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Antibiotics are safe, effective drugs and continue to save millions of lives and prevent 
long-term illness worldwide. A large body of epidemiological, interventional and 
experimental evidence shows that exposure to antibiotics has long-term negative 
effects on human health. We reviewed the literature data on the links between 
antibiotic exposure, gut dysbiosis, and chronic disease (notably with regard to the 
“developmental origins of health and disease” (“DOHaD”) approach). Molecular 
biology studies show that the systemic administration of antibiotic to infants has a 
rapid onset but also often a long-lasting impact on the microbial composition of 
the gut. Along with other environmental factors (e.g., an unhealthy “Western” diet 
and sedentary behavior), antibiotics induce gut dysbiosis, which can be defined 
as the disruption of a previously stable, functionally complete microbiota. Gut 
dysbiosis many harmful long-term effects on health. Associations between early-
life exposure to antibiotics have been reported for chronic diseases, including 
inflammatory bowel disease, celiac disease, some cancers, metabolic diseases 
(obesity and type 2 diabetes), allergic diseases, autoimmune disorders, atherosclerosis, 
arthritis, and neurodevelopmental, neurodegenerative and other neurological 
diseases. In mechanistic terms, gut dysbiosis influences chronic disease through 
direct effects on mucosal immune and inflammatory pathways, plus a wide array 
of direct or indirect effects of short-chain fatty acids, the enteric nervous system, 
peristaltic motility, the production of hormones and neurotransmitters, and the 
loss of intestinal barrier integrity (notably with leakage of the pro-inflammatory 
endotoxin lipopolysaccharide into the circulation). To mitigate dysbiosis, the 
administration of probiotics in patients with chronic disease is often (but not 
always) associated with positive effects on clinical markers (e.g., disease scores) and 
biomarkers of inflammation and immune activation. Meta-analyses are complicated 
by differences in probiotic composition, dose level, and treatment duration, and 
large, randomized, controlled clinical trials are lacking in many disease areas. In 
view of the critical importance of deciding whether or not to prescribe antibiotics 
(especially to children), we suggest that the DOHaD concept can be  logically 
extended to “gastrointestinal origins of health and disease” (“GOHaD”) or even 
“microbiotic origins of health and disease” (“MOHaD”).
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1 Introduction

Worldwide, antibiotics continue to save millions of lives, relieve 
suffering, and prevent long-term illness (1). Large quantities of these 
drugs are involved: for example, over 250 million prescriptions of 
antibiotics were issued in the USA alone in 2016 (2). One can 
reasonably hypothesize that worldwide, most people (especially 
children) are treated with an antibiotic at least once a year (3–6). 
Antibiotics are extremely effective and generally lead to the eradication 
of the targeted pathogenic bacteria (7). By definition, antibiotics create 
dysbiosis [defined in several ways (8)] by killing significant 
components of the gut community (9–11) (Figure 1). Broadly, levels 
of Enterobacteriaceae, Bacteroidaceae, enterococci, and drug-resistant 
Escherichia coli rise following antibiotic treatment in adults, whereas 
levels of bifidobacteria, lactobacteria, actinobacteria and 
Lachnospiraceae decrease (11–13). Despite the emergence of microbial 
resistance as a long-term public health risk, antibiotics are still 
irreplaceable in the treatment of bacterial infections (14).

However, antibiotics also have negative effects on health. The acute 
(short-term) effects have been extensively studied; for example, 
between 5 and 20% of antibiotic users (depending on the population 
studied) will develop antibiotic-associated diarrhea with days or weeks 
of treatment initiation, and the incidence is greatest in frail, hospitalized 
patients and young children (11, 15–19). There is now a large body of 
epidemiological evidence to show that exposure to antibiotics has 
chronic (long-term) negative effects on human health—effects likely 
to be  accentuated by poor antibiotic stewardship, inappropriate 
prescribing, excessive or chronic administration, and off-label use.

The present review covers the literature data on the long-term 
negative health effects of antibiotic exposure, the link to dysbiosis, and 
how the associated risks might be managed through the evidence-
based administration of specific probiotics. Although this review was 
not systematic, we  searched the PubMed database for recent 
publications (from January 1st, 2023, to June 15th, 2024) using logical 
combinations of the following keywords: antibio*, exposure, 
microbiot*, microb*, gut, intestine*, dysbiosis, DOHaD, thousand 
days, health, disease, and probiotic.

2 The gut microbiota and its 
maturation

From the mouth to the anus, the adult human gastrointestinal 
tract has a surface area of around 30 m2 and a luminal volume of 
around 3 L (20). After the skin, the gastrointestinal tract constitutes 
the body’s largest interface with the environment. The gut carries 
1013–1014 microbes from thousands of species, which contain several 
million genes in total—far more than in the human genome. Here, 
we shall use the term “gut microbiota” to refer to the set of microbial 
(mainly bacterial) species contained in the environment of the human 
gastrointestinal tract. We  prefer “microbiota” to the term 
“microbiome,” which we  take to encompass not only the 
microorganisms (bacteria, archaea, and lower and higher eukaryotes) 

and their genomes but also the human cells and substances in the 
surrounding gut (21). Although there are huge inter- and intra-
individual variations in the composition of the gut microbiota, over 
99% of the gut microbiota is composed of species from the Firmicutes, 
Bacteroidetes, Proteobacteria, and Actinobacteria (22).

It is generally accepted that a human’s gut microbiota starts to 
form after birth (i.e., ex utero) and reaches maturity at around the age 
of 3 years (23, 24). Interesting, this period coincides largely with the 
“first 1,000 days” (from conception to the age of 2 years)? The “first 
1,000 days” concept grew out of a body of research on the importance 
of the early life environment for the child’s current and future mental, 
physical and emotional health states (25–30). Awareness of this 
concept grew markedly after a keynote speech by the then US Vice 
President Hilary Clinton at the “1,000 Days: Change a Life, Change the 
Future” international conference on global child undernutrition in 
2010. Furthermore, the “first 1,000 days” concept fits well with the 
“thrifty phenotype” hypothesis, the Barker hypothesis (linking adverse 
nutrition childhood to metabolic syndromes in adulthood) and the 
subsequent “developmental origins of health and disease” (DOHaD) 
concept; all hold that a poor fetal environment and perturbed early 
neonatal life prompt the development of disease (31–33). Of course, a 
focus on the first 1,000 days does not mean that day 1,001 is medically 
and scientifically unimportant. Nevertheless, the “first 1,000 days” 
concept has been useful for (i) focusing research efforts and public 
opinion on this critical period in the development of the child and, 
indeed, of the microbiota, and (ii) emphasizing the importance of the 
microbiota’s origin and development in the first hours, days, weeks, 
months and then years of the human host’s life.

As mentioned above, most experts consider that the human gut 
microbiota starts to form after birth. However, there is some debate as 
to the presence of a fetal microbiota, and it is not inconceivable that 
bacteria from the mother can cross the maternal-fetal barrier (34). 
However, the ethical and practical difficulties of collecting 
contamination-free samples of fetal tissue have complicated research 
efforts to settle this debate (35–39). Delivery by cesarean section (i.e., 
the avoidance of contact with the vaginal microbiota) is a major 
dysbiosis-promoting factor and is associated with a low-Bacteroides 
profile in the first 6 months postpartum (40). In children delivered by 
cesarean section, relatively high abundances of Burkholderiaceae, 
Bacteroidales, and Ruminococcaceae persist for at least 7 years (41, 42). 
It is also noteworthy that the gut microbiota is much less diverse in 
preterm infants (born after less than 34 weeks of gestation) than in 
term infants—even in the absence of antibiotic treatment, which most 
preterm infants nevertheless receive. Cetinbas et al. used 16S rDNA 
sequencing to evaluate long-term, antibiotic-induced dysbiosis on the 
basis of 363 stool samples collected between 26 and 48 weeks of 
adjusted age from 65 preterm infants treated with antibiotics in the 
NICU and 52 samples from 14 preterm counterparts not treated with 
antibiotics (43). Antibiotic-treated preterm infants were slower to 
return to a “normal” gut microbiota, in terms of Shannon diversity 
and species richness. The difference in the abundance of Paenibacillus 
amylolyticus was quickest to disappear, whereas changes in Veillonella, 
Shuttleworthia and Clostridioides persisted up to 40 weeks of age (43).
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During the potentially unstable first years of life, the gut 
microbiota can be perturbed by pathogenic microbes and external 
(environmental) factors, such as diet, xenobiotics, and other 
exogenous compounds—notably antibiotics (44). In-depth molecular 
biology studies have shown very clearly that the systemic 
administration of an antibiotic to infants has a rapid but often long-
lasting impact. For example, Yassour et al.’s study of 1,069 samples of 
feces from 39 children (around half of whom had been treated with 
antibiotics in the first year of life) collected over a period of 36 months 
showed that antibiotic-treated individuals had less stable gut 
microbiotas, with low diversity still visible at the age of 3 years (40). 
Kwon et al. used 16S rRNA sequencing and linear discriminant effect 
size analysis to evaluate alpha and beta diversities in fecal samples 
from (i) 20 infants under 3 months of age who had received antibiotics 
for at least 3 days and (ii) 34 age-matched, healthy controls not 
exposed to antibiotics (45). Relative to controls, the relative 
abundances of Escherichia, Shigella and Bifidobacterium were 
significantly greater in the antibiotic-treated group, whereas that of 
Bacteroides was significantly lower. The abundances of Firmicutes 
genera (Allobaculum, Enterococcus, and Candidatus arthromitus), 
Proteobacteria genera (Klebsiella), and Actinobacteria genera 
(Bifidobacterium) were three or four times higher in the treated group 
than in the control group. A phylogenetic investigation of communities 
by reconstruction of unobserved states revealed a significant difference 
in gut microbiome metabolic activity between the two groups; the 
antibiotic-treated group showed the expression of significantly more 

genes involved in naphthalene degradation, glycolysis gluconeogenesis, 
and lipoic acid metabolism and less expression of genes involved in 
porphyrin metabolism and fatty acid biosynthesis (45).

The effects of antibiotics on the gut microbiota of newborns and 
infants are accentuated by a lack of standardization in antibiotic 
treatment plans. For example, Schulman et al.’s study of 127 neonatal 
intensive care units (NICUs) in the USA evidenced up to 40-fold 
variations in dosing regimens (46). In France, Leroux et al. study of 44 
NICUs found an average of nine different dosing regimens for each of 
the 41 antibiotics documented (47). Similarly, in 43 NICUs in the UK, 
Kadambari et  al. identified 10 different dosing regimens for 
prescriptions of gentamicin (48).

3 “Normal,” “healthy” microbiotas: 
how can dysbiosis be defined?

Although many experts have sought to define dysbiosis, the topic 
is subject to debate and constitutes a field of research in its own right 
(49). As emphasized by Brüssow and by Drago et al., no consensus 
conference has yet worked out a definition of “dysbiosis” (50, 51). To 
the best of our knowledge, none of the learned societies or medical 
associations in this field have issued a single, unambiguous definition 
of “dysbiosis.” Given this lack, there is no “gold standard” approach to 
identifying a dysbiotic state (52). A conventional, broad definition 
published by Petersen and Round in 2014 is related primarily to the 

FIGURE 1

The relative abundance of representative species in fecal samples of volunteers during a 6-month follow-up period after a four-day course of a 
combination of meropenem, gentamicin, and vancomycin [data extracted from Palleja et al. (11)]. The relative abundance of the dominant fermentative 
species (“Survivors”) dropped during the antibiotic treatment and recovered slowly over the follow-up period. The relative abundance of subdominant, 
resistant bacteria (“Opportunists”) increased rapidly.
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composition of the microbiota: “any change to the composition of 
resident commensal communities relative to the community found in 
healthy individuals” (13). These compositional changes usually 
encompass a decrease in bacterial diversity, the loss of beneficial 
microbes, and overgrowth by potential pathogens. More recent 
definitions have emphasized function as well as composition: for 
example, Levy et  al. define dysbiosis as “a compositional and 
functional alteration in the microbiota that is driven by a set of 
environmental and host-related factors that perturb the microbial 
ecosystem to an extent that exceeds its resistance and resilience 
capabilities” (53). In this definition, gut microbiota can be viewed as 
a conceptual energy landscape in which both healthy and dysbiotic 
states can exist in energy minima. External factors (such as antibiotics, 
various xenobiotics, dietary components, and pathogens) that exceed 
a certain threshold cause transitions from a stable, healthy state to a 
metastable, dysbiotic state (54). Levy et al. acknowledged that given 
the high degree of interindividual variability, it is impossible to define 
a single “healthy” microbiota; however, they suggest that the main 
characteristic of a “healthy” microbiota in a given individual is 
richness and stability over time (53). Wilkins et al. have suggested that 
dysbiosis should be defined by reference to a particular disease state, 
i.e., a single, all-encompassing definition may not be feasible (49). 
Lastly, Malard et al. have defined dysbiosis as the disruption of host-
microbe symbiosis and crosstalk, with auto-aggravating signals from 
both the host and microbes that maintain the metastable dysbiotic 
state (54). Hence, as detailed in the following section, dysbiosis of the 
gut microbiota can be viewed as the disruption of the positive actions 
of (i) short-chain fatty acids (SCFAs, produced by the fermentation of 
host-enzyme-resistant carbohydrates by obligate anaerobes) (55, 56), 
(ii) the microbial production of serotonin, catecholamines and other 
neurotransmitters (affecting gut peristaltic motility and the genesis of 
the enteric nervous system) (57–61), (iii) minimization of the “leaky 
gut” in which potentially pathogenic whole bacteria and bacterial wall 
components can enter the circulation (62–64), and (iv) the bacterial 
expression of enzymes that influence the levels of host metabolites (65, 
66). In summary, dysbiosis does not have a consensus definition but 
can usefully be  viewed as the disruption of a previously stable, 
symbiotic, functionally complete microbiota by dietary, xenobiotic or 
other factors.

4 Mechanistic links between the 
microbiota, dysbiosis, health, and 
chronic disease

It is now clear that a stable, functionally rich gut microbiota exerts 
complex direct and indirect effects on the human host’s health through 
multiple genetic, immune-mediated and metabolic factors. 
Conversely, dysbiosis of the gut microbiota (i.e., the disruption of a 
previously stable, functionally complete microbiota) has many 
harmful short- and long-term effects on health. Common signs of gut 
dysbiosis include diarrhea, gas, constipation, nausea, and even chest 
pain (67). Admittedly, in most settings, it is difficult to determine 
whether dysbiosis is the cause or result of disease. Determining the 
causal nature and direction of a relationship notably requires 
prospective, longitudinal studies to see whether the dysbiosis or the 
disease occurs first. However, this approach can be confounded if a 
patient remains free of symptoms for months or years. A causal role 

of antibiotic-associated gut dysbiosis can nevertheless be suspected 
when the disease is more intense after exposure to broad-spectrum 
antibiotics (compared with narrow-spectrum antibiotics) and shows 
an antibiotic dose dependence (68–70). Lastly, one cannot rule out 
direct, negative effects (i.e., not mediated by the gut microbiota) of 
antibiotics. Some classes of antibiotic affect myocytes and neurons 
directly; for example, aminoglycosides, capreomycin, and macrolides 
are ototoxic (71, 72). Below, we describe the main pathways through 
which the gut microbiota are known to influence human health.

4.1 Short-chain fatty acids

The SCFAs [acetic (C2), propionic (C3), butyric (C4), and valeric 
(C5) acids] are produced via the fermentation of host-enzyme-
resistant carbohydrates by obligate anaerobes (primarily members of 
the Bacteroidetes and Firmicutes, including Roseburia spp., Prevotella 
spp., Ruminococus spp., Coprococcus sp., Akkermansia muciniphila, 
Faecalibacterium prausnitzii, and Eubacterium rectale), in 
collaboration with bifidobacteria (73). SCFAs are produced at up to 
millimolar concentrations in the gut and have several distinct 
metabolic and regulatory effects on the host.

Firstly, some of the SCFAs’ extracellular actions are exerted 
through via the G-protein-coupled free fatty acid receptors 2 and 3 
(FFA2 and FFA3), which are involved in responses to immune 
challenges (74, 75). Secondly, acetate and propionate bind to the 
G-protein-coupled olfactory receptor 51E2 (found notably in 
intestinal and enteroendocrine tissues) and the aryl hydrocarbon 
receptor (76–79). Thirdly, butyrate is a competitive inhibitor of histone 
deacetylase, which leads to the hyperacetylation of histones, increases 
chromatin accessibility and has major epigenetic effects on gene 
transcription (55, 56). Importantly, butyrate’s inhibition of histone 
deacetylase promotes histone acetylation in the Foxp3 gene’s promoter 
and enhancer regions in naïve T-cells in the colon and promotes their 
differentiation into peripheral regulatory T cells (key players in the 
immune tolerance of antigens during development) (80, 81). Hence, 
a low level of butyrate in the intestinal tract (due to antibiotic-induced 
dysbiosis) impairs Treg differentiation and the immune system’s ability 
to suppress excessive immune responses, which in turn may lead to 
mucosal and systemic inflammatory states. Lastly, the low oxygen 
levels required by the colon-dwelling strict anaerobes associated with 
a health microbiota are maintained by the β-oxidation of bacterially 
produced butyrate. Indeed, butyrate is the healthy colonocyte’s main 
energy substrate, accounting for 70–80% of its energy needs (82). A 
lack of SCFA-producing bacteria will tend to increase oxygen levels in 
the gut lumen and thus favor the expansion of aerobes and facultative 
anaerobes with pro-inflammatory potential.

4.2 The enteric nervous system and 
gastrointestinal dysmotility

The enteric nervous system (ENS) is now acknowledged to be a 
complex network of neurons and enteric glial cells that controls 
gastrointestinal motility, blood flow, and immune responses. The gut 
microbiota’s direct or indirect influences on the ENS are signaled to 
the brain through vagal afferents (83). Conversely, the brain’s responses 
to stress may be passed to the ENS by vagal efferents (83). The gut 
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microbiota can affect the genesis of the ENS and gut peristaltic 
motility by producing serotonin (57, 58). Studies in mice have shown 
that the administration of antibiotics modified the gut microbiome 
(with marked decreases in the abundance of Clostridioides, 
Lachnoclostridium, and Akkermansia), induced intestinal dysmotility, 
and interfered with the differentiation of myenteric neurons and the 
expression of the neuronal marker beta III-tubulin in the myenteric 
plexus (84, 85). These and other observations indicate that antibiotic-
induced gut dysbiosis is associated with structural and functional 
damage to the ENS, including gastrointestinal dysmotility.

4.3 Catecholamines and neurotransmitters

Some gut microbial strains produce and/or respond to compounds 
that serve as hormones, neurotransmitters or their precursors in the 
human host, including catecholamines, gamma aminobutyric acid 
(produced by lactobacilli and bifidobacteria), acetylcholine 
(lactobacilli), dopamine (Bacillus sp.), neuropeptides, noradrenaline 
(Bacillus sp.), serotonin (Escherichia, Enterococcus, and Streptococcus), 
endocannabinoids, histamine, and tryptophan (bifidobacteria) (57, 
59–61). The gut microbiota can thus be said to have a direct action on 
the nervous system.

4.4 Intestinal barrier integrity, immune 
signaling, and inflammation

The gut microbiota helps to protect the intestinal mucosa—
notably through the presence of mucus-promoting commensals and 
(in the colon) the supply of butyrate as an energy substrate to 
colonocytes (86). Dysbiosis can trigger the loss of intestinal barrier 
integrity. The resulting passage of pathogenic and non-pathogenic 
microbes leads to antigen presentation and the activation of innate 
and adaptive immune cells. One of the key pro-inflammatory signals 
in the loss of intestinal barrier integrity is the endotoxin 
lipopolysaccharide from the cell wall of Gram-negative bacteria (87). 
Lipopolysaccharide induces inflammation by activating Toll-like 
receptor 4 and upregulating nuclear factor-kappa B (88).

4.5 Dietary induction of enzymes

The composition of the diet influences the expression of a wide 
range of bacterial enzymes (cholesterol dehydrogenase, beta 
glucosidase and glucuronidase, 7-alpha-hydroxylase, nitroreductase, 
and azoreductase), notably by bacteria in the colon (65, 66). In turn, 
the activity of these enzymes influences levels of key host metabolites.

5 Chronic disease, environmental 
factors, antibiotics, and dysbiosis

Many chronic diseases are known to have both genetic factors and 
environmental susceptibility/triggering factors, of which antibiotic 
exposure is only one. Many of these environmental factors are linked 
to a “modern,” “post-industrial” or “Western” lifestyle, including the 

“Western diet” (high in sugar, fat, and processed food components, 
and low in fiber) and sedentary behavior (typically defined as 
spending time in a sitting, reclining or lying posture with an energy 
expenditure of 1.5 metabolic equivalents of task or less) (89–91). 
Sedentary behavior (including total sitting time and TV viewing time) 
is associated with an elevated risk of chronic diseases, including 
diabetes, cardiovascular disease, and (to a lesser extent) cancer—even 
after adjustment for the level of physical activity (92). Interestingly, 
lower sedentary behavior through increased physical activity is known 
to influence gut microbiota diversity in adults and children, with 
higher alpha-diversity (notably including SCFA-producing 
Lachnospiraceae and Erysipelotrichaceae families and Akkermansia, 
Roseburia, and Veillonella, genera) in physically active individuals 
(93–96). Indeed, SCFAs appear to be the main molecular link between 
physical activity and the gut microbiome, although few published 
studies of physically active vs. sedentary populations controlled for 
dietary confounders (i.e., fiber intake) (97). The high-sugar, high-fat 
“Western diet” is clearly associated with dysbiosis, as characterized by 
a decrease in the abundance of Bacteroidetes and bifidobacteria and 
an increase in organisms that can utilize excess monosaccharides, such 
as Enterobacteriaceae and Proteobacteria (98–103). Again, the main 
molecular link between diet, a normal microbiota and the associated 
health effects on the host is likely to be the SCFAs (104).

Antibiotic-induced perturbation of the gut microbiome 
nevertheless constitutes a key “environmental” factor in the 
development of chronic disease (Figure  2). The prevalent use of 
antibiotics in infants reveals concerning associations between antibiotic 
exposure and the onset of a number of distinct immunological, 
metabolic and neurobehavioral health conditions (whether isolated or 
combined) during childhood. For example, in a time-to-event analysis 
of medical records for 14,572 children born in Olmsted County (MI, 
United  States) between January 1, 2003, and December 31, 2011, 
Aversa et al. found that antibiotic exposure in the first 2 years of life 
(i.e., during the first 1,000 days) was associated with asthma, allergic, 
rhinitis, atopic dermatitis, celiac disease, overweight, obesity, attention 
deficit hyperactivity disorder, and learning disability (105). These 
health risks were influenced by the number, type, and timing of the 
antibiotic prescriptions. Relationships between antibiotics, dysbiosis, 
and a number of chronic diseases are described below.

5.1 Inflammatory bowel disease

Inflammatory bowel disease (IBD) primarily encompasses Crohn’s 
disease (CD) and ulcerative colitis (UC). Fecal samples from people 
with IBD (especially CD) are characterized by a low abundance of 
Firmicutes and a high abundance of Proteobacteria (106). Interestingly, 
people with IBD also have an abnormally high abundance of the mucin-
degrading bacteria Ruminococcus gnavus and Cenarchaeum symbiosum, 
even though these species are present in the healthy gut (106).

A large body of evidence suggests that gut dysbiosis [alone or in 
combination with other factors, such as diet, smoking, pollution, 
xenobiotics, and genetic factors causing a leaky gut (i.e., increased 
permeability)] may cause gut inflammation and thus IBD (107). The 
gut mycobiome and gut virome have been implicated in this dysbiosis, 
along with the bacterial communities of the gut microbiota (107–109). 
It has been suggested that dysbiosis early in life leads to CD, whereas 
dysbiosis at any time in life contributes to the onset of UC (110).
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Ungaro et al. meta-analysis of 11 observational studies (including 
7,208 children and adults diagnosed with IBD) found that exposure 
to antibiotics increased the risk of being newly diagnosed with CD 
(odds ratio (OR) [95% confidence interval (CI)]: 1.74 [1.35–2.23]) but 
not ulcerative colitis (1.08 [0.91–1.27]) (111). However, the data are 
contradictory: Troelson and Jick’s case–control study of 461 patients 
with UC and 683 patients with CD did not find any association with 
prior antibiotic use (112). A nation-wide observational study in 
Denmark confirmed the association between antibiotic exposure and 
elevated, independent risks of CD and UC. A positive dose–response 
relationship was also observed: the higher the level of exposure, the 
greater the risk (68).

It has been hypothesized that the effects of dysbiosis in IBD are 
mediated through SCFAs, the mechanistic roles of which have been 
outlined above. Holota et al. found that a 14-day course of ceftriaxone 
treatment in male Wistar rats led to a greater caecum weight, a fall in 
SCFA levels, the sustained elevation of conditionally pathogenic 
enterobacteria such as E. coli, Clostridioides, Staphylococcus spp. and 
hemolytic bacteria, increased colonic epithelial permeability, greater 
bacterial translocation, and lower levels of FFA2 and FFA3 receptors 
and SMCT1 and higher levels of MCT1 and MCT4 SCFA transporters 
in the colonic mucosa. Importantly, the ceftriaxone-treated animals 
were more susceptible to experimental colitis (113).

5.2 Irritable bowel syndrome

Although irritable bowel syndrome (IBS) does not feature gut 
inflammation and tissue damage, there is evidence of (i) dysbiosis in 
people with this functional gastrointestinal disorder (FGID) and (ii) 
an association between antibiotic use and the development of FGIDs. 
Saffouri et al. reported that the microbial composition of the small 
intestinal was significantly altered in symptomatic patients with IBS, 
with lower phylogenetic alpha diversity, richness, and evenness, and 
significant decreases in the abundances of Porphyromonas, Prevotella, 
and Fusobacterium (114). Jones et al. retrospectively studied electronic 
medical records from over 15,000 patients seen in general practice in 
the UK. Antibiotics were prescribed more frequently to patients with 
one or more FGIDs than to healthy individuals. A significant minority 
(7–14%) of individuals with an FGID received their first recorded 
antibiotic in the 12 months prior to the FGID diagnosis (115).

5.3 Celiac disease

People with active celiac disease have dysbiosis, with greater 
abundances of Enterobacteriaceae, Proteobacteria, Staphylococcaceae, 
and Proteobacteria (70). Furthermore, a reduced abundance of 

FIGURE 2

In industrial and postindustrial societies, a number of environmental factors have detrimental consequences for a vulnerable human microbial 
ecosystem; these factors include exposure to antibiotics and xenobiotics, sanitation of the living space, Western-type diets, sedentariness, and 
pollution. This unwanted alterations to the gut microbiome appear to be suboptimal for human health. Interactions between the altered microbiome 
and the host’s immune system contribute to the development of immune dysregulation and inflammatory phenotypes. In turn, these disturbances may 
lead to chronic inflammation and tissue injury. Individual genetic susceptibility might eventually determine the clinical expression of non-
communicable diseases (e.g., inflammatory, autoimmune, metabolic and neoplastic conditions and cognitive disorders).
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Streptococcus mutans and Streptococcus anginosus was observed in 
patients with active celiac disease patients and also in those with 
nonactive disease. Sander et al.’s analysis of data from a register-based 
cohort study conducted in Denmark from 1995 to 2012 and in 
Norway from 2004 to 2012 showed that exposure to systemic 
antibiotics in the first year of life was associated in a dose-dependent 
manner with the diagnosis of celiac disease (OR [95%CI]: 1.26 [1.16–
1.36]) (116), although further research on this topic is required. 
People with celiac disease should consume a gluten-free diet 
throughout their life: however, the latter is associated with a 
microbiota characterized by low abundances of Bifidobacterium sp. 
and Lactobacillus sp., and higher abundances of pathobionts like 
E. coli and the Enterobacteriaceae (117).

5.4 Neurological, neurodevelopmental, and 
neurodegenerative diseases

The increase in the prevalence of multifactorial 
neurodevelopmental diseases (NDDs, including autism spectrum 
disorder and attention deficit-hyperactivity disorder) over the last few 
decades suggest that the prevalence of environmental triggering and/
or susceptibility factors (such as antibiotic exposure) during prenatal, 
perinatal, and postnatal time windows has also increased. Dysbiosis 
is a known feature of NDDs; individuals with these conditions, notably 
have a higher fecal abundance of Bacterioidetes and Megamonas, and 
a lower abundance of bifidobacteria, Veillonella, Escherichia, 
Ruminococcaceae, Streptococcaeceae, Peptostreptococcaceae, and 
Erysipelotrichaceae (118–120).

Population-based studies have highlighted a clear association 
between antibiotic exposure and the risk of neurodegenerative 
diseases. For example, Kim et al. conducted a retrospective study of 
claims data in a Korean nationally representative cohort (n = 313,161 
participants) (69). After adjustments for covariates, used of antibiotics 
for 91 or more days over the period from 2002 to 2005 had an elevated 
risk of dementia in general (adjusted hazard ratio [95%CI] = 1.44 
[1.19–1.74]), Alzheimer’s disease (AD: 1.46 [1.17–1.81]) and vascular 
dementia (1.38 [0.83–2.30]) during the follow-up period from 2006 
to 2013. The researchers noted a dose dependency; people having 
received five or more classes of antibiotic during the study period had 
higher risks of dementia and AD (but not vascular dementia) (69). A 
large body of epidemiological research has linked the use of antibiotics 
during pregnancy (for the treatment of maternal infections) in 
particular with an elevated risk of NDDs and of cognitive disorders in 
adulthood (121, 122). The risk appears to be  lowest with narrow-
spectrum antibiotics (123, 124).

5.5 Autoimmune diseases

In people with multiple sclerosis (MS), the microbiota is 
characterized by elevated abundances of Firmicutes, Lachnospiraceae, 
Bifidobacterium, Roseburia, Coprococcus, Butyricicoccus, Lachnospira, 
Dorea, Faecalibacterium, and Prevotella (most of which produce 
SCFAs) and elevated abundances of Bacteroidetes, Akkermansia, 
Blautia, and Ruminocococcus (125). Jangri et  al. used 16S rRNA 
sequencing and gene expression analysis to study the microbiome in 
60 people with MS and 43 healthy controls. The MS group presented 

elevated abundances of Methanobrevibacter and Akkermansia and a 
lower abundance of Butyricimonas.

Juvenile idiopathic arthritis (JIA) is the most common rheumatic 
disease in children. Although the multifactorial (genetic and 
environmental) etiology of JIA is poorly understood, antibiotic 
exposure in early life has been linked to the onset of JIA (126–128). 
For example, Hestetun et al. studied 535,294 children born in Norway 
from 2004 to 2012 (129). Of these, 149,534 (27.9%) were exposed to 
systemic antibiotics prenatally and 236,340 (44.2%) were exposed 
during the first 24 months postpartum. The onset of JIA was associated 
with postpartum antibiotic exposure (adjusted OR [95%CI] = 1.40 
[1.24–1.59]) but not prenatal antibiotic exposure. Interestingly, the 
association was stronger in children having received sulfonamides, 
trimethoprim, and broad-spectrum antibiotics (129). However, 
reverse causality cannot be  ruled out because inflammatory joint 
symptoms (especially in children) may be misinterpreted as resulting 
from a bacterial infection.

5.6 Obesity

Researchers have evidenced complex interactions between the 
diet, the gut microbiota, inflammation, and obesity. Mechanistically, 
the pathways involve the microbial production of energy substrates, 
inflammatory effects on metabolism, and even an impact on satiety 
through the gut-brain axis (130). There appears to be a signature 
microbiotic profile for obesity: obese individuals have greater 
abundances of E. coli, Lactobacillaceae, Escherichia, shigella, and 
Negativicutes (131, 132). A large number of population-based studies 
have linked antibiotic administration to mothers during pregnancy 
and/or to infants in the first months of life to an elevated risk of being 
overweight later in childhood (133–135).

5.7 Allergy

Impaired or delayed maturation of the microbiota (with degraded 
mucus, elevated intestinal permeability, and a low proportion of 
SCFA-producing bacteria) during the first year postpartum may be a 
feature of allergic disease (136, 137). Ahmadizar et al. meta-analysis 
of 22 studies highlighted an association between antibiotic exposure 
in the first 2 years of life and the subsequent diagnosis of eczema (OR: 
1.26) and allergic rhinitis (OR: 1.23) (138). However, the results of the 
analyzed studies were somewhat contradictory and antibiotic 
exposure was not linked to objective measures of atopy, such as the 
serum specific IgE level or prick tests positivity or weald size.

Lu et al.’s analysis of asthma trajectories in the Longitudinal Study 
of Australian Children found that any antibiotic exposure in the first 
2 years of life increased the risk [95%CI] of early-persistent asthma by 
a factor of 2.3 [1.47–3.67] (p < 0.001) (139). In an incidence density 
study nested within a data collection project, Bentouhami et  al. 
assessed 1,128 mother–child pairs in Belgium (140). Excessive 
systemic antibiotic use in the first year of life (defined by the 
researchers as more than four courses) had more than twice the 
incidence density ratio [95%CI] of asthma (2.18 [0.98, 4.87], p = 0.06), 
relative to all other children.

However, the relationships with allergies appear to be complex, 
and some studies have evidenced positive associations with antibiotic 
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exposure. For example, Schoch et al. retrospectively studied 4,106 
infants in Florida from 2011 to 2017, roughly half of whom had 
received antibiotics during the study period (141). Antibiotic exposure 
(as noted in electronic health records) during the first year of life (and 
especially during the first month of life) was associated with a lower 
risk of atopic dermatitis. The researchers suggested that there may be a 
“critical window” for immune tolerance in human infants, which is 
influenced by antibiotic exposure (141).

5.8 Kawasaki disease

Dysbiosis has been reported as a susceptibility factor in Kawasaki 
disease (KD) (142–144). Teramato used 16S rRNA gene analysis to 
characterize the fecal microbiota of 26 children with KD and 57 
age-matched healthy controls (median age, 36.0 months). The KD 
group had a higher relative abundance of pro-inflammatory 
Ruminococcus gnavus and lower relative abundance of butyrate-
producing Blautia spp. (144). Antibiotic exposure might be a factor in 
the physiopathology of KD. Kim et al. studied 17,818 children aged 
under 5 diagnosed with KD between 2016 and 2019, together with 
89,090 matched controls. Use of antibiotics in the previous 6 or 
12 months was associated with the development of KD (OR [95%CI]: 
1.18 [1.12–1.26] and 1.23 [1.14–1.32], respectively). The researchers 
suggested that antibiotic-related changes in the gut microbiota might 
have a role in the development of KD (145). Kim et al. findings were 
in line with those of a previous study in Japan (146). However, Burns 
has pointed out that the establishment of a causal dysbiotic relationship 
between antibiotic exposure and KD would require adequately 
powered studies with appropriate matching criteria and a comparison 
of fecal samples from patients with KD vs. samples from patients 
without KD but similar levels of inflammation (147).

5.9 Atherosclerosis

In a study of the atherosclerosis-prone apolipoprotein E-knockout 
mouse model, Kappel et  al. used 16S ribosomal RNA serum 
metabolomics to evidence an antibiotic-induced fall in the abundance 
of certain Bacteroidetes and Clostridia. Antibiotic administration was 
associated with a greater atherosclerotic lesion size, independently of 
diet. The results of a serum metabolome analysis was suggestive of 
disturbances in tryptophan, trimethylamine-N-oxide and lipid 
metabolism by the gut microbiota (148).

5.10 Cancer

A moderate body of evidence suggests that excessive or prolonged 
antibiotic use is associated not only with a slightly greater risk of 
cancer onset but also a relative reduction in the effectiveness of cancer 
treatments (encompassing chemotherapy, radiotherapy, and 
immunotherapy) (149–151). The strength of the association between 
antibiotic exposure and cancer onset varies from one type of cancer to 
another and from one class of antibiotics to another (152). 
Relationships have been shown for breast cancer, endocrine gland 
cancers, pancreatic cancer and (to a lesser extent) lung cancer, 
esophageal cancer, gastric cancer, and ovarian cancer (150–155). 

Unsurprisingly (in view of the extreme proximity to the gut and the 
impact on public health), colorectal cancer has been extensively 
investigated with regard to antibiotic exposure. Most investigators 
have found a significant, dose-dependent association with colon 
cancer but not with rectal cancer (156, 157). The elevated risk of colon 
cancer might be related to low SCFA levels.

6 Mitigation of the potential 
long-term negative health effects of 
antibiotic exposure

The quotation “all disease begins in the gut” is often attributed to 
Hippocrates circa 400 BC. The father of modern medicine was 
probably not fully correct but, as seen for the diseases reviewed above, 
the DOHaD concept can be logically extended to what we term the 
“gastrointestinal origins of health and disease” (“GOHaD”) or even the 
“microbiotic origins of health and disease” (“MOHaD”). It should 
nevertheless be  borne in mind that the ORs for the associations 
between antibiotic exposure and the onset of chronic disease are 
generally quite low (i.e., between 1 and 1.5) and, despite the 
investigators’ best efforts in study design and data analysis, may 
be influenced by confounding factors.

More generally, we found that most of the clinical data on the 
chronic effects of antibiotics were generated in Europe and in North 
America. Further research in low- and middle-income countries is 
warranted because the latter are especially burdened by antibiotic 
resistance problems, vulnerability to infections by antibiotic-resistant 
pathogens, and the corresponding effects on the gut microbiota (158).

Probiotics have long been viewed as a means of treating the acute 
gastrointestinal disorders associated with antibiotic-associated gut 
dysbiosis (8, 159–161). Can probiotics be recommended as adjunct 
treatments to mitigate the negative effects of antibiotics? The European 
Society for Paediatric Gastroenterology Hepatology and Nutrition 
(ESPGHAN) recommends strain-specific probiotics for the prevention 
of antibiotic-associated diarrhea in children, whereas the American 
Gastroenterological Association (AGA) guidelines indicate that 
strain-specific probiotics may be used to prevent Clostridiodes difficile 
infections (162, 163). For adults and children with IBDs like CD or 
UC, the AGA guidelines only recommend the use of probiotics only 
in the context of a clinical trial (162). Similarly, the guidelines issued 
by the European Crohn’s and Colitis Organisation and the ESPGHAN 
state that in patients with CD, probiotics should not be used to induce 
or maintain remission (163–165). According to the guidelines issued 
by the World Gastroenterology Organisation, there is evidence of 
strain-specific efficacy of probiotics in the prevention of antibiotic-
associated diarrhea in adults or children who are receiving antibiotic 
therapy (166).

Hence, in view of the links between gut dysbiosis and the chronic 
diseases described above, one can reasonably hypothesize that the 
administration of probiotics will provide a degree of disease 
modification or symptom prophylaxis and mitigate the long-term 
consequences of antibiotic exposure. The main species to have been 
tested are lactic acid bacteria (such as Lacticaseibacillus rhamnosus 
GG, Limosilactobacillus reuteri, Lacticaseibacillus paracasei, 
Lactiplantibacillus plantarum, Lactobacillus acidophilus, Lactobacillus 
helveticus, Bifidobacterium lactis, Bifidobacterium breve, and 
Streptococcus thermophilus) and the yeast Saccharomyces boulardii. The 
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positive reported short-term effects of probiotics in various patient 
populations (IBD, celiac disease, cancer, obesity, types 1 and 2 diabetes 
mellitus, allergic disease, idiopathic nephrotic syndrome, KD; multiple 
sclerosis, rheumatoid arthritis, and systemic lupus erythematosus, 
atherosclerosis, and neurological, neurodevelopmental and 
neurodegenerative diseases) will not be  described in detail here 
because (i) the topic falls outside the scope of this review and (ii) the 
results have been extensively reviewed elsewhere in the literature (103, 
159–161, 163–165, 167–210). Certain studies showed a positive effect 
of certain probiotic strains in combination with antibiotics and have 
provided a rationale for using probiotics to protect the gut microbiota 
and intestinal barrier functions.

Probiotics have been tested in animal models of chronic disease 
and in observational or interventional clinical studies, with moderate, 
variable but generally positive results: evidenced significant differences 
or improvements in clinical disease scores, symptom scores, and 
disease marker levels, whereas other studies found no benefit. In the 
field of cognitive and psychiatric disorders and mental health 
problems, the term “psychobiotic” has been used to describe probiotics 
that act through the gut-brain axis. Following on from extensive 
preclinical data on an association between antibiotic-induced gut 
dysbiosis and psychopathologies in the rat (211), there is preliminary 
evidence to suggest that specific probiotics may improve cognitive 
function, particularly in people with age-related mild cognitive 
impairment (212, 213).

In the literature on probiotics, the most common design is the 
randomized, controlled trial of the efficacy and safety of a probiotic in 
patients. The second most common design is the pharmacokinetic 
study, which documents the recovery and/or clearance of an oral dose 
of probiotic or measures pre−/post differences in the abundances of 
probiotic strains. According to McFarland, three models of dysbiosis 
have been frequently evaluated (214). In model A (restoration), 
probiotic therapy is initiated and studied after the microbiota of initially 
healthy patients has become disrupted (e.g., by antibiotic exposure). In 
model B (alteration), patients with a pre-existing disruption of the 
microbiota are studied after probiotic therapy. In model C (no 
dysbiosis), volunteers with no disruptive events are studied before and 
after probiotic therapy. In McFarland’s systematic review of 63 trials 
(published in 2014), 83% of the probiotic products evaluated in model 
A restored the microbiota. The corresponding proportion was 56% in 
model B. Only 21% of the probiotics evaluated in model C had an effect 
on the microbiota. Clinical efficacy was more commonly observed for 
with strains capable of restoring the normal microbiota (214).

Furthermore, meta-analyses of trials in better-studied disease 
areas have sometimes failed to show a clear, beneficial effect of 
probiotics. However, the meta-analyses’ authors almost always 
highlight the degree of interstudy heterogeneity with regard to 
probiotic doses, strains, and treatment durations. Larger, 
multicenter, randomized, controlled trial of probiotics (possibly 
simultaneously investigating the gut microbiota and disease 
markers) are warranted.

The gut virome and gut mycobiome have attracted less attention 
than the gut’s bacterial communities but, as mentioned above, are known 
to be abnormal in people with IBD (107–109, 215). We recommend 
further investigation of the potential indirect effects of antibiotic 
treatment and probiotics on the gut virome and mycobiome. Specific 
strains of yeast probiotics are a topic of interest; as mentioned above, one 
of the most effective and frequently evaluated probiotics is a yeast 

(Saccharomyces boulardii CNCM I-745) and therefore is not directly 
affected by antibiotics (8, 216–218). Saccharomyces boulardii is not a 
natural member of the human gut microbiota and is eliminated rapidly 
after probiotic administration is discontinued. However, when present 
as a probiotic, certain strains of S. boulardii exert several beneficial 
actions (including protection of the mucus layer, the stimulation of 
SCFA production by Lachnospiraceae and Ruminococcaceae, and a 
reduction in  local inflammation) that counter antibiotic-associated 
dysbiosis (8, 216–218). In terms of the composition of the microbiota, 
treatment with S. boulardii is associated with increased abundances of 
Bacteroidaceae and Prevotellaceae and the suppression of pioneer 
bacteria (218). Treatment with S. boulardii CNCM I-745 can mitigate 
antibiotic-associated dysbiosis and diarrhea (219). More studies are 
needed to explore the full potential of this versatile probiotic yeast (218).

7 Conclusion

The results of our review indicate that antibiotic exposure is 
associated with a number of negative long-term (i.e., chronic) 
effects on health. Gut dysbiosis might be the causal link between 
antibiotic exposure and these chronic negative effects, although the 
lack of a replicable consensus definition of dysbiosis can lead to 
ambiguity in the interpretation of the data. Given that certain well-
studied probiotics (such as S. boulardii CNCM I-745 and 
L. rhamnosus GG) are inexpensive, safe and effective in preventing 
short-term negative consequences of antibiotic exposure (including 
dysbiosis), there is no reason to summarily rule out potential 
longer-term benefits in a particular chronic disease setting or 
patient population. We  recommend that decisions to initiate 
probiotic treatment should be made on a case-by-case basis after 
informed, evidenced-based discussion between the patient and his/
her physician.
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