 

10974.1797)

41800.6376 

(60312.0967, 

24737.6891)

7.0048 (9.9909, 

4.3139)

808578.9546 

(1543555.9978, 

240764.7608)

710535.7491 

(1007262.9837, 

437006.0259)

153.6023 

(214.8820, 95.3220)

Australasia
2729.0431 (7552.4241, 

94.7367)

2791.2600 (4198.1991, 

1580.7685)

4.5055 (6.7547, 

2.5404)

50811.4323 (139619.9939, 

1748.5420)

44476.0194 (66198.6791, 

25642.4317)

80.3321 (119.0927, 

46.3121)

Western Europe

247398.3436 

(397173.1254, 

122625.0513)

74452.9037 

(100642.9088, 

50578.4214)

6.3631 (8.5546, 

4.3541)

4361300.3912 

(6948664.6399, 

2168340.0610)

1144443.1203 

(1543429.8090, 

802248.2437)

114.8251 

(153.7857, 80.5935)

Southern Latin 

America

21634.4777 

(32705.1743, 

11850.3467)

11828.1789 

(17569.9612, 

6841.0366)

13.0890 (19.4295, 

7.5780)

454923.7033 

(691979.6497, 

247450.9039)

233587.5870 

(345270.5634, 

135950.4403)

268.4134 

(396.6459, 

156.2518)

High-income 

North America

99492.2929 

(175695.9489, 

40359.6178)

31507.1887 

(51217.4270, 

15009.8341)

4.4593 (7.2487, 

2.1248)

1843521.2401 

(3222999.0891, 

753865.0119)

575238.1857 

(930447.9526, 

273918.2634)

89.2999 (143.9604, 

42.4338)

Caribbean

18296.4156 

(25448.2459, 

12855.5225)

24251.5860 

(32896.1005, 

16545.4105)

44.7410 (60.6390, 

30.5579)

420823.9449 

(572012.7382, 

305366.5731)

550668.7510 

(743129.9627, 

381954.1997)

1027.5418 

(1385.4111, 

712.8068)

Andean Latin 

America

13175.8205 

(15939.8672, 

10547.5143)

12758.3159 

(17546.6813, 

8973.7710)

22.4437 (30.8327, 

15.7920)

312233.6889 

(377692.6302, 

250627.4808)

274209.7435 

(378920.8468, 

193125.8763)

461.8767 

(637.9337, 

325.3280)

(Continued)
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European and American regions, except in Central Latin America. 
Similarly, ASDR trends generally increased, except in high-income 
Asia Pacific and Australasia where decreases were observed (Tables 1, 
2). This spatiotemporal pattern of CVD burden was aligned with this.

Nationally, in 2021, the ASDR of CVDs related to air pollution 
varied widely worldwide, with the highest rates noted in countries 
across North Africa, the Middle East, and Central Asia (Figure 2). 
From 1990 to 2019, most nations saw a decline in ASDR linked to air 
pollution, with the exception of 15 countries including Honduras 
[Estimate (95% UI): 0.1202 (0.3439, −0.1029)], Libya [Estimate (95% 
UI): 0.7887 (1.1774, 0.4014)], United Arab Emirates [Estimate (95% 

UI): −0.7593 (−0.2459, −1.2701)], Kenya [Estimate (95% UI): 0.4531 
(0.6890, 0.2178)], Mozambique [Estimate (95% UI): 0.9241 (1.1264, 
0.7222)], Lesotho [Estimate (95% UI): 2.1309 (2.6863, 1.5785)], 
Zimbabwe [Estimate (95% UI): 1.9544 (2.5467, 1.3656)], Burkina Faso 
[Estimate (95% UI): 0.0403 (0.1177, −0.0370)], Cameroon [Estimate 
(95% UI): 0.0070 (0.4280, −0.4121)], Chad [Estimate (95% UI): 
0.1475 (0.3563, −0.0608)], Gambia [Estimate (95% UI): 0.1015 
(0.2334, −0.0303)], Guinea [Estimate (95% UI): 0.3354 (0.4689, 
0.2021)], Sierra Leone [Estimate (95% UI): 0.0179 (0.2127, −0.1765)], 
Northern Mariana Islands [Estimate (95% UI): 0.1044 (0.7569, 
−0.5440)], and Palau [Estimate (95% UI): 0.0144 (0.8653, −0.8294)]. 

TABLE 1 (Continued)

Location Deaths number 
in 1990

Deaths number 
in 2021

ASMR in 
2021

DALY number in 
1990

DALY number in 
2021

ASDR in 
2021

Central Latin 

America

40212.7970 

(53052.4395, 

28048.6728)

54983.4862 

(75020.3826, 

38196.7440)

23.0967 (31.5161, 

16.0590)

919916.7348 

(1211183.4959, 

639052.7796)

1135777.3836 

(1559780.7654, 

791892.2982)

457.1114 

(626.5176, 

318.6461)

Tropical Latin 

America

48310.5756 

(70390.5280, 

28728.2208)

34779.9324 

(50098.6078, 

20256.0361)

13.8874 (20.0204, 

8.0993)

1193491.5822 

(1745901.5364, 

697242.6729)

798762.5859 

(1146605.8902, 

469850.4417)

309.6700 

(444.2645, 

182.1120)

North Africa 

and Middle East

191712.9995 

(226694.2273, 

155481.6693)

339831.9837 

(409989.3193, 

271225.7511)

89.0225 

(106.7349, 

70.8306)

4774495.4770 

(5680593.8070, 

3857682.7204)

8132960.8611 

(9907073.5884, 

6451588.1781)

1798.5771 

(2174.0080, 

1432.8545)

South Asia

563019.8302 

(651144.2453, 

474660.4883)

1250304.4615 

(1462892.3775, 

1045358.4616)

94.4647 

(110.4090, 

78.8850)

15603270.2799 

(18064917.9081, 

13253674.7665)

31263672.8437 

(36643862.9574, 

26098304.4684)

2094.1080 

(2452.6221, 

1747.3016)

Central Sub-

Saharan Africa

24284.0787 

(30168.2275, 

19401.9787)

45323.0476 

(58644.6815, 

33622.3074)

110.5971 

(141.6104, 

82.5695)

647568.1295 

(808427.4001, 

511470.4147)

1182638.7094 

(1532681.5079, 

889409.9251)

2274.3773 

(2916.8406, 

1710.0685)

Eastern Sub-

Saharan Africa

74408.0979 

(88017.8048, 

61939.9862)

125700.9343 

(148776.4502, 

103606.9149)

91.2503 

(108.3014, 

75.3993)

2003936.8682 

(2383524.5962, 

1674514.5775)

3300546.9000 

(3914092.0739, 

2707095.3723)

1956.3214 

(2314.0052, 

1606.0484)

Southern Sub-

Saharan Africa

13193.8831 

(16261.9577, 

10198.8335)

23178.0975 

(28655.6990, 

17586.1958)

47.8778 (59.2397, 

35.9981)

338946.6340 

(415012.3883, 

267825.3248)

567046.6232 

(705509.3680, 

433808.4655)

1001.0289 

(1241.6501, 

761.5670)

Western Sub-

Saharan Africa

94924.9002 

(111889.2557, 

78007.9258)

161040.0710 

(193364.8423, 

132163.3701)

104.0693 

(123.5385, 

85.2558)

2310269.4889 

(2708637.4995, 

1894797.4127)

3968312.5373 

(4808350.4749, 

3245544.7257)

2093.3947 

(2506.8769, 

1720.4055)

SDI

High-middle 

SDI

940336.2440 

(1159157.5696, 

729244.2038)

922495.5999 

(1176292.3187, 

715704.0364)

47.7537 (60.8469, 

37.0495)

20436983.5742 

(24937334.2661, 

16099108.2518)

17518215.6278 

(22039734.3635, 

13707867.1341)

900.2615 

(1131.6321, 

704.3709)

High SDI

446201.4186 

(614797.8107, 

307147.5465)

237576.9488 

(310056.3864, 

172797.2332)

10.1980 (13.2477, 

7.4142)

8531364.7135 

(11698914.5076, 

5950760.1991)

4419388.9444 

(5675549.5283, 

3274373.5386)

221.0099 

(281.7897, 

165.4033)

Low-middle 

SDI

648976.4581 

(742318.5502, 

556313.4875)

1226912.9175 

(1425316.9868, 

1013901.1946)

95.6295 

(110.9862, 

79.1204)

17329837.8986 

(19792485.6239, 

14827104.6637)

30380359.1914 

(35460141.3211, 

25206113.8128)

2097.5866 

(2440.9952, 

1745.3074)

Low SDI

245189.5103 

(283760.9366, 

206886.3566)

444246.5011 

(519262.7157, 

374845.7863)

105.8942 

(123.7471, 

89.1028)

6540402.8771 

(7683839.9868, 

5548105.3090)

11425503.8763 

(13300421.1318, 

9588140.9866)

2256.3035 

(2621.3672, 

1901.4367)

Middle SDI

1040204.5101 

(1213776.2974, 

883408.7472)

1647692.7766 

(2040082.4543, 

1290448.7984)

69.2519 (85.9377, 

54.2699)

25936668.0362 

(30162567.1744, 

22048394.1061)

35817251.1043 

(44013141.4681, 

28380713.0044)

1373.5525 

(1688.9324, 

1083.3614)
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TABLE 2 Global and regional deaths and DALYs of CVDs in 1990 and 2021 in 27 global regions and different genders.

Location Deaths number 
in 1990

Deaths number 
in 2021

ASMR in 
2021

DALY number in 
1990

DALY number in 
2021

ASDR in 
2021

Global

12330009.3008 

(12787471.5911, 

11626404.9865)

19414853.0875 

(20668512.4937, 

17775807.4640)

358.1215 

(372.6290, 

333.7411)

297507308.4325 

(309345618.5144, 

284600934.8335)

428327412.2838 

(453711663.4307, 

403683550.4114)

7550.1684 

(7861.9927, 

7181.4625)

Region

East Asia

2576813.0423 

(2859920.2498, 

2280964.4437)

5231174.2615 

(6056337.1435, 

4452990.2327)

403.3261 

(445.8899, 

358.3746)

65291854.4059 

(72391953.4755, 

58394399.0585)

103566223.2648 

(119867679.8848, 

88067786.6165)

8014.8092 

(8844.4747, 

7134.0810)

Southeast Asia

779349.4010 

(847499.5624, 

707641.0304)

1721548.8969 

(1858463.1825, 

1556629.3188)

355.4948 

(388.6949, 

318.9347)

21924178.7091 

(23640597.2082, 

20172071.1971)

43674125.2338 

(47589095.9866, 

39509277.9960)

8110.3431 

(8770.8906, 

7393.6121)

Oceania

11289.6878 

(13443.0606, 

9434.8786)

24586.7000 

(28674.9237, 

20667.7626)

449.4996 

(525.9145, 

384.6594)

369579.8689 

(444821.4230, 

303941.5262)

776725.4554 

(908794.9210, 

653399.8410)

10865.7674 

(12854.3455, 

9179.0339)

Central Asia

214254.9701 

(220440.5444, 

203736.0545)

293313.0305 

(320330.0544, 

266419.5501)

512.8786 

(529.7830, 

484.1572)

4942615.0157 

(5078554.9336, 

4785143.0742)

6687963.5111 

(7313824.8914, 

6082677.6937)

10668.1128 

(10979.0799, 

10266.4394)

Central Europe

723472.2920 

(737744.3438, 

695750.3565)

682173.6929 

(724975.7907, 

621708.1279)

542.7664 

(555.7813, 

516.1485)

14920440.2024 

(15224614.3845, 

14534005.3153)

11848309.6931 

(12583230.4713, 

11046369.9976)

10469.0891 

(10700.4813, 

10134.1201)

Eastern Europe

1396706.8362 

(1422674.7668, 

1336338.0723)

1490605.8459 

(1620588.7552, 

1348328.8061)

570.0931 

(583.4916, 

540.1170)

28872233.1837 

(29398196.5216, 

28062119.9211)

29076844.1886 

(31492927.0337, 

26856664.0640)

10931.9273 

(11150.4104, 

10552.2126)

High-income Asia 

Pacific

358927.9579 

(375092.2397, 

325959.9957)

455989.5758 

(507729.1746, 

363780.5726)

204.0999 

(214.9380, 

182.1473)

7544628.9715 

(7897779.5337, 

7086522.6476)

7666056.7918 

(8355265.4717, 

6619060.7738)

3963.7126 

(4154.8775, 

3694.1503)

Australasia

62953.6543 

(65359.0892, 

58248.7203)

58242.9703 

(62867.0376, 

49260.4423)

280.0207 

(291.8992, 

256.7591)

1212270.0067 

(1256133.9364, 

1147288.3956)

1015701.6930 

(1095079.2399, 

911364.1918)

5257.7478 

(5456.7154, 

4963.5399)

Western Europe

1665937.2221 

(1730874.5805, 

1523643.7827)

1262954.4286 

(1367243.8049, 

1058669.3475)

280.6833 

(292.1707, 

256.2185)

30161814.8246 

(31253667.4484, 

28345011.9180)

20513501.7672 

(22129350.3988, 

18067114.0050)

5250.4181 

(5440.5721, 

4940.3821)

Southern Latin 

America

133794.2903 

(137286.7594, 

127096.4100)

124511.5743 

(131073.1291, 

113757.3894)

315.6093 

(324.9318, 

297.1318)

2945851.3022 

(3026762.3772, 

2855268.1607)

2531298.4115 

(2679611.4157, 

2378424.0031)

6512.5276 

(6699.4990, 

6287.0104)

High-income North 

America

943627.0238 

(988434.4061, 

849456.5935)

981389.5367 

(1048167.4518, 

850395.5490)

260.3662 

(272.6217, 

234.7756)

18479329.5920 

(19208197.5291, 

17298841.8786)

19199990.7353 

(20356283.8331, 

17487538.1837)

5317.3019 

(5520.3279, 

4998.1887)

Caribbean

82020.0013 

(84989.2807, 

78133.0041)

124209.4431 

(138459.8294, 

110466.5551)

341.9506 

(354.2058, 

324.2097)

1961558.1233 

(2047308.1442, 

1872099.6810)

2812678.0958 

(3177235.1090, 

2485295.6760)

7393.0156 

(7707.9326, 

7063.2077)

Andean Latin 

America

37598.8584 

(40794.4587, 

34861.4944)

65684.2536 

(77453.3339, 

56153.1207)

196.8385 

(212.8347, 

182.5495)

1027370.3886 

(1122150.9886, 

952090.8741)

1559288.9482 

(1816182.3757, 

1343402.4403)

4464.7388 

(4866.5559, 

4136.2482)

Central Latin 

America

165207.3957 

(168745.8954, 

157753.6061)

389476.7679 

(430749.4793, 

347067.9626)

230.6379 

(236.6198, 

217.5443)

4140616.9563 

(4258109.8328, 

4012380.8781)

8547908.8009 

(9503224.0946, 

7750213.8514)

4768.8819 

(4908.9838, 

4583.6024)

Tropical Latin 

America

263566.1701 

(270019.0280, 

250151.8200)

385370.4228 

(405260.4335, 

351506.5280)

331.6954 

(343.0030, 

307.9601)

7013551.7840 

(7197413.5083, 

6776423.1719)

9311288.4962 

(9741721.9071, 

8763364.2566)

7379.5378 

(7597.2616, 

7055.8757)

(Continued)
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The spatial and temporal trends of ASMR paralleled those of ASDR 
(Table  1; Supplementary Table S1, and Figures  2, 3). This 
spatiotemporal pattern of CVD burden was aligned with this.

3.2 Age and sex patterns

Figure 4 displays the age-specific global mortality and DALY rates 
for CVDs in 2021, along with their changes from 1990 to 2021. These 
rates demonstrate a J-shaped distribution, showing a rise in mortality 
and DALY rates among individuals under 75, with a notable escalation 
in the 75–79 and 80+ age brackets. In all age categories, males 
consistently exhibited higher mortality rates due to air pollution 
compared to females. Likewise, the DALY rates linked to air pollution 
were greater for all age groups. Similarly, it can be also found that for 
the total CVD burden, males also suffered more (Figure 5).

Across all SDI regions, males reported higher mortality and DALY 
rates, with the gender disparity persisting uniformly across these 
regions (Figure 6).

3.3 Association with the 
socio-demographic index

Figure  7 illustrates the comparison between the observed and 
projected age-standardized DALY (ASDR) and mortality rates (ASMR) 
attributable to air pollution against socio-demographic index (SDI) 
values at both regional and national levels from 1990 to 2021. An inverse 
relationship was noted between ASDR and SDI, suggesting a decline in 
burden as SDI increased. Regions such as Eastern Europe, Oceania, 
Central Asia, Central Europe, North Africa, East Asia, the Middle East, 
and Southeast Asia displayed higher than expected ASDR during this 

TABLE 2 (Continued)

Location Deaths number 
in 1990

Deaths number 
in 2021

ASMR in 
2021

DALY number in 
1990

DALY number in 
2021

ASDR in 
2021

North Africa and 

Middle East

750006.0342 

(796221.3285, 

698870.8066)

1354625.6239 

(1496618.1344, 

1210244.2987)

529.2313 

(560.6171, 

486.4433)

21342633.6285 

(22683423.7468, 

20071414.4726)

32979048.0349 

(36634917.6372, 

29306589.0025)

11421.7951 

(12113.6948, 

10721.0615)

South Asia

1554654.6927 

(1674221.6693, 

1402490.3612)

3666331.0215 

(3957645.1533, 

3381321.5306)

302.4687 

(326.8040, 

271.0688)

47373764.7790 

(50779957.1619, 

43286333.8555)

95358824.8320 

(103033020.9081, 

88177000.1955)

7379.8527 

(7927.0677, 

6697.1391)

Central Sub-

Saharan Africa

73256.3412 

(84984.4934, 

61934.2320)

149150.9405 

(183435.7965, 

118949.9182)

410.9305 

(468.3326, 

351.6018)

2250982.6949 

(2610691.4511, 

1884518.2975)

4227600.1489 

(5195234.5815, 

3368631.7169)

9133.9576 

(10496.7405, 

7864.2023)

Eastern Sub-

Saharan Africa

210769.1924 

(228569.9272, 

194575.9219)

356705.9634 

(398573.9455, 

321396.5816)

330.3295 

(356.8587, 

302.7167)

6439236.1045 

(7027602.2787, 

5899708.8856)

10431008.8497 

(11625438.0897, 

9366792.2742)

7631.4657 

(8265.7185, 

7036.8033)

Southern Sub-

Saharan Africa

58586.2196 

(63696.1104, 

52618.4025)

130763.4896 

(139193.6204, 

121926.3735)

245.7243 

(269.3870, 

217.5461)

1652825.9183 

(1773301.5238, 

1523913.2459)

3353216.3171 

(3607692.6148, 

3142540.3469)

5652.4959 

(6108.9394, 

5145.1601)

Western Sub-

Saharan Africa

267218.0175 

(296708.8591, 

238738.2933)

466044.6479 

(528620.2882, 

403942.6564)

354.2536 

(393.3463, 

315.8998)

7639971.9725 

(8425312.7644, 

6798257.4829)

13189809.0145 

(15117888.6325, 

11149879.4229)

7842.4565 

(8690.1385, 

7063.8065)

SDI

High-middle SDI

3623409.5643 

(3766722.9311, 

3426829.2003)

5064431.4681 

(5476622.4399, 

4543851.2539)

433.5722 

(451.9934, 

403.5012)

79552322.2560 

(82962332.1054, 

75496470.0808)

97878833.4741 

(105738655.6716, 

89801819.4608)

8451.9075 

(8819.1507, 

8001.6279)

High SDI

3068129.4424 

(3182090.3689, 

2812106.7070)

2915728.7671 

(3128618.0151, 

2508058.9734)

279.2932 

(290.5016, 

255.0388)

59840124.1655 

(62029530.3406, 

56518437.7455)

53384546.7937 

(57086143.3677, 

48351709.1539)

5494.1853 

(5699.9773, 

5185.4587)

Low-middle SDI

1856725.4157 

(1963813.3798, 

1731444.8314)

3824731.3598 

(4079680.7172, 

3556182.8735)

345.3859 

(367.3506, 

319.2504)

55008142.0762 

(58047504.3087, 

51439492.2139)

98787647.8476 

(105635894.9544, 

92030849.8732)

8149.9047 

(8594.9050, 

7607.6605)

Low SDI

688215.5914 

(746087.4835, 

631318.5692)

1244981.6526 

(1364117.4472, 

1131577.4158)

352.1112 

(380.9192, 

319.5988)

20968132.6054 

(22956100.9150, 

19071303.4865)

35335445.4576 

(39118035.3762, 

31846845.2577)

8236.2574 

(8920.5482, 

7566.4863)

Middle SDI

3075367.7597 

(3278008.5207, 

2863825.1519)

6344628.4227 

(6879029.9542, 

5787321.9488)

368.9258 

(393.4526, 

339.3824)

81736385.6887 

(87079930.4453, 

76736379.6902)

142519012.5713 

(152962109.3008, 

132081340.0390)

7843.6036 

(8338.5158, 

7348.2878)
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FIGURE 1

Temporal trends of ASMR and ASDR of CVDs attributable to air pollution (a,b) and total CVD burden (c,d) from 1990 to 2021 in different SDI regions.

FIGURE 2

Global distribution of ASMR (a) and ASDR (c) of CVDs for both sexes in 2021 in 204 countries and territories. EAPC of ASMR (b) and ASDR (d) of CVDs 
from 1990 to 2021 in 204 countries and territories.
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FIGURE 3

Global distribution of ASMR (a) and ASDR (c) of CVDs attributable to air pollution for both sexes in 2021 in 204 countries and territories. EAPC of ASMR 
(b) and ASDR (d) of CVDs attributable to air pollution from 1990 to 2021 in 204 countries and territories.

FIGURE 4

Age-specific rates of global deaths (a) and DALYs (b) of CVDs attributable to air pollution, by sex, in 2021 and the corresponding EAPC of global deaths 
(c) and DALYs (d) from 1990 to 2021.
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period. Additionally, observed ASDR values exceeded projections in 
Central Latin America, Tropical Latin America, Southern Latin 
America, and the Caribbean. The pattern for observed versus expected 
ASMR based on SDI at regional levels mirrored the ASDR findings. 
Figure 7 also depict the observed versus expected ASDR and ASMR at 
the national level for 2019, showing a similar inverse correlation 
between these rates and SDI values, both regionally and nationally.

3.4 Decomposition analysis of the change 
in DALYs

A decomposition analysis was conducted to assess the impact of 
three key factors: aging populations, demographic growth, and shifts 
in epidemiology, on the variation in DALYs from 1990 to 2021 
(Figure 8). In tracking the trends of ASDR, shifts in epidemiological 
factors were identified as major contributors to the fluctuations in 
DALYs for CVDs linked to air pollution across various SDI regions.

3.5 Forecasts for the mortality, DALYs rate, 
ASMR and ASDR of CVD attributable to air 
pollution in global (2022–2050)

Forecasts for mortality rates, DALY rates, ASMR, and ASDR of 
CVDs linked to air pollution are presented in Figures 9–11. At the 
regional level, increases are anticipated in both low and high-middle SDI 
regions for mortality and DALYs rate, whereas only the high SDI regions 
are expected to see rises in ASDR and ASMR. Nationally, the distribution 

is projected to remain consistent in 2030 and 2050. Nonetheless, the 
projected burden of CVDs due to air pollution is significantly greater in 
China compared to other countries for both 2030 and 2050.

4 Discussion

This research evaluated the global burden of cardiovascular 
diseases (CVD) attributable to air pollution from 1990 to 2021, 
uncovering a significant decline over the period studied. The age 
groups most impacted were those below 75–79 and above 80, with 
males showing higher incidence rates. A decomposition analysis 
revealed that epidemiological shifts were the primary factors driving 
these changes. Predictions indicate increasing burdens in regions with 
low and high-middle socio-demographic index (SDI), along with rises 
in age-standardized death rate (ASDR) and age-standardized 
mortality rate (ASMR) in high SDI areas. To our knowledge, this is the 
first comprehensive assessment of the CVD impact from air pollution.

Key factors contributing to health-related adverse effects from air 
pollution include ozone and fine particulate matter. These pollutants 
affect bodily systems through mechanisms like oxidative stress, 
inflammation, and disturbances in endothelial and autonomic 
functions. The cardiovascular health impacts of air pollution can 
be  traced from the initial physiological responses to pollutants, 
through their transmission, to their effects on target organs (23).

Primary reactions occurring in the lungs involve oxidative 
stress, local inflammation, and receptor activations initiated by 
pollutants such as PM2.5. These pollutants are ingested by alveolar 
macrophages through respiratory phagocytosis, leading to 

FIGURE 5

Age-specific rates of global deaths (a) and DALYs (b) of CVDs, by sex, in 2021 and the corresponding EAPC of global deaths (c) and DALYs (d) from 1990 
to 2021.

https://doi.org/10.3389/fmed.2024.1472996
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Mao et al. 10.3389/fmed.2024.1472996

Frontiers in Medicine 11 frontiersin.org

FIGURE 6

Sex disparity in CVDs burden attributable to air pollution across SDI regions.
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prolonged inflammatory responses in other tissues. The presence of 
pollutants activates inflammatory pathways involving NOD-like 
and Toll-like receptors, and the generation of reactive oxygen 
species (24–29).

Exposure to air pollution has been linked to systemic inflammation, 
primarily driven by the production of biological intermediates such as 
oxidized phospholipids and 7-ketocholesterol. These intermediates 
activate the TLR4, NOX2, and NCF1 pathways, leading to vascular and 

FIGURE 7

Correlations between ASMR (a,c) and ASDR (b,d) of CVDs attributable to air pollution and SDI at the regional level (a,b) and the national level (c,d).

FIGURE 8

Decomposition analysis of the change in DALYS.
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systemic inflammation (28). Furthermore, 7-ketocholesterol plays a role 
in promoting thrombosis, atherosclerosis, and endothelial dysfunction 
through CD36 pathways (30). Prolonged inhalation of PM2.5 escalates 
the production of reactive oxygen species (ROS) and inflammatory 

infiltration in the vasculature, potentially resulting in diastolic 
dysfunction, increased cardiac afterload, and compromised coronary 
reserve, which can culminate in cardiac complications such as left 
ventricular hypertrophy and fibrosis.

FIGURE 9

Estimated trends of mortality rate (a), DALYs rate (b), ASMR (c) and ASDR (d), 1990–2050 at the regional level.
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FIGURE 10

Estimated trends of mortality rate (a,b) and ASMR (c,d) in 2030 (a,c) and 2050 (b,d) at the national level.

FIGURE 11

Estimated trends of DALYs rate (a,b) and ASDR (c,d) in 2030 (a,c) and 2050 (b,d) at the national level.
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In vivo studies show that PM2.5 affects plasma tissue plasminogen 
activator levels, influencing thrombus formation. Variability in the 
composition and concentration of air pollution may explain 
discrepancies in research findings. PM2.5 also impacts the central 
nervous system, potentially causing autonomic dysfunction or 
adrenal activation through stimulation of the olfactory nerve (31–
33). Exposure to ozone may similarly activate the adrenal axis (34), 
potentially leading to conditions like insulin resistance or 
hypertension. Moreover, while PM2.5 is known to induce thrombo-
inflammatory responses and affect DNA methylation, its complete 
impact on genomic methylation and chromatin structure is yet to 
be fully elucidated (35, 36).

Chronic exposure to environmental pollutants can lead to 
lasting organ changes, thereby increasing vulnerability to 
cardiometabolic diseases such as diabetes, hypertension, and renal 
disease, while also accelerating atherosclerosis (37). Studies have 
linked even low-level, prolonged exposure to PM2.5 with a 
heightened risk of cardiovascular mortality, noting that increases in 
PM2.5 levels are associated with rising risks of cardiovascular death 
(38–41). In contrast, ozone exposure exhibits a weaker connection 
with CVD mortality (42). Additionally, prolonged exposure to PM2.5 
correlates with greater carotid intima-media thickness, which 
suggests advancing atherosclerosis and elevated blood pressure, 
though these relationships remain subject to debate (23, 43–47). 
PM2.5 exposure also heightens the risk of severe cardiac events in 
individuals with pre-existing heart conditions and contributes to 
the development of diabetes and insulin resistance (29, 48–50).

Previous studies have highlighted significant variations in the 
CVD burden from air pollution across BRICS nations (51). In 2019, 
Brazil’s age-standardized rate of CVD attributable to air pollution was 
approximately five times lower than India’s. During the observation 
period, Brazil saw the most significant decrease in CVD burden from 
air pollution and household air pollution (HAP) from solid fuels. 
Brazilian authorities have implemented measures to reduce emissions 
from both stationary and mobile sources, leading to a noticeable 
decline in air pollutants from 1996 to 2009 (52, 53). Initiatives like 
the Family Health Program and integrated approaches to managing 
non-communicable diseases have also contributed to reducing the 
CVD burden (53, 54).

Russia has seen a notable reduction in the CVD burden, 
especially from ambient particulate matter pollution (51). Since 1990, 
the WHO European Centre for Environment and Health launched 
programs to improve air quality and control pollution, including 
monitoring its health effects in the European Region, which includes 
Russia (55). In 2005, WHO organized a workshop in Eastern Europe, 
the Caucasus, and Central Asia (EECCA) to develop strategies to 
mitigate air pollution’s health impacts in EECCA nations, including 
Russia (56).

Conversely, South Africa has experienced a rising trend in all-ages 
CVD fatalities and a slow decline in age-standardized CVD mortality 
linked to air pollution (51). A recent report highlighted that pollution 
continues to pose significant health and economic risks in low-and 
middle-income countries (LMICs), with ambient air pollution remaining 
the main cause of pollution-related illnesses and deaths in Africa. 
Consequently, the incidence of non-communicable disease (NCD) 
deaths related to air pollution is rising in many African nations (57–59).

To combat CVDs, controlling air pollution is critical. Governments 
should enforce air quality standards and establish mechanisms for 

monitoring, enforcing, and ensuring accountability in pollution 
management. Technological advances in industry and sustainable 
energy initiatives like solar power are essential. Researchers should focus 
on creating and evaluating methods to mitigate air pollution’s effects on 
cardiovascular health. Public education on pollution risks and personal 
health measures such as using air filters and consuming antioxidants are 
necessary. Future strategies might include integrating data from multiple 
environmental sources and fostering cross-disciplinary research to 
refine pollution risk assessments. Clinicians should guide those at risk 
to maintain a diet rich in antioxidants and fresh produce.

The COVID-19 pandemic’s lockdown measures significantly 
impacted air quality in various regions around the world. Research 
shows that due to reduced traffic flow and the suspension of certain 
industrial activities, many cities experienced a marked improvement 
in air pollution levels in a short period. For instance, in 2020, several 
major cities globally reported significant reductions in the 
concentrations of nitrogen oxides (NOx) and fine particulate matter 
(PM2.5). This improvement in air quality, particularly among the 
working-age population that is at high risk for cardiovascular diseases, 
may have helped reduce the incidence of cardiovascular events (60).

Further studies indicate a close association between improved air 
quality and the reduction in acute cardiovascular events. For example, 
during the pandemic, there was a decrease in emergency room visits 
and hospitalizations for various cardiovascular diseases, although this 
may also be  influenced by changes in people’s healthcare-seeking 
behaviors during the pandemic. Additionally, the reduction in 
outdoor activities during the pandemic could have lessened the health 
risks associated with air pollution for individuals with respiratory and 
cardiovascular conditions (61).

However, the positive impacts brought about by the lockdown 
measures may be temporary. As economic activities gradually resume, 
air pollution levels could quickly return to pre-pandemic levels or 
even exceed them in some areas. Monitoring and researching air 
quality in the post-pandemic and post-pandemic periods will 
be  crucial for understanding long-term trends and developing 
appropriate responses (62).

Our study faces a few significant limitations. First, there is a lack 
of primary data from underdeveloped regions, especially in 
Sub-Saharan Africa, where estimates were largely derived through 
mathematical models, resulting in broad uncertainty ranges. Second, 
air pollution consists of a complex blend of multiple components, each 
with distinct physicochemical characteristics and toxicological effects, 
which differ widely by geographic area and season.

5 Conclusion

This research conducted a detailed evaluation of the global CVD 
burden due to air pollution from 1990 to 2021, noting a substantial 
reduction in this burden over time. The most affected age groups were 
those under 75–79 and those over 80, with men experiencing a higher 
impact. The analysis indicated that changes in epidemiology were the 
primary drivers of these trends. Moreover, future projections suggest 
an increase in both ASDR and ASMR in low and high-middle SDI 
regions, with only high SDI regions expected to see rises.

This highlights a critical need for policymakers to develop and 
enhance targeted preventive strategies for specific demographic groups 
to mitigate the CVD burden linked to air pollution moving forward.
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