
Frontiers in Medicine 01 frontiersin.org

Chinese herbal formula in the 
treatment of metabolic 
dysfunction-associated steatotic 
liver disease: current evidence 
and practice
Shao-Hong Tao 1, Yu-Qing Lei 1, Yi-Mei Tan 1, Yu-Bo Yang 2 and 
Wei-Ning Xie 3*
1 Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou 
University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, 
China, 2 School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China, 
3 Department of Scientific Research, Guangdong Provincial Hospital of Integrated Traditional Chinese 
and Western Medicine, Foshan, Guangdong, China

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly 
known as nonalcoholic fatty liver disease, continues to rise with rapid economic 
development and poses significant challenges to human health. No effective drugs 
are clinically approved. MASLD is regarded as a multifaceted pathological process 
encompassing aberrant lipid metabolism, insulin resistance, inflammation, gut 
microbiota imbalance, apoptosis, fibrosis, and cirrhosis. In recent decades, herbal 
medicines have gained increasing attention as potential therapeutic agents for the 
prevention and treatment of MASLD, due to their good tolerance, high efficacy, 
and low toxicity. In this review, we summarize the pathological mechanisms of 
MASLD; emphasis is placed on the anti-MASLD mechanisms of Chinese herbal 
formula (CHF), especially their effects on improving lipid metabolism, inflammation, 
intestinal flora, and fibrosis. Our goal is to better understand the pharmacological 
mechanisms of CHF to inform research on the development of new drugs for 
the treatment of MASLD.
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1 Introduction

With the rapid growth of economy and significant changes in lifestyle, metabolic 
dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty 
liver disease (NAFLD), is becoming increasingly prevalent (1). The global prevalence of 
MASLD is approximately 30% and appears to be increasing (2). MASLD was recently proposed 
to replace the term “NAFLD” in the Delphi consensus statement (3). MASLD goes beyond the 
limitations of the previous nomenclature of NAFLD. First, the new nomenclature removes the 
stigmatizing adjectives “non-alcoholic” and “fatty.” Second, the adjective “metabolic” has been 
added, which emphasizes the impact of the underlying metabolic pathophysiology of liver 
disease on cardiac metabolism. Zhou et al. showed that the prevalence and severity of NAFLD 
and MASLD remain similar (4) and previous relevant literature remains valid (5). MASLD 
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comprises a range of liver damage, from metabolic-dysfunction-
associated steatotic liver (MASL—hepatic steatosis without 
transaminitis) to metabolic-associated steatohepatitis (MASH), liver 
fibrosis, and ultimately may lead to hepatocellular carcinoma (6). 
Moreover, the correlation between MASLD and other chronic 
diseases, such as chronic liver disease, cardiovascular disease, 
endocrinopathies, and chronic kidney disease, has been reported 
(7–10). In conclusion, MASLD causes enormous clinical and 
economic burdens and is one of the leading causes of death.

Currently, there is no officially approved clinical drug for the 
management of MASLD (11). For one thing, the main treatment 
methods for MASLD are changing lifestyles, controlling diet, and 
strengthening exercise to improve liver steatosis and inflammation 
(12). However, lifestyle modification is hard to achieve weight loss 
goals and maintain for a long time for most patients. Limitations such 
as cost, potential side effects, and patient acceptance of invasive 
bariatric surgery should also be fully considered. For the other thing, 
numerous drugs have been discarded after unsuccessful clinical trials. 
A single mechanism has been emphasized in current drug research, 
while the complex pathophysiology of MASLD has been neglected. 
Preliminary results of single-drug trials showed that inflammation 
improved in less than 50% of MASH patients (13). A multitude of 
novel pharmaceutical agents are undergoing various stages of 
development but have not yet been formally approved for use, 
including antidiabetic drugs, peroxisome proliferator-activator 
receptor modulators, farnesoid X receptor agonists, and fibroblast 
growth factor analogs (13). Accordingly, the creation of 
pharmaceuticals for treating MASLD represents a significant unmet 
medical need. It is necessary and urgent to find economical, safe, and 
efficient drugs for the treatment of MASLD.

Traditional Chinese medicine has been used for over 2,000 years 
to treat a wide range of diseases, including those related to the liver. 
Many traditional Chinese medicines have great potential for preventing 
and treating MASLD, such as H. erinaceus, which treats a variety of 
gastrointestinal disorders by modulating intestinal microbiota and 
improving inflammation (14). CHF contains a wide variety of 
traditional Chinese medicines, which are a major source of herbal 
products and natural medicines, and are an important resource for the 
production of hepatoprotective drugs. CHF contains complex chemical 
components that can treat diseases through multi-target multi-pathway 
and multi-level pharmacological activity (15, 16). Therefore, CHF may 
be a promising candidate for solving the limitations of current single-
target drug therapy strategies. In recent years, progress has been made 
in the development of CHF for MASLD. This review presents an 
overview of the underlying pathomechanisms of MASLD. Moreover, 
in light of the latest findings from basic and clinical research, we present 
a summary of the anti-MASLD mechanisms of CHF, with a particular 
emphasis on their specific effects on lipid metabolism, intestinal flora, 
liver inflammation, and fibrosis.

2 The pathogenesis of MASLD

MASLD comprises a range of liver damage, from MASL to MASH, 
liver fibrosis, and ultimately may lead to hepatocellular carcinoma (6). 
In order to characterize the pathogenesis of MASLD, the ‘two-hit’ 
theory and the ‘multiple-hit’ hypothesis have been proposed. The ‘two-
hit’ theory proposed that steatosis and oxidative stress play important 

roles in MASLD progression (17). The ‘multiple-hit’ hypothesis 
involved richer and more accurate factors, such as abnormal lipid 
metabolism, insulin resistance (IR), inflammation, gut microbiota 
imbalance, fibrosis, cirrhosis, and so on (18) (Figure 1).

2.1 IR and abnormal lipid metabolism

MASLD shares its key risk factor of IR with increasing metabolic 
problems of type 2 diabetes mellitus, metabolic syndrome, obesity, 
hypertension, and dyslipidemia (19). On the one hand, IR causes low 
glucose disposal in adipose and muscle tissue, and further excessive 
delivery of fatty acids (FAs) to the liver (20). Derived lipogenesis 
(DNL) represents a metabolic process whereby non-lipids 
(predominantly carbohydrates) are converted into FAs, which 
constitute an essential component of lipid metabolism (21). The 
precise mechanisms underlying DNL in MASLD remain unclear, but 
sterol regulatory element-binding protein 1c (SREBP-1c) and 
carbohydrateresponsive element binding protein (ChREBP) have been 
believed to be coregulators (22). SREBP-1c is activated by insulin and 
controls enzyme activation in DNL. SREBP1c has been reported to 
be highly expressed in MASLD patients, which is associated with 
insulin resistance (23). In hyperglycemic and postprandial states, 
ChREBP is activated, increasing enzyme activity and gene 
transcription in the DNL pathway (24). Elevated levels of ChREBP 
have been demonstrated in the liver biopsies of patients with 
MASH. Increased ChREBP has beneficial effects on both lipid and 
glucose metabolism by separating hepatic steatosis from insulin 
resistance (24). ChREBP also regulates the synthesis of very-low-
density lipoprotein (VLDL), which facilitates the transport of 
triglycerides (TG) in hepatocytes (23). In patients with MASLD, 
VLDL synthesis and secretion exhibit an increase, yet stabilization 
occurs when hepatic lipid accumulation exceeds 10% (25). In addition, 
VLDL-TG molecules in obese individuals are so large that they are 
unable to penetrate the hepatic vascular sinus and end up in the 
bloodstream, which is one of the reasons why lipids accumulate in the 
liver (25). On the other hand, the excessive accumulation in 
hepatocytes of fat originating from diet leads to abnormal lipid uptake, 
synthesis, oxidation, and output in the liver (26). With free FAs 
overloaded, steatosis occurs and lipotoxic mediators comprising 
diacylglycerols, saturated free FAs, ceramide, and sphingolipids are 
produced, which further causes endoplasmic reticulum (ER) stress 
and mitochondrial damage in hepatocytes (27). Meanwhile, the 
reduction of adiponectin leads to an increase in FAs synthesis and 
enhancement of mitochondrial β-oxidation (28). Furthermore, IR is 
always associated with inflammation and lots of immunomodulatory 
factors, including IL-1, IL-6, TNFα, monocyte chemoattractant 
protein-1, and the IκB kinase β/nuclear factor-κB (NF-κB) pathway 
(29, 30). In conclusion, IR is closely associated with steatosis and 
inflammation which are important factors in the progression of 
MASLD (Figure 2).

2.2 Immunological mechanisms

Inflammation is a key driver in the progression of MASLD. The 
immune response is critical for tissue repair, yet excessive immune 
activation may cause liver tissue damage (Figure 3).
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2.2.1 Innate immune system
During MASLD, M1 Kupffer cells (KCs) are induced by mediators 

such as circulating FFAs, interferon-γ (IFN-γ), and lipopolysaccharide 
(LPS) through pattern recognition receptors including membrane-
bound toll-like receptors (TLRs) and cytoplasmic nucleotide 
oligomerization domain-like receptors (31–33). Then activated M1 
KCs secrete extracellular vesicles and pro-inflammatory cytokines 
such as IL-6, IL-1β, and TNF-α (34–37). On the contrary, M2 KCs 
decrease the progression of MASLD by inducing M1 KCs apoptosis 
and releasing transforming growth factor (TGF)-β1 and IL-13 which 
can promote liver remodeling and tissue repair (38, 39). Therefore, 

the balance between M1 KCs and M2 KCs is crucial for 
liver homeostasis.

Hepatic dendritic cells (HDCs), important immune cells in the 
liver, play a dual role in MASLD development and progression. In the 
state of immune tolerance, immature HDCs secrete TGF-β and IL-10, 
suppress inflammasome activation, restrict T cell expansion, and 
remove necrotic debris and apoptotic cells to maintain liver 
homeostasis (40, 41). Conversely, when HDCs are transformed into 
an active state, their mature forms produce inflammatory cytokines 
such as IL-2, IL-4, IL-6, TNF-α, and IFN-γ, which further lead to 
pro-inflammatory responses (41).

FIGURE 1

Metabolic dysfunction-associated steatotic liver disease (MASLD) spectrum. MASLD involves four different stages, starting from MASL, the appearance 
of MASH, the development of fibrosis, and ultimately possibly leading to hepatocellular carcinoma. The ‘two-hit’ theory and the ‘multiple-hit’ 
hypothesis have been proposed to describe the pathogenesis of MASLD (created with BioRender.com).

FIGURE 2

Insulin resistance and abnormal lipid metabolism in the progression of MASLD. On the one hand, under IR conditions, SREBP-1c and ChREBP are 
activated to further regulate derived adipogenesis and FAs production. On the other hand, dietary-derived FAs are over-accumulated in 
hepatocytes. In addition, VLDL-TG molecules are oversized, leading to reduced lipid transport. With excessive FAs, production of lipotoxic 
mediators, and reduction of adiponectin, steatosis, endoplasmic reticulum (ER) stress, mitochondrial damage, and inflammation occur in 
hepatocytes (created with BioRender.com).
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Other innate immune cells are also associated with the progression 
of MASLD. It is reported that neutrophils and factors released from 
neutrophils including elastase, proteinase 3, and myeloperoxidase are 
associated with inflammation and fibrosis in MASLD patients (42–
44). The number of NKT cells decreases during steatosis and increases 
in the middle and late stages of the disease. NK cells may promote 
hepatocyte apoptosis, inflammation, and fibrosis by secreting IFN-γ 
and TRAIL (45, 46).

In addition, immune factors are indispensable components of the 
progression of MASLD. Following tissue damage, members of the 
major mitogen-activated protein kinase (MAPK) families including 
the extracellular signal-regulated kinase (ERK), Jun N-terminal kinase 
(JNK), and p38 are activated (47). Besides, upstream and downstream 
effector kinases of MAPK including TGFβ-activated kinase 1 (TAK1), 
apoptosis signal-regulating kinase 1 (ASK1), interferon regulatory 
factors (IRF) and NF-κB are also involved in regulating the 
inflammatory response in hepatocytes (47). The activation of ASK1, a 
crucial mechanism in the progression of MASLD, is promoted by 
tumor necrosis factor receptor-associated factor 1 (TRAF1) (48–50) 
and TRAF 6 (51), while it is suppressed by deubiquitinase TNFα-
induced protein 3 (52), CASP8 and Fadd-like apoptosis regulator (53), 
dickkopf-3 (54), caspase recruitment domain 6 (55) and cellular 
repressor of E1A-stimulated genes (56). TANK-binding 1 kinase (57) 
and IKKε (58) promote hepatocyte steatosis. In contrast, tumor 
necrosis factor receptor-associated factor 5 has been reported to 
alleviate hepatic steatosis (20), IRF3 to alleviate IR and reduce hepatic 
lipid accumulation (59), as well as IRF9 to reduce steatosis and 
inflammation (60–62).

2.2.2 Adaptive immune system in MASLD
Increased recruitment of CD4+ T cells and CD8+ T cells has been 

reported in the liver of patients diagnosed with MASH (63–65). 
Stimulated by inflammation, CD4+ T-cells differentiate into Th1, Th2, 

and Th17 populations and produce specific cytokines (66). IL-17, one 
of these cytokines, interferes with the insulin signaling pathway and 
activates hepatic stellate cells (HSCs), leading to the progression of 
inflammation and fibrosis (67, 68). Tregs, one of the T-cell subsets, 
have been reported to have reduced levels in the liver and circulation 
of MASLD animal models and patients (69). Increasing the number 
of Tregs reduces liver inflammation and injury in mice (70).

The role of B cells in the pathogenesis of MASLD is not fully 
understood. IgA has been reported to be associated with hepatocellular 
inflammation, fibrosis, and carcinoma, and it can predict the 
progression of advanced liver disease (71–74).

2.3 Gut-liver axis

With impaired intestinal permeability and gut microbial dysbiosis, 
plentiful gut-derived products (such as LPS and dsDNA) or the 
microbiota enter the portal circulation and activate immune cells 
through signaling pathways such as TLR9, TLR4, NF-κB, and JNK 
(75–77). Activated immune cells promote the secretion of cytokines 
such as TNF-α, IL-1β, IL-6, IL-12, and IL-18 as well as the production 
of inflammation-related molecules such as ROS and NO, leading to 
inflammation in hepatocytes (75–77) (Figure 3). “Fonte Essenziale” 
water, a bicarbonate-sulfate-calcium–magnesium water, has been 
shown to produce beneficial effects on the liver-gut axis, modulating 
gut microbiota and gastrointestinal hormones, and further improving 
functional gastrointestinal symptoms in patients with MASLD (78, 79).

2.4 Apoptosis and fibrosis

Apoptosis and fibrosis are also important for MASLD progression. 
Apoptosis occurs throughout the course of MASLD, and it is closely 

FIGURE 3

Gut microbial dysbiosis and immune mechanisms in the progression of metabolic dysfunction-associated steatotic liver disease. A variety of immune 
cells and immune factors are involved in the progression of MASLD. In addition, in the case of impaired intestinal permeability and intestinal microbial 
disorders, immune cells are activated and produce inflammation-related molecules (created with BioRender.com).
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associated with inflammation and fibrosis (80). Hepatocyte damage 
and death are caused by FFA, lipotoxicity, intestinal microbial 
products, and inflammasome activation (80). Following hepatocyte 
injury and apoptosis, major MAPK family members along with their 
upstream and downstream effector kinases are activated and involved 
in regulating inflammation (47). Moreover, in MASLD, hepatic stellate 
cells (HSCs) are the key to the process of fibrogenesis (39). HSCs are 
activated by LPS through TLR4 which promotes the production and 
release of cytokines such as TNF-α, IL-6, and IL-8, leading to the 
activation of signal pathways such as JNK and NF-κB (81). In addition, 
myeloperoxidase and neutrophils can also lead to the activation of 
HSCs (44, 82). Activated HSCs are converted to myofibroblasts (83). 
Unregulated structural remodeling and fibrogenesis may lead to 
cirrhosis and hepatocellular carcinoma (84) (Figure 4).

3 The mechanisms of CHF for treating 
MASLD

CHF has been utilized for the treatment of liver disease for over 
two millennia, making a significant contribution to the field of 
healthcare. Although considerable progress has been made in the 
study of the pathogenesis of MASLD, no effective drugs have been 
approved for clinical use. Fortunately, CHF may be a potential treasure 
trove for the treatment of MASLD. To explore the mechanism of the 
therapeutic effect of CHF on MASLD, many animal experiments have 
been carried out. We list recent promising CHFs for the treatment of 
MASLD and their therapeutic mechanisms (Table 1).

3.1 Improving lipid metabolism

The ‘Pandora’s Box’ of MASLD is opened by abnormal lipid 
metabolism and excessive transportation of FFAs to the liver. Many 
CHFs can treat MASLD by regulating lipid metabolism. Zexie–Baizhu 
Decoction (85) activates AMPK and Sirt1 pathway, and then improves 
lipid metabolism by suppressing gluconeogenesis, inhibiting 

lipogenesis, activating fatty utilization, promoting FAs oxidation, 
prompting autophagy, and increasing bile acid metabolism. Si-Ni-San 
(86) reduces Yes-associated protein 1 in hepatocytes, further reducing 
lipid droplet deposition. Livsooth authentic herbal formula (87) 
regulates glucose and lipid metabolism in high fat diet-fed induced 
mice by promoting β-oxidation, increasing AMPK/ACC activation, 
and downgrading FAS and SREBP1.

3.2 Ameliorating inflammation

Inflammation within the liver is an important driver of MASLD 
development. Many CHFs can both improve lipid metabolism and 
inflammation by acting on different targets. Wang et al. found that 
compared with the negative control group, the positive therapeutic effect 
of Danshao Shugan Granule (88) on hepatic steatosis and inflammation 
in MASLD rats was related to the decrease of NF-κB expression, the 
reduction of malondialdehyde, and the increase of superoxide dismutase 
activity. Hedansanqi Tiaozhi Tang (89) exerts lipolysis-promoting and 
liver-protecting effects by enhancing the nuclear factor-erythroid 
2-related factor 2 (Nrf2)/Heme oxygenase 1 antioxidant pathway in 
hepatocytes and the antioxidant activity of 3T3-L1 adipocytes. Si-Wei-
Qing-Gan-Tang (90) ameliorates MASH in rat models by activating 
autophagy and downregulating NF-κB through p38 MAPK and ERK1/2 
signals. Chaihu Shugan powder (91) can reduce FAs synthesis, improve 
hepatic surface microcirculation disorders, and ultimately reduce 
transaminase and serum lipid levels by reversing the high expression of 
15 miRNAs. Quzhi formula (92) is involved in multi-anti-MASH 
mechanisms, including inhibition of ER stress, lipid accumulation, and 
inflammation through Bip/eIF2α Signaling. Yinchenhao Tang (93) has 
been demonstrated to markedly improve lipid metabolism, reduce body 
weight, and diminish AST and ALT levels in mice, which is associated 
with increased NR1H4 and APOA1 expression. The Scutellaria-coptis 
herb couple (94) alleviates MASH by inhibiting lipotoxicity, 
inflammation, and oxidative stress via activating the NRF2 and FXR 
Signaling. The protective effect of Shuangyu Tiaozhi decoction (95) 
against MASLD is based on the molecular mechanism of the relative 

FIGURE 4

Pathogenesis of MASLD from apoptosis and fibrosis to hepatocellular carcinoma. In MASLD, hepatic stellate cells (HSCs) are the key to the process of 
fibrogenesis. Activated HSCs are converted to myofibroblasts. Unregulated structural remodeling and fibrogenesis may lead to cirrhosis and 
hepatocellular carcinoma (created with BioRender.com).
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TABLE 1 List of Chinese herbal formulas with potential therapeutic benefits for MASLD.

Chinese 
herbal 
formula

Component Model Reported targets Associated mechanism of action Duration Published 
time

Lipid 
metabolism

Inflammation Gut 
microbiota

Fibrosis Others

Hedansanqi Tiaozhi 

Tang (89)

Salvia miltiorrhiza Bge.

Crataegus pinnatifida Bge.

Panax notoginseng (Burk.) F. H. Chen

Nelumbo nucifera Gaertn.

Male SD rats (HFD);

3T3-L1 murine embryo 

fibroblast cells

↑ 3T3-L1 adipocytes, Nrf2/

HO-1

+ + ↓ Oxidative stress 4 weeks 2020

Si-Wei-Qing-Gan-

Tang (90)

Artemisia capillaris Thunb.

Oldenlandia diffusa (Willd.) Roxb.

Gardenia jasminoides J. Ellis

Taxillus sutchuenensis (Lecomte) Danser

Male SD rats (MCDD) ↓ ERK1/2, p38 MAPK + + ↑ Autophagy 4 weeks 2020

Jiang Zhi Granule 

(97)

Salvia miltiorrhiza Bge.

Folium nelumbinis

Polygala tenuifolia Willd.

Artemisia capillaris Thunb.

Gynostemma pentaphyllum (Thunb.) 

Makino

Male SD rats (HFD) ↓ TLR-44, MyD88;

naive CD4+ T cells into Th1 

cells

+ + ↓ Oxidative stress, 

protect 

immunological 

barrier of intestinal 

mucosa

4 weeks 2021

Si Miao Formula 

(99)

Phellodendron chinense C. K. Schneid.

Atractylodes lancea (Thunb.) DC.

Achyranthes bidentata Blume

Coix lacryma-jobi L. var. mayuen

Male C57BL/6 mouse 

(High fat/high sucrose 

diet)

↓ Acly, FAS, ACC, Scd-1, 

IL-1β, Nlrp-3

+ + + ↓ IR 16 weeks 2021

Qushihuayu formula 

(103)

Curcuma longa L.

Artemisia capillaris Thunb.

Gardenia jasminoides J. Ellis

Hypericum japonicum Thunb. ex Murray

Polygonum cuspidatum Sieb. et Zucc.

Male Wistar rats (MCD);

male Wistar rats (MCDD)

↑ PPAR-γ and 

phosphorylated p65 

translocating into nucleus, 

HSCs reprogramming.

↓MAPK

+ + 8 weeks 2021

Zexie–Baizhu 

Decoction (85)

Alisma plantago-aquatica L.

Atractylodes macrocephala Koidz.

Male C57/BL6 mouse 

(Gubra-amylin MASH 

diet)

↑ Sirt1, AMPK + ↑ Autophagy 12 weeks 2022

Livsooth authentic 

herbal formula (87)

Pueraria lobata (Willd.) Ohwi

Pueraria montana (Lour.) Merr.

Hovenia dulcis Thunb.

Lonicera japonica Thunb.

Siraitia grosvenorii (Swingle) C. Jeffrey ex A. 

M. Lu & Zhi Y. Zhang

Male C57BL/6 mouse 

(HFD)

↑ AMPK/ACC hepatic 

antioxidant enzymes 

activities, β-oxidation.

↓FAS, SREBP1

+ ↓ Oxidative stress, 

hyperglycemia

18 weeks 2022

(Continued)
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TABLE 1 (Continued)

Chinese 
herbal 
formula

Component Model Reported targets Associated mechanism of action Duration Published 
time

Lipid 
metabolism

Inflammation Gut 
microbiota

Fibrosis Others

Danshao Shugan 

Granule (88)

Salvia miltiorrhiza Bge.

Paeonia veitchii Lynch

Bupleurum komarovianum Lincz.

Curcuma aromatica Salisb.

Cyperus rotundus L., et al.

Male SD rats (HFD) ↓ NF-κB, malondialdehyde 

values.

↑ Superoxide dismutase 

activity.

+ + 8 weeks 2022

Quzhi Formula (92) Polygonum cuspidatum Sieb. et Zucc.

Cassia obtusifolia L.

Crataegus pinnatifida Bge.

Male C57BL/6 SPF mouse 

(choline-deficient, 

l-amino acid-defined, and 

HFD); mouse hepatocyte 

(FFA)

↓ Bip/eIF2α + + ↓ ER stress 4 weeks 2022

Yinchenhao Tang 

(93)

Artemisia capillaris Thunb.

Gardenia jasminoides J. Ellis

Rheum Palmatum L.

Male Kunming mouse 

(HFD)

↑ NR1H4, APOA1 + + 4 weeks 2022

Shuangyu Tiaozhi 

decoction (95)

Dioscorea oppositifolia L.

Dioscorea septemloba Thunb.

Male SD rats (HFD);

High-fat HepG2 cells 

(FFAs)

↑ Relative mRNA and 

protein levels of ESR1 and 

p-GSK-3β.

↓ Relative mRNA and 

protein levels of mTOR, 

FASN, HIF-1α, and VEGFA

+ + ↓ IR 8 weeks 2022

Lingguizhugan 

decoction (96)

Poria cocos (Schw.) Wolf

Cinnamomum cassia Presl

Atractylodes macrocephala Koidz.

Glycyrrhiza uralensis Fisch.

Male C57BL/6 J mouse 

(HFD) bone-marrow-

derived macrophages and 

primary liver

macrophages

↓ STING-TBK1-NF-κB + + ↓ Oxidative stress, 

hepatic mitochondrial 

damage, 

mitochondrial DNA 

release

9 weeks 2022

Tianhuang formula 

(101)

Panax notoginseng (Burk.) F. H. Chen

Coptis chinensis Franch.

Male C57BL/6 J Narl 

mouse (HFD)

↑ Lactobacillus-5-

Methoxyindoleacetate-Nrf2.

+ ↓ Oxidative stress 6 weeks 2022

Pien Tze Huang 

(104)

Moschus berezovskii Flerov

Calculus bovis

snake gall

Panax notoginseng (Burk.) F. H. Chen

Male C57BL/6 mouse 

(HFD and MCDD)

↓ NF-Κb, IκBα + + + 2 weeks 2022

Si-Ni-San (86) Bupleurum falcatum L.

Citrus aurantium L.

Paeonia lactiflora Pall.

Glycyrrhiza aspera Pall.

HFD-fed C57BL/6 mouse; 

oleic acid-induced HepG2 

cells

↓ Lipid droplet, YAP1, 

PLIN2

+ 2 weeks 2023

(Continued)
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TABLE 1 (Continued)

Chinese 
herbal 
formula

Component Model Reported targets Associated mechanism of action Duration Published 
time

Lipid 
metabolism

Inflammation Gut 
microbiota

Fibrosis Others

Erchen Decoction 

(100)

Pinellia ternata (Thunb.) Breit.

Poria cocos (Schw.) Wolf

Glycyrrhiza uralensis Fisch.

Zingiber officinale Roscoe

Citrus reticulata Blanco, et al.

Male SD rats (HFD) ↑ Gut microbiota-drived 

butyric acid contents, FAO, 

H3K9ac;

↓ HDAC1

+ + 4 weeks 2023

Qing-Zhi-Tiao-Gan-

Tang (102)

Bupleurum scorzonerifolium Willd.

Citrus aurantium L.

Paeonia lactiflora Pall.

Coptis chinensis Franch.

Cassia obtusifolia L., et al.

Male C57BL/6 mouse 

(MCDD)

↓ Col1a1, TGF-β, Tnf-α, 

IL-6, IL-1β

+ + + ↑ FAs degradation, 

bile secretion, and 

steroid biosynthesis.

↓fibrosis genes

5 weeks 2023

Chaihu Shugan 

powder (91)

Bupleurum scorzonerifolium Willd.

Ligusticum chuanxiong Hort.

Citrus aurantium L.

Citrus reticulata Blanco

Paeonia lactiflora Pall., et al.

male Wistar rats (HFD) ↓ MiRNAs; gene and protein 

levels of ACACA, FASN, 

and other FAs biosynthesis-

related enzymes

+ + ↑ Liver surface 

microcirculation

8 weeks 2024

Scutellaria-coptis 

herb couple (94)

Scutellaria baicalensis Georgi

Coptis chinensis Franch.

Male SD rats (HFD);

HepG2 and 

RAW264.7 cells

↑ Nrf2 and FXR + + ↓ Oxidative stress 22 days 2024

Si Miao Formula 

(98)

Phellodendron chinense C. K. Schneid.

Atractylodes lancea (Thunb.) DC.

Achyranthes bidentata Blume

Coix lacryma-jobi L. var. mayuen

Male C57BL/6 J mouse 

(High fat/high 

sucrose)

↓ FASN, CPT1A, CPT2, 

CD36, IL-6, IL-1β, 

Tnf-α

+ + 16 weeks 2024

↑ promote; ↓ inhibit.
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mRNA and protein levels of ESR1, p-GSK-3β, mTOR, FASN, HIF-1α, 
and VEGFA, which ameliorate lipid deposition, inflammation, and 
IR. The Lingguizhugan decoction (96) alleviates hepatic lipid deposition 
by suppressing STING-TBK1-NF-κB single in hepatic macrophages.

3.3 Modulating gut microbiota

Dysregulated gut microflora can activate immune cells and 
promote the progression of MASL to hepatitis and fibrosis. Some 
CHFs target the ‘liver-gut axis’ to regulate gut microbiota and reduce 
intestinal mucosal damage to curb the development of MASLD. Jiang 
Zhi Granule (97) protects intestinal mucosal immune barrier in 
MASH rats by inhibiting the TLR-4/MyD88 signaling pathway. Si 
Miao Formula inhibits the expression of inflammatory factors, 
suppresses the production and transport of FAs (98, 99), and 
modulates the composition of the gut microbiota, especially 
increasing the abundance of Akkermansia muciniphila (99). The 
results also indicate that compared to fenofibrate, Si Miao Formula 
(99) has a more significant effect on TG reduction. Erchen Decoction 
(100) and Tianhuang formula (101) are also utilized to treat MASLD 
by modulating intestinal microbial flora diversity.

3.4 Alleviating fibrosis

The occurrence of fibrosis plays a sufficient role in the 
progression of MASLD. Chu et al. predicted by transcriptome-
based multi-scale network pharmacology logical platform and then 
proved through animal experiments that Qing-Zhi-Tiao-Gan-Tang 
(102) inhibits the expression of fibrosis genes (such as TGF-β, 
Col1a1), reduces the levels of inflammatory factors (such as IL-1β, 
IL-6, and Tnf-α), and improves the ‘steroid biosynthesis’, ‘bile 
secretion’ and ‘FAs degradation’ pathways. Qushihuayu formula 
(103) may exert hepatoprotective effects by enhancing the 
reprogramming of HSCs, promoting the translocation of p-p65 
and PPAR-γ to the nucleus, inhibiting the phosphorylation of 
MAPK pathway, and further alleviating steatosis and fibrosis. Pien 
Tze Huang (104) holds a beneficial role in steatosis, inflammation, 
and fibrosis of MASLD by inhibiting the NF-κB pathway and the 
degradation of inhibitor of κBα.

In conclusion, it has been demonstrated that CHF, which contains 
complex chemical components, plays a beneficial role in improving 
lipid metabolism, ameliorating inflammation, modulating gut 
microbiota, and inhibiting hepatic fibrosis through multi-target, 
multi-pathway, and multi-level pharmacological mechanisms. 
Therefore, CHF may be  a promising candidate to overcome the 
limitations of the current single-target drug treatment strategy.

4 Clinical practices of CHF on MASLD

A number of scholars have conducted clinical trials to explore the 
clinical effectiveness and safety of CHF in MASLD, and they have 
confirmed the multiple therapeutic effects and clinical application 
potential of CHF. Randomized controlled trials (RCTs) comparing 
CHFs with placebo or other pharmaceutical agents have been explored 
and the results are encouraging (Table 2).

4.1 Improving imaging findings in patients 
with MASLD

Several studies have found that ultrasound performed on patients 
with MASLD who took CHF showed a reduction in hepatic steatosis. In 
one RCT enrolling 260 patients with MASLD, Wang et al. showed that 
Danshao Shugan Granule (88) most significantly improved ultrasound 
finding and reduced the levels of triglyceride, total cholesterol, γ-glutamyl 
transpeptidase, and aspartate transaminase compared with silibinin and 
rosiglitazone. Another trial of Qinjiang Baoling Decoction (105) also 
demonstrated that the CHF had long-lasting efficacy in improving the 
scores of liver/spleen CT ratio and abdomen B-mode ultrasound.

Some scholars have utilized Fibrotouch to assess fatty liver 
grading and have found that CHF had superior therapeutic effects 
in MASLD. The result of one RCT showed better clinical 
improvement in patients with MASLD taking Lanzhang Granules 
(106) compared to placebo. Lanzhang Granules can effectively 
reduce the controlled attenuation parameter (CAP) of patients with 
a favorable safety profile, and significantly alleviate clinical 
symptoms such as right hypochondrial pain, fatigue, anorexia, and 
nausea. Hui et  al. reached similar conclusions in their study of 
spleen-strengthening and liver-draining herbal formula (107), 
which was additionally found to reduce liver stiffness measurement 
(LSM) and modulate intestinal flora.

In addition, the favorable therapeutic efficacy of CHF on MASLD 
has been demonstrated not only by B-ultrasound but also by Fibroscan 
in several clinical trials. Compared with polyene phosphatidylcholine 
capsules, Shugan Xiaozhi Decoction (108) can better improve liver 
stiffness, CAP, fasting blood glucose, BMI, TG, total cholesterol (TC), 
aspartate aminotransferase (AST), and alanine aminotransferase 
(ALT). Similar conclusions were reached in the study on Qinghua 
Decoction by Lu et al. (109).

4.2 Improvement of blood tests in patients 
with MASLD

During the trial, some CHFs did not affect the degree of hepatic 
steatosis in patients with MASLD, which may be  related to the 
relatively short intervention time. However, these CHFs improved 
the lipid profile and hepatic function. A multicenter, double-blind, 
randomized controlled clinical trial revealed that Qingre Huashi 
Formula (110) significantly reduced, alkaline phosphatase and body 
mass index (BMI) levels and improved symptoms such as bitter 
mouth and incomplete defecation. Long et  al. found that a 
combination of Xiaopi Huatan Granule (111) was more effective in 
lowering AST, ALT, TG, TC, and BMI in patients with MASLD 
compared to silymarin capsules. A clinical study on Zhibitai 
Capsule (112) found similar results. In addition, the study also 
found that the treatment resulted in significant reductions in 
enterobacteriaceae, enterococci, staphylococcus, diamine oxidase, 
serum endotoxin, procalcitonin, TNF-α, IL-6, and HOMA-IR and 
significant increases in lactobacillus, bifidobacteria, and 
bacteroidetes. All the indexes of the treatment group (Zibitai 
capsule combined with polyene phosphatidylcholine capsule) were 
better than those of the control group (polyene phosphatidylcholine 
capsule). Besides, Lingguizhugan Decoction (113) improved insulin 
resistance in overweight/obese patients with MASLD by increasing 
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TABLE 2 Clinical trials of Chinese herbal formulas for the treatment of MASLD.

Chinese 
herbal 
formula

Component Test group 
(sample size, 
male: female)

Control 
group 
(sample size, 
male: female)

Assessment 
of hepatic 
steatosis

Outcome Adverse 
events 

(number 
of cases)

Published 
time

Shugan Xiaozhi 

Decoction (108)

Artemisia capillaris Thunb.

Gardenia jasminoides Ellis

Bupleurum scorzonerifolium Willd.

Paeonia lactiflora Pall.

Citrus aurantium L., et al.

CHF

(40, 29:11)

Polyene 

phosphatidylcholine 

capsules

(40, 27:11)

FibroScan, 

B-ultrasound

↓ CAP, E, TC, TG, ALT, 

AST, BMI, fasting blood 

glucose

Diarrhea (7) 2018

Qinjiang Baoling 

Decoction (105)

Bupleurum scorzonerifolium Willd.

Paeonia lactiflora Pall.

Schisandra chinensis (Turcz.) Baill.

Poria cocos (Schw.) Wolf

Curcuma phaeocaulis Val., et al.

CHF + lifestyle and 

symptomatic treatment

(50, 28:22)

Diet, exercise, and 

symptomatic 

treatment

(50, 31:19)

B-mode 

ultrasound, liver/

spleen CT ratio

↓ TC, ALT, GGT, TCM 

syndrome integral

/ 2019

Qinghua 

Decoction (109)

Nelumbo nucifera Gaertn.

Atractylodes macrocephala Koidz.

Sedum sarmentosum Bunge

Poria cocos (Schw.) Wolf

Salvia miltiorrhiza Bge., et al.

CHF + lifestyle

(36, 24:12)

Qianggan 

Capsule+lifestyle

(36, 21:15)

Fibroscan, 

B-ultrasound

↑ Total effective rate

↓CAP, TG, ALT, AST, 

GGT

NR 2019

Zhibitai Capsule 

(112)

Crataegus pinnatifida Bge.

Atractylodes macrocephala Koidz.

Alisma plantago-aquatica L., et al.

CHF + Polyene 

Phosphatidylcholine

(38, 24:14)

Polyene 

Phosphatidylcholine 

Capsules

(38, 26:12)

FibroScan/B-

ultrasound/CT*

↓ TC, TG, ALT, AST, 

procalcitonin, TNF-α, 

IL-6, diamine oxidase, 

serum endotoxin, 

HOMA-IR

regulating gut microbiota

NR 2020

Danshao Shugan 

Granule (88)

Salvia miltiorrhiza Bge.

Paeonia veitchii Lynch

Bupleurum komarovianum Lincz.

Curcuma aromatica Salisb.

Cyperus rotundus L., et al.

CHF (130); 

CHF + Silibinin (50)

Rosiglitazone (30), 

Silibinin (50)

B-ultrasound ↓ TC, TG, AST, GGT, NR 2022

spleen-

strengthening and 

liver-draining 

herbal formula 

(107)

Bupleurum scorzonerifolium Willd.

Paeonia lactiflora Pall.

Glehnia littoralis Fr. Schmidt ex Miq.

Atractylodes macrocephala Koidz.

Poria cocos (Schw.) Wolf, et al.

CHF + lifestyle

(42, 27:15)

Lifestyle

(40, 28:12)

Fibroscan ↓ CAP, LSM, AST, ALT;

regulating intestinal flora

NR 2022

Xiaopi Huatan 

Granules (111)

Bupleurum scorzonerifolium Willd.

Artemisia capillaris Thunb.

Atractylodes macrocephala Koidz.

Poria cocos (Schw.) Wolf

Alisma plantago-aquatica L., et al.

CHF + Silibinin

(60, 28:32)

Silibinin Capsules

(60, 36:24)

B-ultrasound* ↓ TC, TG, ALT, AST, 

BMI, syndrome scores

NR 2022

Qingre Huashi 

Formula (110)

Lonicera japonica Thunb.

Polygonum cuspidatum Sieb. et Zucc.

Coptis chinensis Franch.

Oldenlandia diffusa (Willd.) Roxb.

Salvia miltiorrhiza Bge., et al.

CHF (34) Placebo (33) FibroScan/B-

ultrasound/CT*

↓ Total symptom score, 

alkaline phosphatase, 

BMI

↑ Curative effect of TCM 

syndromes

NR 2022

Lingguizhugan 

Decoction (113)

Poria cocos (Schw.) Wolf

Cinnamomum cassia Presl

Atractylodes macrocephala Koidz.

Glycyrrhiza uralensis Fisch.

Standard dose CHF

(ITT:81, 34:47;

PP:72,31:41)

low dose CHF

(ITT:81, 28:53;

PP:71, 22:49)

Placebo

(ITT:81, 34:47;

PP:75, 31:44)

Liver–kidney echo 

ratio on 

ultrasound

↓ HOMA-IR, fasting 

insulin, HbA1c

NR 2022

(Continued)
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the levels of DNA N6-methyladenine modification of protein 
phosphatase 1 regulatory subunit 3A (PPP1R3A) and autophagy 
related 3 (ATG3).

5 Conclusions and perspectives

In light of the growing prevalence of metabolic diseases, there is a 
heightened awareness of MASLD and a pressing need for the 
development of efficacious anti-MASLD drugs. However, currently, no 
significant therapeutic drugs with a notable curative effect are available. 
The pathogenesis of MASLD is complex, encompassing a sophisticated 
interplay of IR, abnormalities in lipid metabolism, inflammation, 

disturbances in gut flora, apoptosis, and fibrosis. CHFs are rich in 
natural ingredients and exhibit diverse biological effects in treating 
many diseases. Importantly, mechanistic studies and clinical trial results 
suggest that many CHFs have the potential to provide beneficial 
outcomes in the treatment of MASLD by improving lipid metabolism, 
inhibiting inflammatory pathways, modulating gut microbiota, and 
alleviating fibrosis (Figure 5). Mechanically, they primarily reverse the 
MASLD progression through multi-target regulation of multiple signal 
pathways and immune factors. In particular, NF-κB, AMPK, FASN, 
IL-1β, IL-6, Tnf-α, and Nrf2 are identified as key molecular targets for 
the improvement MASLD through CHF.

The therapeutic efficacy of CHF in MASLD has been widely 
explored, but toxicological studies are lacking and safety assessment 

TABLE 2 (Continued)

Chinese 
herbal 
formula

Component Test group 
(sample size, 
male: female)

Control 
group 
(sample size, 
male: female)

Assessment 
of hepatic 
steatosis

Outcome Adverse 
events 

(number 
of cases)

Published 
time

Lanzhang 

Granules (106)

Gynostemma pentaphyllum (Thunb.) 

Makino

Astragalus membranaceus (Fisch.) 

Bge.

Angelica sinensis (Oliv.) Diels

Polygonum cuspidatum Sieb. et Zucc.

Fritillaria thunbergii Miq.

CHF + lifestyle

(55, 30: 25)

Placebo + lifestyle

(55, 35:20)

Fibrotouch ↑ HDL-C, total TCM 

syndrome efficacy.

↓CAP, TC, TCM 

syndrome score.

Slightly 

elevated 

transaminase 

(1)

2023

*No statistically significant; ↑ promote; ↓ inhibit; NR, no report.

FIGURE 5

Summary of key mechanisms and events of CHF treating MASLD. CHF plays a beneficial role in inhibiting the progression of MASLD by improving lipid 
metabolism, ameliorating inflammation, modulating gut microbiota, and inhibiting fibrosis (created with BioRender.com).
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has not been emphasized. To date, the results of clinical trials are 
limited and tend to show subtle effects compared to cellular and 
animal models. Furthermore, the relatively modest sample sizes and 
dearth of liver biopsy data in the majority of clinical studies constrain 
the scope for deriving robust evidence from clinical trials regarding 
efficacious strategies for the prevention and treatment of MASLD. The 
diversity of CHF sources and their chemically active components, as 
well as the ample anti-MASLD mechanisms, reinforce our confidence 
and motivation to discover new anti-MASLD drugs. Nevertheless, the 
screening of CHF and the associated multicenter, more rigorous, and 
larger-sample RCTs are imminent.
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Glossary

MASLD metabolic dysfunction-associated steatotic liver disease

MASL metabolic-dysfunction-associated steatotic liver

MASH metabolic-associated steatohepatitis

CHF Chinese Herbal Formulas

CAP Controlled Attenuation Parameter

LSM Liver Stiffness Measurement

PPAR Peroxisome Proliferator-activator Receptor

FXR Farnesoid X Receptor

TCM Traditional Chinese Medicine

IR Insulin Resistance

FAs Fatty Acids

IFN-γ Interferon-γ

KC Kupffer Cell

LPS Lipopolysaccharide

TLR Toll-like Receptors

TGF Transforming Growth Factor

HDC Hepatic Dendritic Cell

MAPK Mitogen-activated Protein Kinase

ASK Apoptosis Signal-regulating Kinase

IRF Interferon Regulatory Factors

JNK Jun N-terminal Kinase

HFD High Fat Diet

SD Sprague Dawley

NF-κB Nuclear Factor-κB

Nrf2 Nuclear Factor-erythroid 2-related Factor 2

ERK Extracellular Signal-regulated Kinase

ER endoplasmic reticulum

MyD88 Myeloid Differentiation Primary Response 88

RCT Randomized Controlled Trials

NOD Nucleotide Oligomerization Domain-like Receptors

TAK1 TGFβ-activated Kinase 1

TRAF Tumor Necrosis Factor Receptor-associated Factor

TNFAIP3 TNFa-induced Protein 3

DKK3 Dickkopf-3

CARD6 Caspase Recruitment Domain 6

CREG Cellular Repressor of E1A-stimulated Genes

TBK1 TANK-binding 1 Kinase 1

HSCs Hepatic Stellate Cells

MPO Myeloperoxidase

NR No Report

MCD Methionine and Choline Diet

MCDD Methionine and Choline Deficient Diet

DSS Dextran Sulfate Sodium

YAP1 Yes-associated Protein 1

(Continued)

https://doi.org/10.3389/fmed.2024.1476419
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Tao et al. 10.3389/fmed.2024.1476419

Frontiers in Medicine 16 frontiersin.org

PLIN2 Perilipin2

ACACA Acetyl-CoA Carboxylase Alpha

NR1H4 Nuclear Receptor Subfamily 1 group H member 4

APOA1 Apolipoprotein A1

STING Stimulator of IFN Genes

CPT1A Carnitine Palmitoyltransferase 1α

CPT2 Carnitine palmitoyltransferase 2

CD36 Cluster of Differentiation 36

Acly ATP Citrate Lyase

ACC Acetyl-CoA Carboxylase

Scd-1 Stearoyl-CoA Desaturase-1

IL-1β Interleukin-1β

Nlrp-3 Nucleotide-binding and oligo-merization domain-like Receptor family Pyrin domain-containing 3

H3K9ac Acetyl-histone 3-lysine 9

HDAC1 Histone Deacetylase 1

IκBα Inhibitor of κBα

HO-1 Heme Oxygenase 1

TC Total Cholesterol

TG Triglyceride

AST Aspartate Transaminase

ALT Glutamic Pyruvic Transaminase

GGT γ-glutamyl Transpeptidase

HDL-C High-density Lipoprotein Cholesterol

E Liver Stiffness

BMI Body Mass Index

HOMA-IR Homeostasis Model Assessment of Insulin Resistance

ITT Intention-to-treat

PP Per-protocol

Glosary (Continued)
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