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Background: The conventional treatment for locally advanced head and neck

squamous cell carcinoma (LA-HNSCC) is surgery; however, the e�cacy of

definitive chemoradiotherapy (CRT) remains controversial.

Objective: This study aimed to evaluate the ability of deep learning (DL) models

to identify patients with LA-HNSCCwho can achieve organ preservation through

definitive CRT and provide individualized adjuvant treatment recommendations

for patients who are better suited for surgery.

Methods: Five models were developed for treatment recommendations.

Their performance was assessed by comparing the di�erence in overall

survival rates between patients whose actual treatments aligned with the

model recommendations and those whose treatments did not. Inverse

probability treatment weighting (IPTW) was employed to reduce bias. The

e�ect of the characteristics on treatment plan selection was quantified through

causal inference.

Results: A total of 7,376 patients with LA-HNSCC were enrolled. Balanced

Individual Treatment E�ect for Survival data (BITES) demonstrated superior

performance in both the CRT recommendation (IPTW-adjusted hazard

ratio (HR): 0.84, 95% confidence interval (CI), 0.72–0.98) and the adjuvant

therapy recommendation (IPTW-adjusted HR: 0.77, 95% CI, 0.61–

0.85), outperforming other models and the National Comprehensive

Cancer Network guidelines (IPTW-adjusted HR: 0.87, 95% CI, 0.73–0.96).
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Conclusion: BITES can identify the most suitable treatment option for an

individual patient from the three most common treatment options. DL models

facilitate the establishment of a valid and reliable treatment recommendation

system supported by quantitative evidence.

KEYWORDS

head and neck squamous cell carcinoma, chemoradiotherapy, deep learning, causal

inference, precise medicine

Introduction

Head and neck squamous cell carcinoma (HNSCC) is one

of the most prevalent cancers worldwide (1), often diagnosed at

an advanced stage due to the lack of effective early screening

strategies (2).

Conventional treatment typically involves surgery followed by

radiotherapy (RT) (3). While adjuvant chemoradiotherapy (CRT)

has been shown to enhance progression-free survival by sensitizing

tumors to RT under certain conditions (4), its use is controversial

due to potential toxicity and complications (5).

Furthermore, the trauma and dysfunction associated with

surgery have prompted interest in definitive CRT for organ

preservation (6). Studies have indicated that CRT may improve

outcomes in patients with non-T4 disease and high nodal burden

compared to surgery, which, conversely, may benefit T4 patients

(7). The response of patients to the same treatment is influenced

by many underlying clinical features (8), suggesting significant

treatment heterogeneity.

Given the challenges and costs associated with conducting

randomized clinical trials, there is a growing demand for innovative

survival analysis methods to address this heterogeneity (8). Deep

learning (DL) has proven to be more accurate than traditional

statistical analysis (9) and has demonstrated the potential to

provide individualized recommendations based on calculated

risk (10).

This study aimed to assess DL’s capability to provide

individualized treatment recommendations, identifying patients

who might benefit from organ preservation through CRT

and tailoring adjuvant treatment for those better suited for

surgical interventions.

Methods

Study design and data source

This was a population-based retrospective cohort study

designed to provide personalized treatment recommendations

for locally advanced HNSCC (LA-HNSCC) patients using DL

models. The evaluation of the treatment options was categorized

into two phases, with phase one individualizing treatment

recommendations between CRT and surgery plus CRT/RT and

phase two individualizing treatment recommendations between

surgery plus CRT and surgery plus RT.

The population for this study was sourced from the

Surveillance, Epidemiology, and End Results (SEER) 18 database,

which represents approximately 27.8% of the U.S. population

(11). This study followed the Strengthening the Reporting of

Observational Studies in Epidemiology guidelines (12).

Study population and eligibility criteria

Patients with HNSCC originating from four anatomical sites

(such as the oral cavity, sinonasal cavity, pharynx, and larynx),

diagnosed as stage III to IVa from 1 January 2004 to 31 December

2015, and treated with definitive CRT or radical resection plus

postoperative RT/CRTwere included in this study. Nasopharyngeal

and salivary gland carcinomas were not included due to differences

in pathology and treatment.

Ethnicity (13), sex (13), marital status (14), age (15), histological

grade (16), laterality (17), primary tumor site (18), TNM stage

(3), tumor size (3), number of lymph nodes (19), number of

positive lymph nodes (20), and lymph node surgery (21) were

included as variables affecting efficacy because they are known to

play critical roles in predicting prognosis and guiding treatment

decisions in HNSCC. OS was used to measure the efficacy of each

treatment regimen.

Clinical cases were excluded if they met the following

criteria: (1) unknown or ambiguous demographic information;

(2) unknown histologic grades or tumor type; (3) unknown

tumor location or size; (4) unknown TNM stage; (5) unknown

treatment modality; (6) stage I, II, or IVb; (7) unknown laterality;

(8) incomplete follow-up; (9) multiple malignancies; and (10)

metastatic tumors. The cohort selection is illustrated in Figure 1A.

TNM stage was determined in accordance with the 7th

American Joint Committee on Cancer staging manual. Patients

who were alive as of 31st December 2020 were censored. Therefore,

the follow-up period ranged from 5 to 16 years.

Algorithms

The individual treatment effect (ITE) reflects the difference in

survival outcomes between two potential intervention scenarios.

The T-learner is a common type of model used for inferring the

ITE, which adopts two models to estimate the ITE as ITE =

µ1 (x) − µ0(x), where µ0 and µ1 denote the models trained on

the corresponding treatment groups (22). The T-learner excludes
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B

FIGURE 1

Inclusion process and model architecture. (A) Inclusion process; (B)

architecture of the balanced individual treatment e�ect for survival

data. RT, radiation; CRT, chemoradiation; IPM, integral probability

metrics; ITE, individual treatment e�ect.

some confounding artifacts; however, it can still be affected by

inconsistent predictive performance of models (23) and biased

treatment allocation (24).

With the development of DL, more methods have been

proposed to estimate the unbiased ITE. Balanced Individual

Treatment Effect for Survival data (BITES) (24) addresses this

issue through representation-based causal inference. BITES has a

shared network and two risk networks. In the shared network,

integral probability metrics are used tomaximize the p-Wasserstein

distance of different treatment arms. The risk networks calculate

the ITE in the form of a T-learner. The architecture of BITES is

illustrated in Figure 1B.

Cox Mixtures with Heterogeneous Effects (CMHE) (25) uses a

latent variable approach to model heterogeneous treatment effects

by assuming that an individual can belong to one of the latent

clusters with distinct response characteristics.

Calculation of the individual treatment
e�ect

For censored data, the models output log hazard ratios;

however, these cannot be used directly because the baseline

hazards of different treatment groups also reflect crucial

prognostic information.

Here, we defined the potential outcome with a good clinical

interpretation as the area under the individual survival curve for

an individual within a specific period (5 years), called the restricted

survival time (RST). The formula was described as ITERST (X; t) =
∑

x∈X

[

∫ t
0 Ŝ1(t | x)dt −

∫ t
0 Ŝ0(t | x)dt

]

, where t indicated the preset

time horizon and Ŝ0(t | x) and Ŝ1(t | x) were the predicted survival

distributions for an individual under different treatments. It can

be simply interpreted as the additional amount of time a patient

survived within 5 years when receiving treatment 1 compared with

receiving treatment 0.

Model development, validation, and
treatment recommendation

We trained and compared five models, including BITES,

CMHE, DeepSurv (26), the Cox proportional hazards (CPH)

model, and random survival forest (RSF). These models, divided

into deep learning models (BITES, CMHE, and DeepSurv) and

traditional machine learning models (CPH and RSF), all employed

the same ITE calculation method. The deep learning models were

chosen for their ability to capture complex non-linear relationships,

while the traditional models were used as benchmarks for

performance comparison.

All patients were randomly allocated to a training set

comprising 70% of the samples used for training the models

and a testing set comprising 30% of the samples to evaluate

the model performance and recommendation effect. During the

training period, we used five-fold cross-validation to tune the

model hyperparameters. Each time, the model was trained on four-

fifths of the training set and validated on the remaining one-fifth.

The training process was automatically terminated if the validation

loss did not decrease after 1,000 iterations. Hyperparameter tuning

was conducted using grid search to explore the predefined ranges

of key parameters. These parameters included learning rate, mini-

batch size, the percentage of dropout, number of layers, number of

nodes in the multilayer perceptron, strength of the regularization

method, number of trees, and tree depth, depending on the

model. The optimal hyperparameters were selected based on the

validation loss.

To evaluate the models’ treatment recommendation effect,

the patients were divided into the recommended (Consis.) and

anti-recommended (Inconsis.) groups, based on whether the

actual treatment they received was consistent with the model

recommendations. We calculated several indicators between the

Consis. and Inconsis. groups to quantify the survival advantages of

the following models’ recommendations: multivariate hazard ratio

(HR), 5-year absolute risk reduction (ARR), and the difference

in restricted mean survival time (DRMST) over five years.

Considering the potential imbalance of the baseline features

between the Consis. and Inconsis. groups, inverse probability

treatment weighting (IPTW) was used to reduce selection bias.

Model interpretation

The model interpretation was twofold: (1) the importance of

the features for the overall output and (2) the impact of the features

on the treatment recommendations.

SHapley Additive exPlanations (SHAP) is a widely used local

interpretation method from game theory that explains the extent to

which each variable affects the model output with respect to the
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TABLE 1 Patients.

Concurrent
chemoradiation

(n = 5,326)

Surgery and
postoperative radiation

(n = 1,079)

Surgery and postoperative
chemoradiation

(n = 971)

Age, median (IQR), y 60.0 (53.0–67.0) 61.0 (54.0–70.0) 59.0 (53.0–60.0)

Tumor size, median (IQR), mm 32.0 (24.0–44.0) 35.0 (25.0–45.0) 38.0 (27.0–50.0)

Married 2,911 (54.7) 540 (50.1) 494 (50.9)

Ethnicity–White 4,496 (84.4) 859 (79.6) 770 (79.3)

Male 4,410 (82.8) 787 (72.9) 742 (76.4)

Grade

I 333 (6.3) 111 (10.3) 86 (8.9)

II 2,565 (48.2) 670 (62.1) 532 (54.8)

III 2,380 (44.7) 295 (27.3) 350 (36.0)

IV 48 (0.9) 3 (0.3) 3 (0.3)

Laterality

Left 960 (18.0) 84 (7.8) 92 (9.5)

Right 1,031 (19.4) 95 (8.8) 90 (9.3)

Not paired 3,335 (62.6) 90 (83.4) 789 (81.3)

Oral cavity

Lip 1 (0.0) 17 (1.6) 6 (0.6)

Base of tongue 1,832 (34.4) 48 (4.4) 76 (7.8)

Other parts of tongue 230 (4.3) 105 (9.7) 132 (13.6)

Gum 23 (0.4) 144 (13.3) 95 (9.8)

Palate 115 (2.2) 32 (3.0) 30 (3.1)

Floor of mouth 82 (1.5) 166 (15.4) 135 (13.9)

Mouth 81 (1.5) 131 (12.1) 132 (13.6)

Pharynx

Tonsil 1,432 (26.7) 7 (0.6) 14 (1.4)

Oropharynx 106 (2.0) 1 (0.1) 1 (0.1)

Pyriform 270 (5.1) 3 (0.3) 0 (0.0)

Hypopharynx 207 (3.9) 3 (0.3) 6 (0.6)

Paranasal sinus 30 (0.6) 17 (1.6) 12 (1.2)

Larynx 926 (17.4) 405 (37.5) 332 (34.2)

Stage

III 1,501 (28.2) 289 (26.8) 153 (15.8)

IVa 3,825 (71.8) 790 (73.2) 818 (84.2)

T stage

T1 706 (13.3) 77 (7.1) 69 (7.1)

T1NOS 4 (0.1) 1 (0.1) 0 (0.0)

T1a 2 (0.0) 0 (0.0) 0 (0.0)

T1b 1 (0.0) 1 (0.1) 0 (0.0)

T2 2,071 (38.9) 163 (15.1) 165 (17.0)

T3 1,422 (26.7) 262 (24.3) 194 (20.0)

T4a 1,120 (21.0) 575 (53.3) 543 (55.9)

(Continued)
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TABLE 1 (Continued)

Concurrent
chemoradiation

(n = 5,326)

Surgery and
postoperative radiation

(n = 1,079)

Surgery and postoperative
chemoradiation

(n = 971)

N stage

N0 669 (12.6) 451 (41.8) 195 (20.1)

N1 1,320 (24.8) 257 (23.8) 205 (21.1)

N2NOS 112 (2.1) 7 (0.6) 8 (0.8)

N2a 398 (7.5) 32 (3.0) 38 (3.9)

N2b 1,685 (31.6) 232 (21.5) 331 (34.1)

N2c 1,142 (21.4) 100 (9.3) 194 (20.0)

Follow-up, median (IQR), month 64.0 (17.0–107.0) 41.0 (14.0–89.0) 33.0 (13.0–84.0)

baseline average. In this study, we employed SurvSHAP(t) (27),

a time-dependent SHAP analysis, to explain the output of the

best model.

We calculated the probability that a patient with a certain

characteristic is recommended for a specific treatment minus

the probability that a patient without that characteristic is

recommended for the same treatment. This difference is called

the probability difference (PD), which is similar to the calculation

of risk difference. Based on the PD, the impact of features on

treatment recommendations can be quantified.We also used IPTW

to exclude the influence of other characteristics, thereby obtaining

the independent impact.

Statistical analysis

The models were built using Python 3.8 with the packages

Pytorch 2.0 and Scikit-survival 0.19.0. Statistical analyses were

performed using R 4.1.38. Continuous variables were expressed as

medians and interquartile ranges (IQRs), and categorical variables

were expressed as numbers and percentages (%). The log-rank test

was used to compare the Kaplan–Meier (KM) curves.

Results

Patients

A total of 7,376 patients with locally advanced HNSCC

were enrolled, with a median follow-up of 58 (IQR: 16–102)

months, including 3,613 (49.0%) patients with oral cavity cancer,

2,041 (27.7%) patients with pharyngeal cancer, 59 (0.8%) patients

with sinonasal cavity cancer, and 1,663 (22.5%) patients with

laryngeal cancer. Of these, 5,326 patients were treated with CRT

and 2,050 patients were treated with surgery. Adjuvant RT was

administered to 1,079 of the patients who underwent surgery, and

adjuvant CRT was administered to an additional 971 patients. The

overall mortality rate was 61.6% [95% confidence interval (CI):

60.5%−62.8%]. The detailed baseline demographic and clinical

characteristics of the included patients are presented in Table 1.

Performance

All evaluations of the model were performed on the testing set,

which included 2,213 patients for the phase one and 651 patients

for phase two recommendations. The detailed model performance

is presented in Table 2.

The integrated Brier score (IBS) was used to measure the

discrimination of the models. The CPH model was observed

to have the best discrimination in both phase one (IBS in

the CRT group (IBSa): 0.17, 95% CI, 0.16–0.18; IBS in the

surgery plus RT/CRT group (IBSb): 0.17, 95% CI, 0.16–0.18)

and phase two recommendations (IBS in the surgery plus RT

group (IBSc): 0.17, 95% CI, 0.15–0.18; IBS in the surgery

plus CRT group (IBSd): 0.18, 95% CI, 0.16–0.21), followed

by the RSF model (IBSa: 0.17, 95% CI, 0.17–0.18; IBSb: 0.18,

95% CI, 0.16–0.19; IBSc: 0.17, 95% CI, 0.16–0.19; IBSd: 0.18,

95% CI, 0.17–0.20).

The metric of interest lies in how much survival advantage can

be gained by following model recommendations. IPTW was used

to adjust for tumor size, tumor locations, laterality, TNM stages,

demographic features, and actual treatments. We set the metrics

that determined the performance of the model to those corrected

with IPTW, as they were largely unaffected by other factors as well

as the actual treatment proportions.

In the phase one recommendation, BITES performed the best

(HR: 0.92, 95% CI, 0.81–1.04; IPTW-adjusted HR (HRe): 0.84,

95% CI, 0.72–0.98; DRMST: 6.71, 95% CI, 4.75–8.67; IPTW-

adjusted DRMST (DRMSTe): 10.40, 95% CI, 8.33–12.75; ARR:

16.90, 95% CI, 12.50–21.20; IPTW-adjusted ARR (ARRe): 14.80,

95% CI, 10.60–19.10). The NCCN Clinical Practice Guidelines

in Oncology (NCCN Guidelines) were also compared with the

models. The patients whose actual treatment was consistent with

the NCCN guidelines were compared with those whose treatment

was inconsistent. As the NCCN has no prioritized treatment

guidelines for pharyngeal cancers, these patients were excluded

from this calculation. No significant differences were observed in

the results of the NCCN guideline recommendations (HRe: 0.87,

95% CI, 0.73–0.96; DRMSTe: −4.37, 95% CI, −6.40-−2.12; ARRe:

−8.34, 95% CI,−13.00-−3.65).

For the phase two recommendation, the BITES model

was noteworthy (HR: 0.87, 95% CI, 0.72–1.06; HRe: 0.77,
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TABLE 2 Performance.

Model HR IPTW-
adjusted

HR

5-year
DRMST
(month)

IPTW-
adjusted
5–year
DRMST
(month)

5-year ARR
(%)

IPTW-
adjusted

5-year ARR
(%)

IBSa IBSb

Chemoradiation vs. surgery plus radiation/chemoradiation

BITES 0.92 (0.81–1.04) 0.84 (0.72–0.98) 6.71 (4.75–8.67) 10.40

(8.33–12.75)

16.90

(12.50–21.20)

14.80

(10.60–19.10)

0.21 (0.21–0.22) 0.19 (0.18–0.20)

CMHE 0.77 (0.67–0.89) Reference −0.23

(−2.16–1.71)

4.25 (2.20–6.36) −2.71

(−7.04–1.63)

−1.78

(−5.98–2.42)

0.20 (0.19–0.20) 0.22 (0.22–0.23)

DeepSurv 0.77 (0.67–0.89) Reference −0.23

(−2.16–1.71)

Reference −2.64

(−6.97–1.69)

−1.79

(−5.99–2.42)

0.37 (0.35–0.39) 0.29 (0.27–0.32)

RSF 0.82 (0.73–0.92) 0.85 (0.75–0.96) 7.37 (5.48–9.25) 9.70 (7.65–12.49) 13.90

(9.78–18.10)

10.20

(6.11–14.30)

0.17 (0.17–0.18) 0.18 (0.16–0.19)

CPH 0.76 (0.67–0.86) 0.98 (0.78–1.24) 3.74 (1.88–5.61) 4.84 (2.72–6.25) 7.52 (3.34–11.70) 6.93 (2.89–11.00) 0.17

(0.16–0.18)

0.17 (0.16–0.18)

NCCN 0.88 (0.73–1.06) 0.87 (0.73–0.96) −4.12

(−6.31–−1.92)

−4.37

(−6.40-−2.12)

−9.29

(−14.20–−4.43)

−8.34

(−13.00–−3.65)

.. ..

Model HR IPTW–
adjusted

HR

5–year
DRMST
(month)

IPTW–
adjusted
5–year
DRMST
(month)

5–year ARR
(%)

IPTW–
adjusted

5–year ARR
(%)

IBSc IBSd

Surgery plus radiation vs. surgery plus chemoradiation

BITES 0.87 (0.72–1.06) 0.77 (0.61–0.85) 4.59 (1.18–8.01) 4.65 (1.32–7.73) 11.10

(3.58–18.60)

10.50

(3.16–17.90)

0.22 (0.21–0.23) 0.20 (0.18–0.22)

CMHE 0.82 (0.66–1.03) 0.83 (0.65–1.07) 3.56 (0.14–6.98) 3.55 (0.29–7.36) 4.60

(−2.96–12.20)

4.66

(−2.75–12.10)

0.23 (0.22–0.23) 0.22 (0.21–0.23)

DeepSurv 0.93 (0.76–1.15) 0.94 (0.76–1.17) −1.26

(−4.69–2.18)

−1.22

(−4.80–2.02)

−1.51

(−9.09–6.07)

−1.31

(−8.75–6.14)

0.33 (0.30–0.37) 0.45 (0.40–0.48)

RSF 0.86 (0.71–1.04) 0.90 (0.73–1.10) 2.55 (−0.91–6.00) 2.59 (−0.73–5.94) 6.88

(−7.23–14.50)

6.37

(−1.10–13.80)

0.17 (0.16–0.19) 0.18 (0.17–0.20)

CPH 0.84 (0.67–1.05) 0.79 (0.61–1.02) 3.66 (0.13–7.18) 3.61 (0.04–7.22) 7.93 (0.19–15.70) 7.39

(−0.23–15.00)

0.17

(0.15–0.18)

0.18 (0.16–0.21)

IPTW, inverse probability weighting; HR, multivariate hazards ratio; DRMST, the difference in restricted mean survival time; ARR, absolute risk reduction; IBSa, integrated Brier score in

chemoradiation group; IBSb, integrated Brier score in surgery plus radiation/chemoradiation group; IBSc, integrated Brier score in surgery plus radiation group; IBSd, integrated Brier score in

surgery plus chemoradiation group; BITES, Balanced Individual Treatment Effect for Survival data; CMHE, Cox Mixtures with Heterogeneous Effects; CPH, Cox proportional hazards model;

RSF, random survival forest; NCCN, National comprehensive cancer network guideline; Reference, statistical model did not fit.

The bold font indicates that the model performed best in this metric.

According to the NCCN guidelines, surgery is recommended for patients with the following location characteristics and TNM stages: oral cavity cancer patients with T3 and N0, T1-3 and N

1-3, or T4a and N0-3; laryngeal cancer patients with T4a and N-3; ethmoid sinus patients with T3–4a; and maxillary sinus patients with T3–4 and N0 or T1–4a and N+.

95% CI, 0.61–0.85; DRMST: 4.59, 95% CI, 1.18–8.01;

DRMSTe: 4.65, 95% CI, 1.32–7.73; ARR: 11.10, 95% CI, 3.58–

18.60; ARRe: 10.50, 95% CI, 3.16–17.90), outperforming all

other models.

We present the KM curves of the Consis. vs. Inconsis. groups

for the phase one and phase two recommendations in Figures 2A, B,

respectively. Better OS in the Consis. group was observed for both

phase one (P of the log-rank test < 0.001; P of the IPTW-adjusted

log-rank test< 0.001) and phase two (P of the log-rank test< 0.001;

P of the IPTW-adjusted log-rank test < 0.001) recommendations.

Whether the protective effect of BITES was due to an imbalance

in the treatment proportions in the two groups was also of interest.

Thus, we treated surgery plus RT/CRT as a mediator and adjusted

for all baseline features to calculate the natural direct effect (NDE)

and natural indirect effect, which are presented in Figure 3A.

Similarly, surgery plus CRT was treated as a mediator in the

evaluation of the phase two recommendation (Figure 3B). The

NDE measured the direct effect of BITES recommendation on

mortality reduction, excluding the effect of the actual treatment.

These values are presented as the slope of a linear regression.

Both phase one (NDE: −0.03, 95% CI, −0.04–−0.02) and phase

two (NDE: −0.07, 95% CI, −0.08–−0.06) recommendations had a

direct effect on overall mortality reduction.

We also assessed the protective effect of BITES on various

causes of death, as presented in Supplementary Table S1. As

competing risks were considered, when a particular cause of death

was tested, other deaths were treated as competing risks. The HRe

with the competing risks was calculated using a marginal structural

cause-specific Cox proportional hazards model (MSM) (28). For

the phase one recommendation, the patients who followed the
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FIGURE 2

The Kaplan–Meier curves of the Consis. Group vs. the Inconsis. (A)

The Kaplan–Meier curves of the phase one recommendation; (B)

The Kaplan–Meier curves of the phase two recommendation. P, the

p-value of the log-rank test; IPTW, inverse probability treatment

weighting.

model recommendation had a lower death rate fromHNSCC (HRe:

0.84, 95% CI, 0.69–0.94), cardiovascular diseases (HRe: 0.66, 95%

CI, 0.45–0.96), and adverse effects (HRe: 0.68, 95% CI, 0.38–0.92).

The phase two recommendation reduced deaths caused by HNSCC

(HRe: 0.86, 95% CI, 0.66–0.93).

Treatment heterogeneity

Treatment heterogeneity can be captured by the presence of

varied average treatment effects (ATEs) across different subgroups,

indicating that patients with different characteristics respond

heterogeneously to the same treatment. The patients were divided

into the surgery recommended (SR) and surgery not recommended

(SNR) groups based on the ITE that BITES predicted in the

phase one recommendation. Similarly, the surgery plus CRT

recommended (SCR) and surgery plus RT recommended (SRR)

groups were established. The HR and HRe were calculated to

visualize the ATE in the overall patients and those subgroups.

IPTW was used to adjust for tumor size, tumor locations,

laterality, TNM stages, and demographic features. These results

FIGURE 3

Causal path of the protection e�ect of the model recommendation.

(A) Causal path of the protection e�ect in the phase one

recommendation; (B) Causal path of the protection e�ect in the

phase two recommendation. NDE, natural direct e�ect; NIE, natural

indirect e�ect; BITES, Balanced Individual Treatment E�ect for

Survival data; OS, overall survival; RT, radiation; CRT,

chemoradiation.

are presented in Figures 4A, B for the phase one and phase two

recommendations, respectively.

In CRT vs. surgery plus RT/CRT, the ATE reflected the

protective effect of surgery compared with CRT. Surgery

demonstrated a very weak and statistically insignificant protective

effect in all patients (HRe: 0.87, 95% CI, 0.70–1.08). However, it

showed a protective effect in the SR group (HRe: 0.60, 95% CI,

0.45–0.97) and a risky effect in the SNR group (HRe: 1.57, 95%

CI, 1.38–1.77).

The ATE of surgery plus CRT compared with surgery plus RT

was not statistically significant in all patients (HRe: 0.87, 95% CI,

0.71–1.07). It became favorable in the SCR group (HRe: 0.71, 95%

CI, 0.51–0.98) and not favorable in the SRR group (HRe: 1.13, 95%

CI, 1.08–1.14).

Therapeutic insights and model
interpretation

Here, the PD and IPTW-adjusted PD (PDe) were used to

quantify the impact of tumor location, age, and TNM stage

on treatment selection. Figures 5A, B represent the probability

differences for the phase one recommendation, while Figures 5C,

D show similar results for the phase two recommendation. The PD

represented the probability that a patient with the characteristic

was recommended for surgery and surgery plus CRT minus the

probability in the absence of the characteristic in phase one and

phase two, respectively, whereas the IPTW correction provided a

more unbiased result.

For the phase one recommendation, a higher likelihood

of being recommended to receive surgery was found in the

patients with tumors in the tonsil (PDe: 40.60%, 95% CI:

38.30%−42.90%), lip (PDe: 5.78%, 95% CI: 1.65%−9.90%), gum

(PDe: 25.60%, 95% CI: 15.10%−36.10%), oropharynx (PDe: 9.57%,
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FIGURE 4

Treatment heterogeneity. (A) Treatment heterogeneity in the phase one recommendation; (B) Treatment heterogeneity in the phase two

recommendation. HR, hazard ratio; IPTW, inverse probability treatment weighting.

95% CI: 1.13%−18.00%), and larynx (PDe: 6.57%, 95% CI:

2.78%−10.40%) subsites, those with stage IVa (PDe: 20.26%, 95%

CI: 17.67%−22.85%), and those older than 60 years of age (PDe:

29.00%, 95% CI: 26.40%−31.50%), with specific likelihood listed

accordingly in the PDe values. In contrast, the patients with

tumors located at the base of the tongue (PDe: −4.37%, 95% CI:

−7.52%−1.21%), other parts of the tongue (PDe: −7.86%, 95% CI:

−12.43%−3.29%), and those aged 30 to 60 years (PDe: −28.74%,

95% CI: −31.27%−26.21%) were less likely to be recommended

for surgery.

Frontiers inMedicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2024.1478842
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2024.1478842

FIGURE 5

Therapeutic insights. (A) Probability di�erence regarding tumor location in the phase one recommendation; (B) Probability di�erence regarding age

and TNM stage in the phase one recommendation; (C) Probability di�erence regarding tumor location in the phase two recommendation; (D)

Probability di�erence regarding age and TNM stage in the phase two recommendation. PD, probability di�erence; IPTW, inverse probability

treatment weighting.

For the phase two recommendation, factors such as floor

of mouth carcinoma (PDe: 9.68%, 95% CI: 0.40%−19.00%),

hypopharyngeal carcinoma (PDe: 34.6%, 95%CI: 17.20%−51.90%),

stage IVa (PDe: 11.34%, 95% CI: 2.17%−20.50%), age between

30 and 60 years (PDe: 10.80%, 95% CI: 4.78%−16.90%), and

age under 30 years (PDe: 57.20%, 95% CI: 53.40%−61.10%)

were associated with a greater likelihood of being recommended

for surgery plus CRT. On the other hand, surgery plus

RT was more likely to be recommended for the patients

with sinonasal cancer (PDe: −22.60%, 95% CI: −37.32%–

−7.91%), laryngeal cancer (PDe: −8.46%, 95% CI: −15.20%–

−1.74%), and those older than 60 years (PDe: −11.70%,

95% CI:−17.70%–−5.74%).

Figures 6A, B visualize the eight most important variables,

sorted by the aggregated Shapley values, for the overall model

outputs for the phase one and phase two recommendations using

SurvSHAP(t). These results were calculated over 500 random

observations in the testing set. The horizontal bars represent

the number of observations for which the importance of the

variable, represented by a given color, was ranked as first, second,

and so on.

According to the phase one model, advanced T stage was the

most important feature, followed by N stage, age, and treatment. N

stage, age, and histological grade significantly affected the outputs

of the phase two model.

Discussion

Surgery plus adjuvant RT is the classic therapy for patients

with locally advanced HNSCC (3), while the use of adjuvant

CRT has become increasingly popular (4). In terms of organ

preservation, patients with advanced T stage or multiple lymph

node involvement have been found to benefit from CRT (2).

However, the treatment guidelines are still primarily population-

based, and considering treatment heterogeneity, the optimal

treatment plan for a patient needs to be considered at the individual

level (8).

In this study, we developed and compared several models to

provide individualized treatment recommendations for patients

with locally advanced HNSCC. After thorough validation and bias

control, BITES, a deep learning-based approach, demonstrated

Frontiers inMedicine 09 frontiersin.org

https://doi.org/10.3389/fmed.2024.1478842
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2024.1478842

FIGURE 6

Model interpretation based on SurvSHAP(t). (A) Interpretation of the model of the phase one recommendation. (B) Interpretation of the model of the

phase two recommendation. RT, radiation; CRT, chemoradiation.

the best performance, prolonging patient survival by 4 to 10

months over 5 years. It outperformed real-world physician

choices, widely used models, and NCCN guidelines, showcasing

its potential to improve clinical treatment decisions by addressing

complex treatment heterogeneity and non-linear interactions more

effectively than traditional models such as CPH and RSF (29, 30).

We believe the advantage of BITES lies in its superior feature

extraction capability and its representation-based causal inference

method#. Its deep learning framework captures complex non-

linear relationships, surpassing the limitations of traditional models

such as CPH, which relies on constant hazard ratio assumptions,

and RSF, which struggles with high-dimensional data (30). Through
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representation learning, it effectively balances covariates between

treatment groups, reducing bias and improving ITE estimation

(29), while traditional models are largely affected by selection

bias in observational data#. In addition, BITES directly optimizes

for the ITE, providing more precise treatment recommendations

compared to DeepSurv, which focuses primarily on survival risk

prediction (31). The shared and risk network architecture of BITES

further enhances interpretability, making it particularly well-suited

for clinical applications (29). These strengths position BITES as the

most effective model for personalized treatment recommendations

in this study and make it more suitable for individualized causal

inference tasks.

Our quantitative results are consistent with the majority of

the literature. In the phase one recommendation, we found

that the patients older than 60 years were 29% more likely

to be recommended for surgery than the remaining patients,

which is supported by studies (32) indicating that the efficacy of

chemotherapy decreases with the increasing age of the patient.

Similar results were found in the patients with onset sites in the

lip (33), gum (34), oropharynx (35), larynx (36), and tonsil (37),

as well as in those with stage Iva (38). In addition, Foster et al.

(39) found lower rates of osteonecrosis in tongue cancer patients

treated with CRT, supporting the greater likelihood of them being

recommended for CRT.

In the phase two recommendation, surgery plus RT was more

frequently recommended for the older patients due to the reduced

efficacy of chemotherapy (40). In addition, the better efficacy of this

approach has been proven in patients with sinonasal cancer (41)

and laryngeal cancer(36). Conversely, patients with stage Iva (42),

onset sites in the hypopharynx (43), and floor of the mouth (44, 45)

are found to benefit more from adjuvant CRT.

Maximizing patient survival and providing a satisfactory

quality of life are priorities for physicians. Compared to

conventional guidelines, DL models can not only personalize

treatment but also quantify the benefits of each treatment and

provide a visual platform for doctors and patients to communicate

with each other. With the continuous improvement of DL models,

the application can be extended to other areas, such as risk

identification and imaging prediction, simplifying clinical diagnosis

and treatment.

Limitations

The complete inclusion of variables and diverse outcomes is still

an area of improvement. The SEER database lacks some important

clinical variables, such as human papillomavirus status and vascular

invasion, hindering more accurate modeling. In addition, other

survival outcomes are also important considerations for patients

when choosing a treatment plan, whereas our model solely focused

on whether to perform organ preservation.

Conclusion

In this study, we developed a personalized treatment

recommendation system for patients with locally advanced

HNSCC using DL models. BITES demonstrated the ability to

identify patients who can achieve organ preservation with CRT

and to guide maximum survival. Comprehensive clinical data

and further refinement of DL models can enable more accurate

predictions in the future, ultimately achieving the potential of

precision medicine.
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