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Osteoarthritis (OA) is a progressive degenerative disorder impacting bones and

joints, worsened by chronic inflammation, immune dysregulation, mechanical

stress, metabolic disturbances, and various other contributing factors. The

complex interplay of cartilage damage, loss, and impaired repair mechanisms

remains a critical and formidable aspect of OA pathogenesis. At the genetic

level, multiple genes have been implicated in the modulation of chondrocyte

metabolism, displaying both promotive and inhibitory roles. Recent research has

increasingly focused on the influence of non-coding RNAs in the regulation of

distinct cell types within bone tissue in OA. In particular, an expanding body of

evidence highlights the regulatory roles of microRNAs in OA chondrocytes. This

review aims to consolidate the most relevant microRNAs associated with OA

chondrocytes, as identified in recent studies, and to elucidate their involvement

in chondrocyte metabolic processes and ferroptosis. Furthermore, this study

explores the complex regulatory interactions between long non-coding RNAs

(lncRNAs) and circular RNAs (circRNAs) in OA, with an emphasis on microRNA-

mediated mechanisms. Finally, critical gaps in the current research are identified,

offering strategic insights to advance the understanding of OA pathophysiology

and guide therapeutic developments in this field.
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1 Introduction

Osteoarthritis (OA) is a chronic degenerative disease that affects bones and joints,
primarily in middle-aged and elderly populations. It leads to substantial pain, restricted
movement, and financial burden due to joint discomfort and loss of mobility (1).
The underlying causes of OA are multifactorial, potentially arising from disruptions
in physiological processes such as redox homeostasis, anabolic and catabolic activities,
and the balance between anti-inflammatory and pro-inflammatory responses (2). The
pathology of OA is driven by various cellular changes, including the destabilization of
cartilage metabolism, the pro-inflammatory transformation of macrophages, an imbalance
between osteoblast and osteoclast activity, and impaired stem cell differentiation (3, 4).
These cellular alterations underscore the importance of regulating these processes to
effectively prevent and treat OA. Regulation of OA involves several critical mechanisms:
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maintaining chondrocyte proliferation and metabolic balance,
promoting the polarization of macrophages towards anti-
inflammatory states, coordinating the activities of osteoblasts and
osteoclasts, and influencing the differentiation and proliferation
of bone marrow-derived mesenchymal stem cells (BMSCs).
MicroRNAs (miRNAs, miR), small non-coding RNAs 20 to 24
nucleotides long, play a pivotal role in these processes by binding
to the 3′ untranslated region (3′UTR) of target genes, leading
to mRNA degradation or the inhibition of translation. This
regulatory function allows miRNAs to influence a wide range of
cellular activities (5). Several miRNAs have been implicated in
the regulation of cellular processes related to OA (6, 7). Their
roles are often co-regulated by long non-coding RNAs (lncRNAs)
and circular RNAs (circRNAs), with their expression being either
upregulated or downregulated during the progression of OA. One
specific mechanism of interest in OA pathogenesis is ferroptosis,
an iron-dependent form of lipid peroxidation that results in
plasma membrane damage and cell death. This process has been
linked to cartilage damage and the worsening of OA (8). miRNAs
have been identified as potential regulators of chondrocyte
ferroptosis, suggesting their involvement in OA progression. This
review systematically examines the regulatory roles of miRNAs
in OA, focusing on their impact on various cell types in the
bones and joints. It also explored the mechanisms through which
miRNAs regulate OA, with a particular emphasis on their role in
ferroptosis. Furthermore, this review summarizes miRNAs that
are associated with ferroptosis and investigates their relationship
with chondrocyte ferroptosis. The objective is to provide a more
comprehensive understanding of OA pathogenesis and offer
insights that may inform future clinical treatment strategies.

2 MicroRNAs are strongly associated
with osteoarthritis

Osteoarthritis (OA) is a chronic, irreversible disorder of the
bones and joints, characterized by progressive degeneration due
to sustained inflammation and multiple homeostatic imbalances,
culminating in pain and reduced mobility during advanced stages.
While the precise pathogenesis of OA remains elusive, key factors
contributing to its progression include the loss of chondrocytes
and extracellular matrix from chronic injury, cellular senescence,
and the development of advanced osteochondritis dissecans.
Chondrocyte damage has been attributed to various triggers,
including pharmacological agents, metabolic disorders, excessive
mechanical stress, immune dysfunction, and inflammatory
responses, all of which disrupt metabolic homeostasis and lead to
both programmed and non-programmed chondrocyte cell death.
Recent research has highlighted distinct alterations in microRNAs
(miRNAs) within OA chondrocytes, suggesting their potential role
in modulating OA progression. Over the past few years, studies
have increasingly advanced our understanding of how miRNAs
regulate key processes in OA, particularly their influence on cellular
dynamics within bone and joint tissues. This review synthesizes the
types of cell death modulated by specific miRNAs that drive critical
cellular changes in bone and joint pathology (Supplementary
Table 1), alongside an overview of cartilage-associated miRNA
regulation (Supplementary Table 2), based on recent findings.

Research has demonstrated (9) that several microRNAs
(miR-146a-5p, miR-34a-5p, miR-127-5p, and miR-140-5p) exhibit
consistent expression changes in osteoarthritis (OA). These
findings highlight their significant potential for use in the diagnosis
and prognosis of OA (9). Considering the consistent differential
expression of these four microRNAs (miRs) in osteoarthritis (OA),
this review elucidates their specific regulatory mechanisms within
the context of OA. Furthermore, it underscores the potential
significance of targeting these miRs for future OA prevention
and treatment strategies. The primary objective is to enhance the
comprehension of osteoarthritis pathomechanisms and to support
the advancement of therapeutic interventions in both scientific
research and clinical practice.

2.1 MiR-140

MiR-140 plays a pivotal role in regulating cartilage homeostasis
and is closely linked to aging-related OA. Among its isoforms, miR-
140-3p is more abundantly expressed in cartilage compared to miR-
140-5p (10). Both miR-140-3p and miR-140-5p exhibit markedly
reduced expression in patients with aging-related OA (11–13).
MiR-140-5P has been shown to inhibit genes involved in cartilage
catabolism, such as MMP13 and ADAMTS5, while promoting the
expression of genes associated with cartilage anabolism, including
COL2A1, ACAN, OPN, and ALP (14). Similarly, miR-140-3P
enhances the expression of CyclinD1 and Bcl-2, while suppressing
Bax, p21, IL-6, IL-8, and TNF-α (15), thus countering chondrocyte
senescence, inflammation, and apoptosis and stabilizing the
cartilage matrix (16). Additionally, researchers have isolated
cartilage-derived progenitor cells (CPCs), which possess the
capacity to differentiate into cartilage and repair damaged tissue
at injury sites. This regenerative ability is vital for maintaining
cartilage integrity (17). However, in patients with advanced OA, a
significant decrease in the expression of surface markers (CD166)
and miR-140-5Pwas observed in CPCs. This downregulation is
associated with increased osteoanabolic and catabolic activity,
including the upregulation of matrix metalloproteinases (MMPs),
ADAMTSs, and inflammatory markers, as well as disruptions in
COL2A1 expression (17, 18). The Notch signaling pathway has
been implicated in OA pathogenesis, with its components being
generally upregulated in OA-affected tissues (19–21). Jagged1,
a key ligand in the Notch pathway, is particularly elevated in
OA chondrocytes (19). Studies using IL-1β-induced chondrocyte
models and rat anterior cruciate ligament transection (ACLT)
models have revealed that miR-140-5P may negatively interact with
the Jagged1/Notch pathway (21, 22), suggesting that miR-140-5P
might protect chondroprogenitor cells (CPCs) in OA by mitigating
the detrimental effects of Notch signaling (23). These findings
underscore the potential of miR-140-5P as a therapeutic target
in preserving cartilage integrity and reducing OA progression.
The transcription factor YY1 has been found to exhibit elevated
expression levels in OA chondroprogenitor cells (OA CPCs), where
it represses miR-140-5p transcriptionally. This suppression of miR-
140-5p leads to a reduction in both the quantity and activity of
CPCs through the YY1/miR-140-5p/Jagged1/Notch signaling axis
(24). Targeting this axis to restore CPC function holds potential
as a therapeutic strategy for OA by promoting chondrocyte
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replenishment and cartilage repair (18). Key components in this
therapeutic approach include YY1, miR-140-5p, Notch receptors,
and the ligand Jagged1.

Histone deacetylase 4 (HDAC4), a member of the histone
deacetylase family, interacts with Runx2 and MEF2C to regulate
genes such as Col-X, COMP, and Col-II, thereby inhibiting
chondrocyte hypertrophy and stabilizing the cartilage matrix (25).
Under hypoxic conditions, HIF-1α induces a significant increase
in miR-140-3p expression, which subsequently upregulates SOX-9,
COL2, ACAN, RUNX2, and SCX mRNAs, while downregulating
COL1, COL6, COMP, TNC, and FMOD. This response protects
the joints and delays the progression of OA (26). miR-140-5p
also directly targets HDAC4, inhibiting its activity and regulating
cartilage differentiation and proliferation (25). As a critical
player in OA pathogenesis, miR-140-5p has become a focus
for therapeutic intervention. Recent research has demonstrated
that electroacupuncture stimulation (27) effectively inhibits the
methylation of miR-140-5p and miR-146a, leading to their
upregulation and modulation of downstream signaling pathways.
This treatment reduces the expression of DNMT family proteins,
inflammation-associated NF-κB, and cartilage damage-related
SMAD3, likely through the regulation of upstream microRNAs
(27). Additionally, miR-140-5p has been shown to inhibit
PTEN (28, 29), promoting the anti-inflammatory phenotype of
M2 macrophages, which subsequently polarizes adipose-derived
stem cells (ADSCs) and activates the PI3K/AKT (30) and
AKT/mTOR/HIF-1α (31)pathways. This activation enhances the
osteogenic potential of ADSCs and supports bone regeneration
(32). WNT5B, a ligand of the WNT pathway (33), has also
been identified as a key regulator of cartilage homeostasis and
differentiation (33, 34), playing a significant role in mitigating
knee OA (KOA) progression (35). MiR-140-3p targets and inhibits
WNT5B (36), and its suppression by circ-PREX1 has been linked
to OA progression (36). In conclusion, miR-140-5p serves as a
vital regulator in reducing OA-related damage, enhancing cartilage
repair, and countering senescence. Given that chondrocyte injury
and loss are central to the challenges of OA treatment, upregulation
of miR-140-5p in CPCs within OA contexts could promote CPC
stabilization and differentiation into chondrocytes, facilitating
cartilage regeneration. However, further research is needed to
fully elucidate its regulatory mechanisms. MiR-140-5p is thus
poised to become a promising therapeutic target for repairing and
regenerating damaged cartilage in OA.

2.2 MiR-127-5p

miR-127-5P has been shown to be downregulated in OA,
where it plays a pivotal role as a regulator of cartilage metabolism
(37) and acts as a key factor in countering OA progression (6,
38, 39). Research indicates that miR-127-5P directly targets the
3′ untranslated region (UTR) of osteopontin (OPN), inhibiting
its expression (40). Additionally, miR-127-5P suppresses the
PI3K/AKT signaling pathway, thus curbing abnormal chondrocyte
overproliferation linked to OA progression (41). The long non-
coding RNA (lncRNA) MALAT1 has been found to bind
to and inhibit miR-127-5P, promoting excessive chondrocyte
proliferation, a process that exacerbates OA (41).

In OA, CDH11 expression is elevated (42, 43), contributing
to disease progression by increasing levels of inflammatory
and catabolic markers, including MMP-13, IL-6, TNF-α, and
ADAMTS-5 (44–46). Exosomes derived from bone marrow
mesenchymal stem cells (BMSCs) containing miR-127-5P have
been shown to target CDH11, inhibiting the Wnt3a/β-catenin
pathway, thereby delaying OA development (47). DNM3OS
acts as a negative regulator of miR-127-5P, promoting OA
by activating the CDH11/Wnt3a/β-catenin/LEF-1 signaling axis.
LEF-1’s positive correlation with DNM3OS suggests a feedback
loop that worsens OA progression (48). In BMSCs, DNM3OS
alleviates miR-127-5P’s suppression of GREM2, thereby hindering
BMSC chondrogenic differentiation, particularly under hypoxic
conditions (49). MiR-146-5P has been identified as a regulator that
inhibits TLR4 (50) and LXN (51), protecting chondrocytes from
apoptosis, inflammation, and oxidative stress. The knockdown of
circSCAPER and circ_0002715 amplifies this protective effect by
preventing the sponging of miR-127-5P (52, 53). Additionally,
miR-127-5P targets and inhibits NAMPT, offering protection to
chondrocytes against inflammation, apoptosis, and extracellular
matrix degradation (54, 55). Circ_0128846 directly inhibits miR-
127-5P, reducing its biological activity (56). Targeting circ_0128846
to release miR-127-5P presents a potential therapeutic strategy for
OA treatment and prevention. Beyond chondrocytes, miR-127-5P
promotes the osteogenic differentiation of BMSCs by interacting
with the PTEN/AKT pathway (57) and inhibiting SPHK1 through
targeting PDX1 (58), further enhancing osteogenesis (59). In
contrast, circ_0134944 competitively downregulates miR-127-5P
expression at PDX1, inhibiting osteogenic differentiation (60).
In macrophages, miR-127-3p inhibits fatty acid synthase SCD1
(61) and regulates the NF-κB pathway (62), affecting macrophage
proliferation and inflammation, although this mechanism has yet
to be verified in synovial macrophages. In summary, miR-127-5p
regulates key processes in chondrocytes, BMSCs, and macrophages,
making it a vital inhibitor of OA progression. Targeting miR-127-
5p to modulate downstream signaling pathways offers a promising
therapeutic approach for OA. Further exploration of the regulatory
relationships between miRNAs, circRNAs, and lncRNAs could
provide deeper insights into OA pathogenesis and lead to the
development of innovative treatment strategies.

2.3 MiR-34a-5P

miR-34a-5P demonstrates significant differential expression
between normal and osteoarthritic cartilage, showing pronounced
upregulation in osteoarthritic chondrocytes compared to healthy
cartilage tissue (63). This overexpression correlates with elevated
levels of catabolic markers (MMP13, ADAMTS5), inflammatory
cytokines (IL-1, IL-6, TNF-α), and markers of chondrogenic
hypertrophy (COL10A1), while simultaneously downregulating
anabolic markers such as COL2A1 and ACAN. Additionally,
an increase in pro-apoptotic markers, including caspase-3,
caspase-9, and Bax, has been observed (63). The resulting
inflammation, apoptosis, and degradation of the cartilage
extracellular matontribute to the progression of osteoarthritic
cartilage deterioration. Studies have shown that both miR-34a-
5P and miR-125b-5P target and suppress SYVN1 expression,
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thereby promoting chronic inflammation, apoptosis, and other
mechanisms involved in OA pathogenesis (64, 65). Moreover,
lncRNA SNHG7 has been found to directly bind and inhibit
miR-34a-5P, thereby alleviating its suppressive effect on SYVN1
and protecting chondrocytes from inflammatory and apoptotic
damage (65). This regulatory interaction between microRNAs
and lncRNAs in OA introduces a promising new area of research.
Research has indicated that miR-34a-5P plays a pivotal role in
promoting the osteogenic differentiation of bone marrow-derived
mesenchymal stem cells (BMSCs) (66), primarily through the
direct inhibition of HDAC1 (67), which subsequently activates
estrogen receptor alpha (ER-α). This activation triggers an
upregulation of osteogenic markers, including Runx2, alkaline
phosphatase (ALP) (68), osteocalcin (OCN), and osteopontin
(OPN). Additionally, the miR-34a-5P/smad2 axis has been
shown to alleviate lipopolysaccharide (LPS)-induced suppression
of osteogenic differentiation (69), while the miR-34c/SATB2
axis enhances osteoblast activity in osteoporotic mice (70),
further highlighting the significant influence of miR-34a-5P on
bone metabolism. lncRNA MALAT1 has emerged as a critical
regulator in osteogenic differentiation and bone mineralization,
acting through the negative regulation of miR-34a-5P, which
in turn decreases Smad expression. This regulation impacts
key osteogenic factors, such as Runx2, ALP, and OCN, thereby
affecting bone mineralization processes (71). In osteoarthritic
(OA) cartilage, SESN2, known to act as a leucine receptor, is
significantly downregulated (72). SESN2 overexpression has
been shown to inhibit mTOR pathway activity by promoting
AMPK phosphorylation, thus facilitating cellular autophagy
and protecting chondrocytes from senescence and extracellular
matrix degradation (73). Notably, in cases of OA induced by
hip dysplasia, miR-34a-5P has been identified as a suppressor
of SESN2 activity, thereby impairing autophagy regulation (74).
Oxidative stress and the excessive production of reactive oxygen
species (ROS) are key drivers of chondrocyte damage in OA,
playing a central role in disease progression. Emerging evidence
suggests that ROS upregulates miR-34a-5P (75), which targets the
SIRT1/P53 pathway, thereby promoting chondrocyte apoptosis
and exacerbating tissue damage. SIRT1, through the acetylation
of NRF2, enhances antioxidant defenses (76), while P53 has been
found to further upregulate miR-34a-5P, establishing a feedback
loop that amplifies P53-mediated apoptosis in chondrocytes
(77). These findings underscore miR-34a-5P’s role in cartilage
degradation and its contribution to the pathogenesis of OA. In
summary, miR-34a-5P not only regulates osteogenic differentiation
but also plays a critical role in the progression of OA by inhibiting
extracellular matrix synthesis and autophagy, while promoting
inflammation and apoptosis. This leads to cumulative chondrocyte
damage and degeneration, facilitating OA progression. Targeting
miR-34a-5P inhibition offers a promising therapeutic approach,
while further exploration of the interactions between miR-34a-5P
and other non-coding RNAs may provide deeper insights into the
molecular mechanisms underlying OA pathology.

Moreover, it has been demonstrated that MiR-34a-5P can
induce ferroptosis by targeting and inhibiting SIRT1 (78). However,
it remains unclear whether similar regulatory mechanisms are
present in osteoarthritic (OA) cartilage. Future research addressing
this gap will be instrumental in expanding our understanding
of MiR-mediated regulation of chondrocyte ferroptosis and its

implications for OA progression. Additionally, MiR-34a-5P has
been shown to be significantly upregulated in advanced OA
synovial tissue (63). MiR-34-5P has been demonstrated to interact
with ATF3, IL6, IL1B, and EGR1—an iron death-related gene
identified in osteoarthritis (OA) synovial tissue—among others,
potentially contributing to the pathogenesis of iron death (79).
Notably, miR-155-5p (80, 81) may exhibit a similar function. In
summary, targeting MiR-34-5P not only modulates the progression
of OA in terms of inflammation, bone metabolism, and other
factors, but its regulation of chondrocyte iron death also presents
significant potential for targeted OA therapy.

2.4 MiR-146a-5P

The expression of miR-146a-5P in peripheral blood
mononuclear cells and chondrocytes of patients with OA has
been found to be significantly elevated compared to healthy
controls (82). This microRNA is recognized as a key contributor
to OA pathogenesis (83). Both in vivo and ex vivo studies have
demonstrated that miR-146a-5P exacerbates OA through its pro-
inflammatory and pro-apoptotic effects, as well as by destabilizing
the cartilage matrix. Its mechanism likely involves enhancing P65
phosphorylation, which activates the NF-κB pathway, leading to
the upregulation of pro-inflammatory cytokines such as IL-6 and
TNF-α, alongside chondrolysis-associated factors like MMP13,
thus promoting OA progression (83). Moreover, Prkg1, a key
component of the nitric oxide (NO)/cGMP signaling pathway,
has emerged as a potential therapeutic target of miR-146a-5P in
OA treatment (83, 84). miR-146a-5P has also been implicated in
activating the p65/NF-κB pathway by targeting TRAF6, which
promotes inflammatory damage and IL-1β-induced chondrocyte
apoptosis, further aggravating OA (85). In addition, resolvin
D1, a mediator that supports lipid metabolism, has been shown
to suppress the NF-κB-mediated pro-inflammatory pathway by
inhibiting the transcription factor KLF5 (86), thereby attenuating
inflammation (87, 88). However, miR-146a-5P, upregulated in OA,
may hinder resolvin D1’s effects, exacerbating lipopolysaccharide
(LPS)-induced macrophage inflammation (89). miR-146a-5P
also targets NUMB, inhibiting its expression, which results in
increased apoptosis and reduced autophagy in chondrocytes,
contributing further to OA pathogenesis (60). Additionally,
diminished POU2F1 expression in OA (90) is linked to IL-1β-
induced cartilage matrix degradation, chondrocyte apoptosis, and
inflammation (91), a process likely driven by the upregulation
of miR-146a-5P, which suppresses POU2F1 expression (91).
lncRNA FAM201A has been shown to counteract OA-associated
inflammation and chondrocyte apoptosis by inhibiting miR-
146a-5P and interacting with the POU2F1 promoter, leading
to POU2F1 upregulation. This creates a positive feedback
loop, as POU2F1 also enhances lncRNA FAM201A expression
(91). Despite these insights, the downstream effectors in the
lncRNA FAM201A/miR-146a-5P/POU2F1 regulatory axis remain
unidentified, warranting further investigation. Nonetheless, it is
well established that POU2F1 regulates TWIST1 expression via
transcriptional mechanisms, thereby inhibiting the WNT pathway
(90, 92–94). This regulatory function may contribute to OA,
though its precise role in the process remains to be fully elucidated.
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The downregulation of BMPR2 in OA appears to accelerate disease
progression, likely due to miR-146a-5P targeting and inhibiting
BMPR2, thereby disrupting BMP signaling (95, 96). Notably,
overexpression of the long non-coding RNA (lncRNA) MINCR
has been shown to counteract this mechanism, suggesting that
lncRNA MINCR may alleviate OA by mitigating the suppressive
effects of miR-146a-5P on BMPR2 (97). Additionally, miR-1307-3p
has been identified as another microRNA capable of targeting
BMPR2 (98). Furthermore, miR-146a-5P serves as a key inhibitory
regulator in bone formation (99), directly targeting SMAD4
and potentially inducing osteoblast apoptosis by upregulating
pro-apoptotic genes such as caspase-3 and Bax (100). Recent
studies have also highlighted the role of miR-146a-5P in damaging
the mitochondrial oxidative respiratory chain via inflammatory
pathways, leading to mitochondrial dysfunction and promoting
apoptosis in MIN6 cells (101). Despite these findings, the precise
regulatory mechanisms of miR-146a-5P concerning mitochondrial
function in OA chondrocytes remain unclear. This underscores the
need for further research into the interaction between microRNAs
and mitochondrial dynamics, which may reveal novel targets
for better understanding OA pathogenesis and developing more
effective therapeutic strategies.

2.5 MiR-24

MiR-24 has been demonstrated to exhibit reduced expression
levels in senescent or dysfunctional chondrocytes associated with
osteoarthritis (OA), and it is linked to the capacity to mitigate
cartilage damage and chondrocyte senescence (102). Prior research
has indicated that C-myc, a gene implicated in the induction of
inflammation and apoptosis in OA (103–105), can be targeted
by MiR-24 to suppress its expression (106, 107). However, MiR-
24 has been identified as a negative regulator of P16 and was
shown early on to influence the chondrocyte senescence process
(108). This underscores the significant regulatory role of MiR-
24 in osteoarthritis (OA). Previous research has highlighted the
substantial potential of synovial mesenchymal stem cells (SMSC)
in chondrogenic differentiation (109–111). Recent investigations
have demonstrated that a MiR-24/SMSC complex-associated
hydrogel (MSOH) exhibits a promising therapeutic effect in
the repair and differentiation of OA cartilage damage (102).
MSOH effectively regulates cartilage homeostasis and facilitates the
regeneration of osteoarthritic cartilage by modulating glycolytic
pathways, enhancing the oxidative phosphorylation process, and
mitigating chondrocyte senescence, inflammation, and ferroptosis,
as evidenced by reductions in HMGB1 and p16ink4a levels. This
regulatory mechanism may be attributed to the ability of MiR-24
to counteract senescence and promote chondrogenesis in synovial
mesenchymal stem cells (SMSC) and chondrocytes by targeting and
inhibiting the downstream effector TAOK1 (102). Additionally,
it has been demonstrated that lncRNA C9ORF139 can act as a
sponge for MiR-24, thereby modulating the expression of TAOK1
(112). Chondrocyte injury is a significant and persistent factor
in the pathogenesis of osteoarthritis (OA). This study highlights
the potential of microRNA-24 (MiR-24) in conjunction with
stem cell-derived mesenchymal stem cells (SMSC) to facilitate the
repair of damaged cartilage and mitigate chondrocyte senescence.
Furthermore, it proposes a novel therapeutic direction for the

management of OA. Importantly, this research represents a
meaningful effort to translate the molecular insights regarding
MiR-24 into clinical applications. These findings underscore the
promising regulatory role of microRNAs in the context of OA and
their potential for therapeutic intervention.

3 Mechanisms of action of other
microRNAs associated with
osteoarthritis

Damage and loss of articular cartilage are recognized as
fundamental contributors to refractory osteoarthritis (OA). The
etiological factors implicated in this process include inflammation,
chondrocyte apoptosis, cartilage matrix degradation, and
dysregulated autophagy (113, 114). This paper will examine
the regulatory role of microRNAs (miRNAs) in OA chondrocytes,
a topic that has gained significant attention in recent years, through
these specific dimensions.

3.1 MicroRNA regulation of osteoarthritis
cartilage metabolism

Previous research has indicated that miR-199a may inhibit
early chondrogenesis by downregulating the expression of COMP,
SOX9, and type II collagen (115). Additionally, miR-199a has
been identified as a regulator of chondrogenic differentiation in
stem cells via its targeting of SMAD1 (115). Moreover, miR-199a
has been suggested to reduce the expression of the inflammatory
marker COX-2, thereby providing protection to chondrocytes from
inflammatory damage (116). Additionally, miR-199a-5p has been
reported to alleviate OA symptoms by targeting MAPK4 (117).
Recent studies have shown that miR-199a-5p may influence OA
pathogenesis by targeting Gcnt2 and Fzd6 (118). Moreover, it has
been proposed that miR-199a-5p exerts its effects by inhibiting
the Indian hedgehog (Ihh) signaling pathway (119). miR-107-
5p targets CASP3, protecting chondrocytes from apoptosis and
extracellular matrix (ECM) degradation, thereby delaying OA
progression. CircSEC24A has been identified as a negative regulator
of miR-107-5p (120). Intra-articular injections of miR-81 in rats
have been shown to suppress IL-16 expression, reducing MMP3
and MMP13 levels, and consequently, mitigating extracellular
matrix damage and bone catabolism (121). Chondrocyte-derived
exosomal miR-125 has been linked to osteogenic differentiation,
influenced by sympathetic regulation, and is implicated in the
pathophysiology of age-related OA (122). In contrast, miR-29b-
3p negatively correlates with TGF-β1 and reduces chondrocyte
numbers by inhibiting the TGF-β1/Smad signaling pathway (123).
miR-4492 has been shown to modulate IL-18 production through
the MEK/ERK signaling pathway, impacting OA cartilage (124).
miR-204 targets and inhibits SP1-LRP1 signaling, disrupting the
neural-cartilage interface and alleviating OA-associated pain (125).
miR-81 has been proposed to contribute to cartilage homeostasis
and the regeneration of damaged cartilage by targeting and
inhibiting Rac2, which upregulates key anabolic factors such as
SOX9, COL2A1, and ACAN, facilitating the differentiation of bone
marrow-derived mesenchymal stem cells (BMSCs) into cartilage
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and promoting bone anabolism (126). miR-362-5p has been
implicated in OA by inhibiting the differentiation of bone marrow-
derived mesenchymal stem cells (BMSCs) into cartilage through
the suppression of PLXNB1, reducing chondrocyte replenishment
and exacerbating OA progression (127). miR-302c, by directly
targeting and inhibiting TGFBR2, mitigates IL-1β-induced damage
in chondrocytes (128), miR-136-5p regulates NAMPT activity,
playing a role in OA progression through its modulation of this key
enzyme (129).

3.2 Regulation of chondrocyte apoptosis
by MicroRNAs

miR-539-3p has also been found to target and inhibit
SOX9 and TGF-β1 (112), which results in a reduction in the
chondrogenic differentiation of human adipose-derived stem
cells (hASCs) and decreased expression of COL2A1 and ACAN
(130). Furthermore, miR-539-3p has been shown to inhibit
Runx2, thereby reducing chondrocyte apoptosis, inflammation,
and extracellular matrix degradation in pediatric OA, ultimately
alleviating the disease (131). miR-214-3p, present in synovial
fibroblast-derived exosomes, has been shown to protect articular
cartilage from inflammatory and apoptotic damage (132). This
protection is likely mediated through the inhibition of FOXM1
expression, thereby reducing chondrocyte apoptosis (133). Recent
studies further suggest that miR-214 targets and inhibits Bax and
TRPV4, contributing to the suppression of chondrocyte apoptosis
and injury (134). Research has shown that appropriate mechanical
stress can upregulate miR-214 expression in chondrocytes,
contributing to the maintenance of cartilage integrity (135).
Similarly, the upregulation of miR-653-5p in OA cartilage has
been demonstrated to attenuate IL-6 expression and inhibit JAK1
and STAT3 phosphorylation, which helps mitigate chondrocyte
senescence and delay OA progression in a destabilization of
the medial meniscus (DMM) rat model (136). miR-149-5p
targets TRADD, reducing caspase-3, caspase-8, and TNF-α levels,
which decreases chondrocyte apoptosis and inflammation (137).
Similarly, has-miR-4282 was found to mitigate OA by modulating
cellular pyroptosis through the targeting of the NF-κB/NLRP3
pathway (138). miR-506-3p, on the other hand, targets the
PI3K/AKT/mTOR pathway, promoting chondrocyte apoptosis and
contributing to OA pathogenesis (139). Conversely, the long
non-coding RNA HOXA11-AS exhibits a negative correlation
with miR-506-3p. miR-99a has been shown to inhibit FZD8,
thus protecting spinal joint cells from IL-6 and TNF-α-induced
apoptosis and inflammation (140). Moreover, miR-99a-5P has been
found to negatively regulate TLR8, indirectly modulating the innate
immune response and activating the PI3K/Akt pathway in OA
chondrocytes, contributing to cartilage damage (141). Additionally,
miR-320c targets CREB5, inhibiting the cAMP pathway and
contributing to OA development (142), while miR-320a modulates
the ERK/JNK/MAPK pathways by targeting DAZAPI, potentially
delaying OA progression (143). Additionally, miR-502-5p inhibits
TRAF2, reducing NF-κB activity, which protects chondrocytes
from apoptosis and inflammatory damage caused by TNF-α and
IL-1β, while also supporting cartilage anabolism (143). miR-203a-
3p protects cartilage from LPS-induced apoptosis, pyroptosis,
and oxidative stress by inhibiting the MYD88/NF-κB signaling

pathway (144). miR-182-5p has been shown to bind to FGF9,
resulting in a reduction in its levels, which subsequently promotes
chondrocyte injury and apoptosis, exacerbating OA symptoms
(145). Additionally, miR-3591-5p has been shown to mitigate the
progression of OA by targeting and inhibiting PRKAA2. The
demethylation of the miR-3591-5p precursor by FTO impairs the
maturation of miR-3591-5p, promoting OA development through
the suppression of its protective effects (146). In contrast, miR-
155 contributes to OA pathogenesis by targeting SMAD2 and
activating the NLRP3/Caspase-1 pathway, leading to chondrocyte
pyroptosis (147). miR-155 also disrupts the PI3K/Akt signaling
pathway by targeting PIK3R1, which exacerbates IL-1β-induced
chondrocyte apoptosis and matrix degradation (148). Exosomal
miR-3960, released from mesenchymal stem cells (MSCs), targets
PHLDA2, reducing SDC1/Wnt/β-catenin pathway activity and
protecting cartilage from OA-related damage (149).

3.3 MicroRNA regulation of
osteoarthritis-related inflammation

miR-199-3p has been shown to mediate autophagy and
suppress OA-related inflammation by reducing pro-inflammatory
cytokines such as TNF-α, IL-6, and IL-1β, while also decreasing
chondrocyte apoptosis through the inhibition of TCF4 and
DNMT3A (150, 151). Furthermore, LINC00707, which is
significantly upregulated in OA, may contribute to chondrocyte
apoptosis by acting as a sponge for miR-199-3p (152). miR-26b-5p
has been shown to induce cartilage damage and cellular senescence
by inhibiting the TGF-β1-Smad2 signaling pathway, which occurs
through the upregulation of asporin (153). Additionally, miR-26b-
5p targets COL10A1 and TLR3, inhibiting the pro-inflammatory
M1 macrophage phenotype and reducing inflammatory mediators
such as IL-1β, IL-6, TNF-α, and PTGS2. At the same time, it
promotes macrophage polarization towards the anti-inflammatory
M2 phenotype, thus mitigating OA progression by reducing
synovial inflammation and preserving cartilage integrity (154).
miR-4738-3p has also been shown to mitigate OA-related
inflammation by inhibiting the NF-κB signaling pathway
and suppressing Col1A2 expression (155). Furthermore, the
upregulation of miR-877-5p has been demonstrated to reduce
IL-1β-induced inflammation and apoptosis in chondrocytes by
inhibiting FOXM1 expression (156). miR-877-5p enhances SOX9
and collagen type II (COL II) expression, offering protective
effects on the cartilage matrix (156). In osteoblasts, miR-877-5p
targets and inhibits EIF4G2, facilitating osteoblast differentiation
(157). Conversely, miR-350-3p has been found to promote
synovial macrophage transformation into a pro-inflammatory
phenotype, exacerbating inflammatory chondrocyte injury and
OA pathogenesis. On the other hand, miR-350-5p, delivered
via macrophage exosomes, inhibits NSD1-mediated H3K36
methylation in chondrocytes, facilitating OA progression (158).
miR-515-5p protects against IL-1β-induced cartilage degradation
by inhibiting TLR4 and suppressing NF-κB pathway activation,
resulting in anti-inflammatory and anti-apoptotic effects (159).
miR-577 reduces chondrocyte inflammation by downregulating
MTF-1, while LINC01094 negatively regulates miR-577 (160).
Similarly, miR-558 may exert analogous effects to miR-577 and
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is potentially regulated by Circ_0007482 (161). Finally, miR-
98-5p has been shown to directly target and inhibit CASP3
expression, decreasing inflammatory mediators and pro-apoptotic
factors such as caspase-3 and Bax, thereby offering protection
to chondrocytes from inflammation, apoptosis, and extracellular
matrix degradation (162). The overexpression of miR-98-5P has
been demonstrated to reduce IL-1β-induced cartilage damage,
offering protective effects against OA progression (162). The
overexpression of miR-124-3p in OA chondrocytes has been found
to inhibit the interaction between MALAT1 and KLF5, thereby
reducing inflammation—marked by decreased IL-1β and IL-18
levels (163)—and preventing extracellular matrix degradation
and chondrocyte pyroptosis through the suppression of CXCL11
transcription (164). This multifaceted regulatory mechanism
ultimately contributes to the mitigation of OA pathogenesis (165).
miR-93-5P, encapsulated in exosomes derived from adipose-
derived stem cells (ADSCs), has been demonstrated to inhibit
ADAMTS9, leading to the activation of the PI3K/AKT/mTOR
signaling pathway. This activation counteracts IL-1β-induced
inflammation and apoptosis, providing a protective effect on
chondrocytes (166). In contrast, long non-coding RNA (lncRNA)
CASC2 has been identified as a negative regulator of miR-93-5P,
thereby mitigating its beneficial effects in OA (167). miR-149
has been shown to play a protective role in OA by inhibiting the
PI3K/AKT signaling pathway through targeted suppression of
VCAM-1, which is associated with reduced inflammation and
chondrocyte apoptosis (168). Finally, miR-150-5p has been found
to attenuate VCAM-1 expression by inhibiting the activity of the
lncRNA XIST. This inhibition reduces monocyte recruitment and
adhesion in OA synovial tissues, potentially exerting a palliative
effect by decreasing inflammation and mitigating OA progression
(169). The miR-150-5p/AKT axis has been identified as a key
regulator in the progression of OA and is negatively regulated by
the long non-coding RNA MALAT1 (170). Similarly, miR-5701
has been shown to suppress VCAM-1 activity, attenuating the
inflammatory response in OA synovial tissue (171). miR-18a-3p
demonstrates the ability to target and inhibit PDP1, reducing joint
inflammation by downregulating IL-8, IL-6, and PGE2, as well
as mitigating cartilage matrix damage through the suppression of
MMP2, MMP3, and MMP9 in an OA rat model (172). Moreover,
miR-224-5P alleviates synovial inflammation and OA symptoms
by inhibiting PTX3, reducing P65/NF-κB activity, and promoting
macrophage polarization towards an anti-inflammatory phenotype
by targeting CD32 (173). Additionally, miR-212-5p, found in
exosomes derived from human synovial mesenchymal stem cells,
targets and inhibits ELF3, exerting both anti-inflammatory and
chondroprotective effects (174). while adipose-derived stem cell
exosomal miR-388-3P inhibits Runx2 expression, ameliorating
IL-1β-induced cartilage damage (175).

3.4 MicroRNA regulation of the
extracellular matrix (ECM)

Additionally, miR-485-3p targets NRP1, reducing IL-1β-
induced cartilage matrix degradation by attenuating the PI3K/Akt
pathway, thus slowing OA progression (176). In an in vivo
rat model of OA induced by lipopolysaccharide (LPS) injection
into the joint cavity, miR-106a was shown to alleviate OA

symptoms (177). miR-21 has been linked to the activation of TLR7,
exacerbating OA progression by promoting cartilage degradation
(178). Finally, miR-217 suppresses SIRT1 expression, promoting
inflammatory injury by elevating IL-1, IL-6, and TNF-α levels,
facilitating apoptosis via Bax and caspase-3 upregulation, and
increasing MMP-13 and MMP-9 expression through the NF-κB
and P53 acetylation pathways (179). miR-217 has been found
to inhibit bone anabolism by downregulating the expression of
key cartilage matrix components such as COL2A1 and ACAN,
ultimately accelerating the progression of OA (179). Additionally,
miR-223 directly inhibits NLRP3 and reduces the expression
of matrix metalloproteinases (MMPs) (180), thus protecting
chondrocytes from pyroptosis and helping to stabilize the cartilage
matrix in OA (181). In contrast, miR-760 has been found
to target Heparin-Binding EGF-Like Growth Factor (HBEGF),
promoting the degradation of the cartilage extracellular matrix and
contributing to cartilage damage in OA (182). miR-322 protects the
cartilage matrix from catabolic stress by targeting and inhibiting
TRAF3. This inhibition leads to the upregulation of COL2A1
and ACAN, while simultaneously downregulating the expression
of catabolic enzymes such as MMPs and ADAMTS5, thereby
mitigating the progression of OA (183). Overexpression of miR-
15a, which targets the inhibition of β1,4-GalT-I mRNA, may
reduce NF-κB phosphorylation, a critical mediator of inflammation
and cartilage degradation, potentially offering protection against
extracellular matrix degradation and inflammatory injury in OA
(184). In temporomandibular joint OA (TMJOA), miR-132-3p
targets PTEN, providing protection against extracellular matrix
degradation, inflammation, and chondrocyte apoptosis (185).

3.5 Regulation of chondrocyte
autophagy by MicroRNAs (MiRs)

Furthermore, miR-128-3p, targeting ZEB1, has been shown
to alleviate IL-1β-induced cartilage damage (186), while miR-
128, by inhibiting NR1D2, may facilitate OA progression through
the suppression of cartilage anabolism and extracellular matrix
synthesis (187). miR-375 has been demonstrated to inhibit
the autophagy gene ATG2B, thereby inducing endoplasmic
reticulum stress and chondrocyte injury (188). It also mitigates
IL-1β-induced chondrocyte apoptosis and extracellular matrix
degradation by targeting PI3R3 (189). Circ_0044235 has been
identified as a regulator that inhibits miR-375, influencing
these pathways (154). miR-429 has also been identified as a
key regulator of cartilage protection, as it targets and inhibits
FEZ2, which activates autophagy, thereby safeguarding cartilage
from damage and slowing OA progression (190). miR-378, by
targeting Atg2a and Sox6, inhibits autophagy and impairs the
chondrogenic differentiation of BMSCs, further contributing to OA
pathology (191).

Collectively, these miRNAs are involved in the pathogenesis of
OA by interacting with various genes and signaling pathways,
exerting both positive and negative regulatory effects on
inflammation, apoptosis, cartilage metabolism, and stem cell
differentiation. Notably, a wide range of lncRNAs and circRNAs
are actively involved in modulating the regulatory functions of
miRNAs in OA, either by enhancing or counteracting their effects.
The intricate crosstalk among lncRNAs, circRNAs, and miRNAs
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holds significant potential for advancing therapeutic strategies and
preventive measures in OA. Furthermore, exosomal miRNAs play
a critical role in OA’s regulatory mechanisms, emphasizing the
complex intercellular communication facilitated by these exosomal
miRNAs. This presents new opportunities for future treatments
and prevention strategies for OA. In summary, microRNAs are
pivotal regulators of key processes such as extracellular matrix
homeostasis, inflammation, cellular senescence, apoptosis, and
non-regulated cell death in chondrocytes during the progression
of OA. Additionally, miRNAs influence the balance between
proliferation and differentiation in bone marrow-derived
mesenchymal stem cells (BMSCs), osteoblasts, and osteoclasts,
as well as the regulation of macrophage proliferation and the
phenotypic switch between pro-inflammatory (M1) and anti-
inflammatory (M2) macrophages. These mechanisms highlight
the critical role of miRNAs in OA pathogenesis, positioning the
regulation of key miRNAs as a promising target for therapeutic
interventions. Future research is expected to increasingly focus on
the targeted modulation of miRNAs and the interactions between
various non-coding RNAs, offering new insights and strategic
directions for the effective treatment of OA.

4 MicroRNA (miR) influences
osteoarthritis (OA) chondrocytes
through the regulation of ferroptosis

Since its proposal in 2012, iron-dependent cell death, known
as ferroptosis, has been linked to a variety of metabolic diseases
(192). Ferroptosis is distinguished by the accumulation of lipid
peroxides in an iron-dependent manner, ultimately causing plasma
membrane rupture and cell death (193). The role of ferroptosis
in chondrocytes has been extensively studied in OA, where it has
been identified as a significant contributor to disease progression
(8, 194). As a result, targeting chondrocyte ferroptosis has emerged
as a promising therapeutic strategy for OA management. Recently,
miRNAs have gained attention as potential therapeutic targets
in OA, with growing evidence highlighting their regulatory roles
in ferroptosis. These processes involve complex changes in the
levels of downstream effectors, and various non-coding RNAs are
also involved in regulating these pathways. This study explores
the mechanisms through which miRNAs regulate ferroptosis
and presents a comprehensive overview of miR targets and the
associated pathways that modulate ferroptosis in chondrocytes,
emphasizing their broader implications for OA regulation (Figure 1
and Table 1).

4.1 MicroRNA (miR) modulates
ferroptosis by influencing factors both
upstream and downstream within
antioxidant-related pathways

Firstly, the SLC7A11/GSH/GPX4 pathway, recognized as the
most classical antioxidant mechanism, effectively counteracts the
initiation of ferroptosis through its antioxidative properties (195–
197). However, microRNAs (miRNAs) play a crucial role in the

regulation of ferroptosis by directly or indirectly modulating
the SLC7A11/GPX4 pathway. Certain microRNAs (miRs) have
been identified to directly target key components of the pathway
(Figure 1). In the following discussion, we examine the indirect
regulation of SLC7A11/GPX4 by several notable miRs in recent
years. Specifically, miR-144-3p targets and inhibits the expression
of ZEB1, which in turn suppresses the expression of GPX4 (198).
Additionally, miR-211-5p targets and inhibits P2RX7, leading
to a downregulation of P2RX7 that subsequently activates the
MAPK/ERK pathway, thereby upregulating the expression of
GPX4 (199). miR-1291 targets FOXA2, leading to the down-
regulation of GSH and GPX4 expression (200). Similarly, miR-
221-3p targets ATF3, resulting in the down-regulation of GPX4
expression (201). Additionally, miR-129-2-3p targets and inhibits
SMAD3, thereby inhibiting GPX4 expression. Furthermore, miR-
19b-3p targets and inhibits RBMS1, which subsequently up-
regulates GPX4 expression (202). Conversely, circIDE acts as a
sponge for miR-19b-3p, thereby exerting an opposite effect on
GPX4 expression (203). MicroRNA-194-5p targets and inhibits the
activity of PTGS2, leading to a downregulation of GPX4 expression
(204). Similarly, microRNA-150-5p targets and suppresses c-Myb
expression, which results in an increase in CDO1 expression
and a subsequent decrease in GPX4 levels (205). Furthermore,
microRNA-31-5p inhibits the production of BAP1 by targeting and
suppressing SLC7A11 expression (206). Additionally, microRNA-
15b-3p targets KLF2, thereby modulating the SLC7A11/GPX4
axis (207). MicroRNA-122-5p targets TP53, resulting in the
upregulation of SLC7A11 expression (208). Similarly, microRNA-
367-3p inhibits EZH2 expression, which also leads to the
upregulation of SLC7A11 (209). Furthermore, microRNA-26a-
5p inhibits MAT2A, thereby suppressing the SIRT1/SLC7A11
signaling pathway (210). In addition to the regulation of the
SLC7A11/GPX4 pathway, microRNAs also indirectly regulate
the FSP1/CoQ pathway, an antioxidant and ferroptosis-related
pathway that operates independently of the GPX4 pathway
(211, 212). MiR-21 targets the phosphatase and tensin homolog
(PTEN), leading to the upregulation of FSP1 expression and
the activation of the FSP1/CoQ10 pathway, thereby exerting
antioxidant effects and mitigating ferroptosis (213). Similarly, miR-
30a-5p inhibits the expression of sirtuin 1 (SIRT1) and disrupts
the nuclear translocation of NRF2, resulting in the downregulation
of downstream anti-ferroptotic factors such as GPX4 and FTH
(214). Furthermore, miR-125b-5pand miR-432-5p promote the
degradation of kelch-like ECH-associated protein 1 (Keap1),
which liberates NRF2 activity and enhances the expression of
antioxidant proteins that counteract ferroptosis (215, 216). Overall,
microRNAs (miRs) exert regulatory effects on ferroptosis by
directly targeting or indirectly modulating antioxidant pathways,
including SLC7A11/GPX4, FSP1/CoQ10, and NRF2. Although
these miRNAs have not been directly linked to chondrocyte
ferroptosis in OA, their differential expression and involvement in
oxidative stress and ferroptosis in other tissues suggest a potential
regulatory role in OA. Further research is warranted to investigate
the role of these differentially expressed miRNAs in chondrocyte
ferroptosis and their implications for OA progression. Validating
the influence of these miRNAs on chondrocyte ferroptosis
could provide valuable insights into novel therapeutic targets
for OA.
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FIGURE 1

MicroRNA (MiR) involvement in the regulation of ferroptosis. MicroRNAs (miRs) modulate ferroptosis by targeting key components of antioxidant
pathways, lipid metabolism, and iron metabolism pathways. Specifically, miRs influence antioxidant pathways, including GPX4, SLC7A11, NRF2, and
FSP1, as well as iron metabolism-related factors such as FPN, DMT1, FTH1, and TFR1. Additionally, miRs target lipid metabolism-related factors,
including ACSL4 and ALOXs.

4.2 MicroRNAs (miRNAs) modulate
ferroptosis by influencing pathways
associated with iron and lipid metabolism

Alterations in iron metabolism are crucial for the regulation of
iron-induced cell death, with certain precursor proteins involved
in modulating cellular iron levels and influencing sensitivity to
this form of cell death. Furthermore, microRNAs (miRs) can
either directly target (Figure 1) or indirectly regulate factors
associated with iron metabolism, thereby influencing the process
of cellular ferroptosis. Specifically, miR-492 targets and inhibits
MZF-1, resulting in a reduction of ferroportin (FPN) levels
(217). This results in a decreased exclusion of intracellular iron,
thereby increasing susceptibility to ferroptosis through cellular iron
overload. MicroRNAs miR-135b and miR-let-7d are implicated
in targeting and inhibiting DMT1 expression (29, 218), which
subsequently reduces intracellular iron levels and mitigates the
progression of ferroptosis. Additionally, miR-30d targets the
inhibition of the autophagy-related gene ATG5, which plays a
role in the regulation of ferroptosis by modulating the FTH1
autophagy process associated with iron overload-induced cell death
(219). Abnormalities in lipid metabolism significantly contribute
to ferroptosis, and microRNAs (MiRs) play a crucial role in the
regulation of this process. Specifically, miR-4474-3p has been
identified as a regulator of ferroptosis through its modulation of
ALOX15 expression (220). In conclusion, MiRs are implicated
in the regulation of ferroptosis by directly targeting or indirectly
influencing pathways associated with the antioxidant system, lipid

metabolism, and iron metabolism. While the roles of certain
aforementioned microRNAs (MiRs) in osteoarthritis (OA) remain
inadequately defined, several have been demonstrated to exhibit
differential expression in OA chondrocytes. Consequently, further
investigation into the regulatory functions of MiRs in ferroptosis
within chondrocytes is both necessary and holds significant
promise for the future treatment of OA.

4.3 Regulatory mechanisms of
microRNAs associated with iron-induced
chondrocyte death

miR-138-5P serves as a positive regulator of cartilage
metabolism by promoting anabolic processes, reducing catabolic
activity, and exerting anti-inflammatory effects in osteoarthritic
(OA) cartilage (221). In OA, the expression of miR-138-5P is
diminished, likely due to the inhibitory influence of the upregulated
CREB1 protein. miR-138-5P directly targets and inhibits CREB1,
which in turn liberates GPX4, a critical enzyme inhibited by
CREB1. This pathway provides resistance to ferroptosis and
oxidative stress in chondrocytes by reducing Fe2 + levels,
reactive oxygen species (ROS), and malondialdehyde (MDA) (222).
However, overexpression of CREB1 can counteract the protective
effects of miR-138-5P. Additionally, CircTRIM25 has been
identified as a direct inhibitor of miR-138-5P, promoting ferroptosis
in chondrocytes. The knockdown of CircTRIM25, via the miR-138-
5P/CREB1/GPX4 axis, presents a promising therapeutic approach
for mitigating chondrocyte ferroptosis and treating OA (223).
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TABLE 1 Cartilage ferroptosis-associated miRNAs.

Anabolism Catabolism Inflammation Ferroptosis References

Up Target Marker Pathways

miR-1↑ ACAN↑ SOX9↑
OPN↓ALP↓

COL1↓BMP-2↓
OC↓COLX↓

OCN↓ COL2↑
COL2A1↑

COL10↓OPG↓

MMP-13↓
MMP-1↓

IHH↓
MMP-9↓

ADAMTS5↓

TTP↑ 1L-8↓
TNF-α↓ IL-6↓
IFNα↓ IFNβ↓

IL-1β↓ IFN-γ↑
IL-4↓ IL-5↓ IL-10↓

iNos↓

CX43↓ GPX4↑SLC7A11↑ (224, 225, 261–270)

miR-885-5p↑ MMP9↓ IL-1β ↓IL-6↓TNF-
α↓IL-18↑IL-6↓

LncRNA MEG3 SLC7A11↓ SLC7A11↓GPX4↓ lncRNA MEG3/miR-
885-5p/SLC7A11

(231, 271–273)

miR-138-5p↑ COL2↓
SOX9↓ALP↓

COLIα1↓
ACAN↓

COL2A1↓ GAG↓

MMP-
13↑ADAMTS-

5↑MMP-9↓

TNF-α↓IL-6↓IL-10↑
IL-8 ↓

IL-1β↓IL-18↓Arg1 ↓

circTRIM25 CREB1↓ GPX4↑SLC7A11↑ circTRIM25/miR-
138-5p/CREB1

(223, 238, 274–279)

miR-10a-5p↑ COL2↓COL2A1↑
SOX9↑ACAN ↑

BMP-
2↑CRTAC1↓ALP↓

ADAMTS-5↑
MMP-13↑

IL-6↓
IL-8↓

TNF-α↓
IL-1β↓

IL-4↓
IL-17 ↓
1L-3↑

IL-6 IL-6R↓ GPX4↑FPN1↑
DMT1↑

IL-6/miR-10a-5p/IL-
6R

(230, 280–286)

miR-181b↑ COL2↑, ACAN↑
OCN↑OPN↑ ALP↑

MMP-13↓ IL-6↓
IL-8↓

TNF-α↓
iNOS↓VCAM-1↓

COX-2↓
IL-1β ↓

IL-10↑

SLC7A11↓ SLC7A11↓GPX4↓
FTH1↓TFR1↑

(232, 287–290)

miR-19b-3p↑ COL2↓COL1A1↑
ALP↑ACAN↑

sGAG↑

MMP-13↑
MMP1↓
MMP3↓
MMP9↓

ADAMTS4↓
ADAMTS5↓

IL-6↓
IL-8↓

IL-1β↓

TNF-α↓

SLC7A11↓ ACSL4↑GPX4↓
SLC7A11↓

(234, 291–293)
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Research has shown that miR-1 is downregulated in OA (224).
Under normal conditions, miR-1 serves a protective function by
enhancing cartilage proliferation, regulating cartilage metabolism,
and preventing chondrocyte apoptosis. It accomplishes this by
upregulating key osteosynthesis-related genes such as COL2A1,
ACAN, and SOX9 while suppressing osteocatabolism-related
genes like MMPs and ADAMTSs. Additionally, miR-1 inhibits
caspase-3 and promotes BCl-2 expression, further safeguarding
chondrocytes from apoptotic damage (225). CX43, however, has
been found to inhibit the proliferation of SX43 and suppress the
SLC7A11/GPX4 pathway, thereby inducing ferroptosis (226). In
the context of chondrocyte ferroptosis, miR-1 regulates this process
by directly targeting and inhibiting CX43. This inhibition leads to a
reduction in ferroptosis-related alterations in chondrocytes, such
as increases in Fe2 + levels, reactive oxygen species (ROS), and
malondialdehyde (MDA). By inhibiting CX43, miR-1 enhances the
activity of GPX4 and SLC7A11, key players in reducing oxidative
stress and ferroptosis. This mechanism plays a pivotal role in
mitigating chondrocyte ferroptosis and, consequently, alleviating
the progression of OA (225, 227).

Interleukin-6 (IL-6) is highly upregulated in OA and plays
a significant role as a pro-inflammatory cytokine (228). IL-6
downregulates ferroportin 1 (FPN1) and upregulates divalent metal
transporter 1 (DMT1), thereby increasing cellular iron uptake and
reducing iron excretion (69, 229). This dysregulation results in
intracellular iron overload, enhancing susceptibility to ferroptosis
in chondrocytes and contributing to OA progression. The interplay
between inflammation and ferroptosis in OA is further highlighted
by this iron overload-induced chondrocyte death. Notably, miR-
10a-5p targets and inhibits IL-6R, potentially mitigating the effects
of IL-6 on chondrocyte injury and ferroptosis. This inhibition
may protect cartilage by preventing IL-6-induced ferroptosis
in OA (230). However, IL-6 upregulation can inhibit miR-
10a-5p, enhancing IL-6R activity, which ultimately exacerbates
chondrocyte ferroptosis. This mechanism may explain the observed
downregulation of miR-10a-5p in osteoarthritic cartilage (230).

miR-885-5p has been identified as a direct regulator of
SLC7A11, enhancing the susceptibility of C28/I2 human
chondrocytes to Erastin-induced ferroptosis. The overexpression
of miR-885-5p is implicated in the progression of OA by
promoting ferroptosis in chondrocytes (231). Similarly, miR-181b
directly targets and inhibits SLC7A11, facilitating the initiation
of chondrocyte ferroptosis and advancing OA progression (232).
miR-1972, miR-665, and miR-181a-2-3p have also been found
to regulate the expression of GPX4 and glutathione (GSH) by
modulating JUN, ATF3, and CDKN1A, which may influence
chondrocyte ferroptosis (233). Furthermore, miR-19b-3P, found
in synoviocyte-derived exosomes in OA, inhibits SLC7A11,
exacerbating ferroptosis and oxidative stress-induced injury
in chondrocytes (234). The SLC7A11/GPX4 pathway plays a
critical role in protecting chondrocytes from ferroptosis by
mitigating oxidative stress, and its proper function is essential
for safeguarding articular cartilage from OA damage (235, 236).
The role of microRNAs (miRNAs) in modulating ferroptosis has
been increasingly recognized as critical to the pathogenesis of OA.
Numerous miRNAs have been implicated in either promoting or
resisting OA progression by targeting ferroptosis-related factors
and their upstream or downstream regulators. Understanding
miRNA-mediated regulation of chondrocyte ferroptosis is essential

for elucidating the mechanisms underlying OA. Investigating how
miRNAs influence chondrocyte iron-dependent cell death could
not only improve our understanding of OA but also pave the way
for novel therapeutic strategies aimed at preventing and treating
the disease. This research avenue offers substantial promise for
developing innovative treatments for OA in the future.

5 Novel avenues for the regulation
of osteoarthritis-associated
ferroptosis by microRNAs

It has been observed that lncRNA AC011511.5 competitively
inhibits hsa-miR-520c-5p, hsa-miR-518d-5p, hsa-miR-518f-5p, and
hsa-miR-665, among others, thereby regulating the expression
of GABARAPL2, HMOX1, NOX4, STMN1, and TXNIP, as well
as other genes implicated in OA iron-induced cell death (237).
Similarly, the competitive inhibition of lncRNA AL358072.1 with
hsa-miR-138-5p and hsa-miR-122-5p modulates the expression
of AGPAT3, HERPUD1, JDP2, SLC38A, SQSTM1, and UBC
(237). Through bioinformatics analysis, eight hub genes (ATF3,
EGR1, FOSB, FOSL1, FOSL2, JUN, JUNB, and MYC) were
identified as potential regulators of osteoarthritis (OA) iron-death-
related genes. These hub genes modulate iron death genes, with
ALOX15, CISD1, SAT1, and TFRC showing positive correlations,
and ATP5MC3, GPX4, HSPB1, and MT1G exhibiting negative
correlations. Consequently, these hub genes may play a role in
regulating the OA iron death process (238–241). Previous studies
have highlighted the significant role of these hub genes in OA (104,
242–246). This analysis suggests a potential interaction between the
hub gene and ferroptosis-related genes. The recent study identified
ACSF2 (247, 248), AURKA (249–252), EGFR (253, 254), and
KLHL24 (51, 255) as biomarkers associated with iron deposition
in osteoarthritis (OA). Additionally, a targeted investigation was
conducted on EGFR (256). Epidermal growth factor receptor
(EGFR) expression was significantly diminished in osteoarthritic
(OA) cartilage and iron-dead chondrocytes (66), demonstrating
an inhibitory effect on chondrocyte iron-induced cell death.
Importantly, EGFR was competitively regulated by three long non-
coding RNAs (lncRNAs: LINC00265, LINC00051, and KCTD21-
AS) and four microRNAs (miRNAs: hsa-miR-6846-5p, hsa-miR-
4763-3p, hsa-miR-6796-5p, and hsa-miR-6860), which collectively
modulated EGFR inhibition. A recent study indicates that hsa-
miR-149-3p, hsa-miR-423-5p, hsa-miR-31-5p, and hsa-miR-30b-
3p may influence the progression of osteoarthritis (OA) through
the regulation of CDKN1A (257, 258) and SLC39A14 (259, 260),
the latter of which has been identified as a differentially expressed
gene associated with ferroptosis in OA (222). In conclusion, this
not only broadens the scope of scientific research but also offers a
novel therapeutic direction for future exploration. The regulatory
mechanisms between these genes remain poorly understood.
Further investigation into the interrelationships among these
genes holds significant potential for advancing our understanding
of the pathogenesis of osteoarthritis and improving strategies
for its prevention and management. Most importantly, this
insight offers novel strategies for targeting microRNAs (MiRs)
to regulate the progression of osteoarthritis (OA). Specifically,
the modulation of MiRs and other non-coding RNAs to control
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chondrocyte ferroptosis presents a promising therapeutic approach
for OA management.

6 Discussions

OA is a chronic inflammatory and immune-mediated disease
of unknown origin, leading to irreversible joint pain, mobility
loss, and significant functional impairments. These consequences
greatly reduce patients’ quality of life while also imposing
substantial financial burdens. Current OA management strategies
focus on pain relief and partial restoration of joint function,
but a complete and effective cure remains elusive. A deeper
understanding of the pathogenesis of OA is essential to developing
more comprehensive and innovative therapeutic approaches. In
this context, microRNAs (miRNAs), small non-coding RNAs of
about 20 nucleotides, have emerged as key players. miRNAs have
been shown to play a pivotal role in regulating osteoarthritic
chondrocytes through mechanisms such as apoptosis, autophagy,
pyroptosis, and ferroptosis—types of programmed and non-
programmed cell death. These regulatory pathways are intricately
connected to chondrocyte anabolic and catabolic metabolism,
osteoblast redox balance, the differentiation of bone marrow-
derived mesenchymal stem cells into chondrocytes and osteoblasts,
macrophage polarization, and other key processes in OA pathology.
The regulation of miRNAs in OA occurs at the genetic level, making
them promising targets for future OA treatments and preventive
strategies. Numerous miRNAs have already been linked to OA
progression, with additional upstream non-coding RNAs, such
as lncRNAs and circRNAs, playing indirect roles by modulating
miRNA activity. These upstream RNAs influence downstream
pathways and further shape the regulatory network in OA.
Targeting non-coding RNAs, including lncRNAs, circRNAs, and
miRNAs, offers a promising avenue for the future treatment of
OA. Mechanistically, the role of miRNAs in regulating chondrocyte
ferroptosis, a form of cell death implicated in OA progression,
deserves particular attention. Exploring this regulatory axis may
enhance our understanding of OA and broaden therapeutic
strategies. Despite extensive research on non-coding RNAs,
including miRNAs, significant knowledge gaps remain. Current
insights into their preventive, palliative, or therapeutic effects on
OA are largely theoretical, necessitating rigorous clinical validation
to confirm their safety and efficacy. Emerging studies on exosomal
miRNAs and intra-articular injections of miRNA-related therapies
have shown promise in experimental models of OA treatment and
prevention. However, their clinical application faces challenges,
and substantial work remains to ensure their efficacy in human
patients. Bridging basic research with clinical practice through
comprehensive trials and further investigation is essential for
integrating these miRNA-based therapies into OA management.
This research direction holds great promise for transforming the
treatment landscape of OA, potentially paving the way for novel
therapeutic interventions and even a future cure.
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