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Background: Polygenic risk score (PRS) prediction is widely used to assess the risk 
of diagnosis and progression of many diseases. Routinely, the weights of individual 
SNPs are estimated by the linear regression model that assumes independent 
and linear contribution of each SNP to the phenotype. However, for complex 
multifactorial diseases such as Alzheimer’s disease, diabetes, cardiovascular disease, 
cancer, and others, association between individual SNPs and disease could be non-
linear due to epistatic interactions. The aim of the presented study is to explore 
the power of non-linear machine learning algorithms and deep learning models to 
predict the risk of multifactorial diseases with epistasis.

Methods: Simulated data with 2- and 3-loci interactions and tested three different 
models of epistasis: additive, multiplicative and threshold, were generated using the 
GAMETES. Penetrance tables were generated using PyTOXO package. For machine 
learning methods we used multilayer perceptron (MLP), convolutional neural 
network (CNN) and recurrent neural network (RNN), Lasso regression, random 
forest and gradient boosting models. Performance of machine learning models 
were assessed using accuracy, AUC-ROC, AUC-PR, recall, precision, and F1 score.

Results: First, we tested ensemble tree methods and deep learning neural 
networks against LASSO linear regression model on simulated data with different 
types and strength of epistasis. The results showed that with the increase of 
strength of epistasis effect, non-linear models significantly outperform linear. 
Then the higher performance of non-linear models over linear was confirmed on 
real genetic data for multifactorial phenotypes such as obesity, type 1 diabetes, 
and psoriasis. From non-linear models, gradient boosting appeared to be the 
best model in obesity and psoriasis while deep learning methods significantly 
outperform linear approaches in type 1 diabetes.

Conclusion: Overall, our study underscores the efficacy of non-linear models and 
deep learning approaches in more accurately accounting for the effects of epistasis 
in simulations with specific configurations and in the context of certain diseases.
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1 Introduction

Modern technologies have enabled the use of genomic data to 
predict and customize strategies for preventing and treating 
diseases. Millions of single-nucleotide polymorphisms (SNPs) exist 
in the human genome, and genome-wide association studies 
(GWAS) help to identify associative links between SNPs and 
various diseases (1). Frequently polymorphisms with weak 
individual effects may collectively exhibit a strong correlation with 
a disease (2). Polygenic Risk Score (PRS), a linear regression model 
that uses individual SNPs with weights derived from GWAS, has 
traditionally been used to assess the risk of multifactorial disease 
manifestation. Although PRS has rightfully become the most 
popular tool due to its simplicity and good predictive ability, it has 
significant limitations, such as inability to account for non-linear 
effect of epistasis. Although, historically this term has been used to 
describe various genetic events, the most suitable definition was 
proposed by Fisher (3). That is statistical epistasis, and it refers to 
a phenomenon where the effect of genetic variants on disease is 
non-additive. Epistasis is a field of active study, and it has already 
been proven to have a significant effect in a number of diseases (4). 
Epistasis is a challenging aspect in building a reliable polygenic risk 
model, as linear approaches are often insufficient to capture 
non-linear relationships between genetic variants and disease.

Machine learning techniques may help to overcome some of PRS 
limitations. For instance, deep neural networks (DNN) have improved 
PRS for predicting breast cancer (5). DNN demonstrated better results 
(AUC ROC 0.674) than any other approach, including best linear 
unbiased estimator (AUC ROC 0.642), BayesA (AUC ROC 0.645), 
LDpred (AUC ROC 0.624), random forest (AUC ROC 0.636) and 
gradient boosting (AUC ROC 0.651). The same conclusion was 
reached by the researchers also for the breast cancer and breast cancer 
subtypes in Chinese population in the work (6), although the 
difference in performance was less significant (AUC ROC of 0.601 for 
DNN and 0.598 for logistic ridge regression). Neural network-based 
approach has also proven effective in predicting other risks, including 
some heart conditions (myocardial infarction, stroke and others) (7), 
Alzheimer’s disease (8, 9) and 10 phenotypes from UK biobank (10). 
In another study based on UK biobank phenotypes, authors showed 
that gradient boosting modes outperform linear when considering 
non-genetic covariates (11). In this study, we evaluated the potential 
of various machine-learning methods on simulated data with epistasis. 
After that, we tested the performance of these models on multifactorial 
diseases: obesity, type 1 diabetes, and psoriasis.

Obesity is a global health problem that has raised major concerns in 
recent decades. According to the World Health Organization (WHO), 
obesity rates have nearly tripled worldwide since 1975, with over 
650 million adults categorized as obese (12). Obesity is associated with 
numerous health risks and chronic conditions, including type 2 diabetes, 
cardiovascular disease, high blood pressure, some types of cancer, and 
respiratory problems (13). In addition to that, obesity has also a 
significant impact on a person’s mental well-being, leading to anxiety and 
depression (14). The causes of obesity are commonly associated with 
various environment factors, including demographic, socioeconomic, 
and behavioral contributions (15). Nevertheless, variation in body 
weight is largely modulated by a strong genetic component that 
determines an individual’s susceptibility to these factors. Research 
conducted through twin and family studies has estimated that obesity 
has a heritability rate ranging from approximately 40 to 70% (16). 

Obesity risk prediction is currently a subject of thorough research, with 
machine learning methods being actively used. Among the commonly 
used models are logistic regression, naïve Bayes, gradient boosting, 
random forest, support vector machine, k-nearest neighbor method, as 
well as various neural network architectures, mainly multilayer 
perceptron (MLP) and convolutional neural networks (CNN). Majority 
of the published research relies on non-genetic information, such as 
social and clinical factors (17–20). Typically, this strategy proves to 
be fruitful, as it demonstrates a high predictive power. However, it is 
important to note that the best results are typically achieved when 
considering both environmental factors and genetic information 
together. When it comes to polygenic risk prediction for obesity, there 
are fewer publications, possibly, due to the difficulty of constructing a 
sufficient dataset containing both genetic and phenotypic information. 
Nevertheless, machine-learning algorithms have been shown to 
be accurate and reliable with an average ROC AUC of 0.7 (21, 22). This 
approach is often used to identify the SNPs that have the most significant 
impact on obesity (23, 24). It was also demonstrated that age and gender 
might be among the most important cofactors (23).

Second tested phenotype, type 1 diabetes is an autoimmune disease 
in which the immune system attacks the cells of the pancreas that 
produce insulin. Its adverse effects may include high levels of blood 
sugar, heart disease, stroke, kidney disease, nerve damage, and eye 
problems. Although nowadays one cannot prevent type 1 diabetes, 
knowing about the genetic predisposition is important, as early diagnosis 
and proactive management are key to minimizing the negative effects 
(25). Moreover, type 1 diabetes is commonly misdiagnosed as type 2 
based on clinical indicators (26). Considering that these diseases require 
different treatment strategies, genetic information becomes of immense 
importance in classification and predicting type 1 diabetes. While there 
is an abundance of research concerning type 2 diabetes classification 
using machine learning approaches on genetic (27, 28) and non-genetic 
data (29), there is a limited number of publications focusing on type 1 
diabetes. Using clinical and socio-economic factors, researchers were 
able to reach AUC-ROC values up to 0.83 (30, 31). Results that are even 
more impressive with AUC-ROC of 0.96–0.99 were achieved using 
metagenomics approach in infants (32, 33). Unfortunately, metagenomics 
is a rather complex and expensive analysis, and non-genetic classifiers 
rely on medical history and personal information. Therefore, there is a 
need for a reliable type 1 diabetes prediction model based on genetic data.

Finally, psoriasis is a chronic autoimmune skin condition that has 
a strong genetic component. Family and twin studies show strong 
hereditary patterns, with a higher risk if parents have the condition 
(34). As GWAS studies show, psoriasis is highly dependent on 
genetics, polygenic approaches can help to estimate the risks 
associated with the disease and design a better treatment strategy 
(35). Heterogeneous type of data is currently being used for psoriasis 
risk prediction [see (36) for review]. The best results (accuracy up to 
98%) of machine learning classification algorithms achieved using 
gene expression data in affected and healthy cells (37). Unfortunately, 
such an approach is not suited to early prediction, since it analyzes 
the affected cells. Using genetic information, it is possible to predict 
psoriasis before the disease manifests itself in any way.

In this paper, we present our studies on how epistasis complicates 
a disease classification. For this purpose, we trained machine learning 
models including deep learning architectures on simulated data 
containing phenotypes with epistasis of varying complexity. Then 
we verified our machine learning models on real genetic data collected 
for three phenotypes: obesity, type 1 diabetes and psoriasis.
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2 Materials and methods

2.1 Epistasis simulation experiments

In order to thoroughly investigate how the contribution of 
epistasis affects phenotype, as well as to systematically evaluate the 
performances of various machine learning algorithms for a particular 
disease, we  conducted the following experiments. We  generated 
datasets with varying probabilities of phenotype manifestation 
(Equations 1, 2). The probability consisted of linear and epistatic 
portions, and was calculated using the following equation:
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where coefficients iβ  were sampled from the normal distribution 
N(0, 0.5).

The probability of 3-loci epistasis ( )1 2 31| , ,e e eP Y x x x=  is taken from 
penetrance tables that were generated using PyTOXO package (38). In 
this experiment 3 penetrance tables were created for 2-loci and 3 tables 
for 3-loci epistatic models with heritability of 0.10, 0.25 and 0.50 (the 
details, including frequencies, can be found in Supplementary Tables 1, 
2). We generated genotype profiles consisting of 100 and 1,000 SNPs, 
including 25 and 100, respectively, that are responsible for linear effect 
and 2 or 3 SNPs corresponding to 2- and 3-loci epistasis. This way 
we  simulated datasets containing 20,000 and 100,000 people with 
generated genotypes and the described phenotypes. Genotypes were 
constructed by randomly assigning SNP to 0, 1 or 2 with frequencies of 
0.25, 0.5, and 0.25, respectively. In our setup, we fixed the MAF (Minor 
Allele Frequency) of the generated genotypes. However, additional 
simulations (Supplementary Figure 1) have shown that the results of the 
experiments remain consistent even if we vary the MAF. By varying 
coefficient α from 1 to 0, we created phenotypes with gradually increasing 
epistasis contribution. Each dataset consisted of 1 genotype and 10 
targets with different phenotype compositions. As the phenotypic 
variance explained by genetic variants varies for different alpha values, 
we calculated the theoretical AUC value. This value is determined when 
the ground truth coefficients of the model are used.

To further compare how linear and non-linear models perform in 
cases of strong epistasis and limited data availability, 30 datasets were 
generated using the GAMETES 2.1 (39). The simulated phenotypes 
corresponded to three 2-loci epistasis models: additive, multiplicative and 
threshold. The same heritability of 0.25 was used. In particular, each 
machine-learning algorithm was trained and tested on 10 replicates that 
were created for each epistasis case. Penetrance tables used in this 
simulation were also generated using PyTOXO package 
(Supplementary Tables 3–5). Datasets for 20,000 people consisted of 1,000 
SNPs, including 2 causal ones, associated with 2-loci epistasis, and 998 

non-significant variants. All models were trained and tested on 10 
replicate datasets, corresponding to one with the epistasis. The purpose of 
this experiment was to evaluate model stability by measuring mean and 
standard deviation of each metric across 10 independent training runs.

2.2 Real data for obesity, diabetes and 
psoriasis

2.2.1 Study cohort
In our study, we analyzed the genetic data of 102,519 individuals 

from the database of Genotek, the Russian consumer genetics and 
research company (40). Genotek clients included in our analyses 
provided informed consent for their data to be  used for research 
purposes. The current research was approved by the Genotek Ethics 
Committee (protocol №17 “Deep Learning captures the effect of epistasis 
in multifactorial diseases”) and performed in accordance with the 
Declaration of Helsinki. Each client was asked to fill the questionnaire 
about lifestyle, body measurements, and diseases. We used these self-
reported data to find individuals with a certain condition.

2.2.2 Genotyping and imputation
DNA extraction and genotyping were performed on saliva 

samples that were genotyped on Illumina Infinium Global Screening 
Array v.1-v.3 microarrays (~ 650,000 SNPs). All samples in Genotek 
cohort were processed in batches (192–768 samples per batch). The 
GenomeStudio software (Illumina, San Diego, CA) and manually 
created cluster files that were used to cluster the raw signals and call 
genotypes. SNPs with a call rate < 0.9 within the batch were removed. 
We removed individuals with sample call rate < 0.97. Then genotype 
imputation was performed using HRC and 1,000 Genomes reference 
panels using Beagle 5.1 (9). Imputed variants with DR2 > 0.7 were 
kept for the downstream analysis. HIBAG was used to impute star 
alleles for HLA-DQA1 and HLA-DQB1 genes (41).

2.2.3 SNP selection
For each individual we have genome-wide SNP data. The sample 

size of our cohort is much less than the number of available features 
(~8–10 millions of SNPs) that is why we trained and validated our 
models for the subsets of SNPs known to be related to the considered 
diseases. To obtain 557 SNPs for obesity we used GWAS summary 
statistics from GIANT consortium study on European population (42). 
We used PLINK (43) to perform clumping on those summary statistics 
using our own genotyping data with the following parameters: LD 
threshold 0.1, minimum p-value for index SNP 0.0001, distance 250 kb, 
to get the final list of SNPs. For the psoriasis 38 SNPs from (44) were 
selected. Finally, for type 1 diabetes we used star alleles for HLA-DQA1 
and HLA-DQB1 genes and additional non-HLA 48 SNPs from (45). 
List of selected SNPs can be found in Supplementary Data 1.

2.2.4 Phenotype prediction
Phenotypes were defined for Genotek cohort from the data self-

reported by individuals. For obesity, we got 50,168 controls and 8,506 
cases (cases included individuals with BMI > = 30, controls – BMI < = 
25). Gender and age were included into the model as covariates. For 
the type 1 diabetes, we received 522 cases. We applied propensity score 
matching, a technique that is widely used in clinical trials to control 
for confounding (46–48). For that, each patient was matched with 20 
controls with similar age and gender. This resulted in 522 cases and 
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10,440 controls. A similar procedure was performed for psoriasis 
matching 7 controls per each of 1,543 cases based on propensity score 
involving age, gender, smoking status and alcohol consumption. Then 
Synthetic Minority Over-Sampling Technique (SMOTE) was applied 
to balance the training subsets by increasing the number of cases.

2.3 Training and validation of machine 
learning algorithms

Multilayer perceptron (MLP), convolutional neural network 
(CNN) and recurrent neural network (RNN), as well as Lasso 
regression, random forest and gradient boosting models were assessed 
using a range of performance metrics including accuracy, F1 score, 
AUC-PR, recall, precision and AUC-ROC. A similar training and 
testing process was applied to all models. First, the data was one-hot 
encoded. Then, all models underwent a cross-validation procedure 
consisting of 5 cycles, where the data was randomly divided into 
training and test sets in a 60:40 ratio during each iteration. The final 
metrics are the averages of the results from these cycles. For neural 
networks a test set was further split into validation and independent 
test subsets in equal portions. When training neural networks, 
we  used grid search technique in order to find the optimal 
hyperparameters. Models were trained for a sufficient number of 
epochs with loss function and AUC-ROC being recorded. Neural 
network models were trained using the Adam optimizer with a binary 
cross-entropy loss function. Learning rate periodically changed from 
10−3 to 10−4 every 10 epochs with utilization of CosineAnnealingLR 
scheduler. Models were trained for fixed number epochs with 
AUC-ROC and loss function value recorded on every iteration. 
Training was interrupted if loss function was increasing for more than 
5 consecutive epochs. After training, the model with the best 
performance on validation set was loaded, and metrics were measured 
on the independent test dataset.

For gradient boosting we tested three different implementations: 
LightGBM, XGBoost, and GradientBoostingClassifier form sklearn 
(Supplementary Figure  2). LightGBM showed the best results on 
simulated data, so we used it as the default gradient boosting model 
throughout the study.

Similar MLP architectures were implemented in all experiments. It 
consisted of multiple fully connected layers, including the input layer 
with 300 or 3,000 nodes, accounting for 100 or 1,000 one-hot encoded 
SNPs, three hidden layers and a single output node. The number of 
neurons in the hidden layers was optimized using grid search technique 
and varied from 300 to 2,500 in the first layer, from 100 to 500 in the 
second and from 10 to 75 in the last layer. The Rectified Linear Unit 
(ReLU) activation function was applied to all neurons, except for the 
output, where a sigmoid activation function was used. Batch 
normalization was incorporated after each hidden layer to improve 
training stability and speed. To prevent overfitting, dropout 
regularization was also used after each layer, except for the output. 
Hyperparameters that were optimized during the grid search included 
composition of hidden layers, batch normalization momentum, dropout 
value after the initial layer and the dropout of other hidden layers. The 
CNN architecture consisted of two 1D convolution and one fully 
connected hidden layer. After each fully connected layer ReLU 
activation function was used, followed by dropout regularization. 
Number of channels, kernel size, stride and the number of neurons 
in  the fully connected layers varied during the hyperparameter 

optimization. In particular, the number of channels changed from 150 
to 1,000, different kernel and stride values were tested ranging from 1 
to 4, and fully connected layers varied from 50 to 100. The RNN 
architecture consisted of two components: one LSTM (Long Short-
Term Memory) and one fully connected output layer, separated by a 
dropout layer. The dimensionality of the LSTM hidden state, as well as 
the dropout value were optimized, and changed from 50 to 300 and 
from 0.7 to 0.9, respectively. Finally, in the experiments with real data, 
a combination of RNN-CNN networks was also tested. It consisted of 
one LSTM, two convolution, one fully connected hidden layer. Similar 
to the previous architectures, ReLU activation function and dropout 
layer were used after the hidden layer, while the output layer was 
followed by a sigmoid activation function. Hyper-parameters and their 
values were similar to the setup described above.

3 Results

To assess the performance of different machine learning models 
we  first tested them on simulated datasets with varying epistasis 
effects. The phenotypes we  used differed both in the models of 
epistasis and in the strength of its contribution. We used 2- and 3-loci 
epistasis with heritabilities of 0.1, 0.25 and 0.5, resulting in six different 
models. The contribution of epistasis to the probability of phenotype 
manifestation for each model varied from 0 to 1. We used cohorts of 
20,000 and 100,000 people with approximately equal case/control 
ratio. The results are summarized in Figure 1. It is important to note 
that each coefficient within the combined linear and epistasis model 
yields a distinct model, each explaining a different proportion of the 
phenotypic variance. Consequently, each coefficient is associated with 
its own theoretical value for AUC. In all scenarios, models behave 
similarly in the far-left side of the graphs that correspond to low 
epistasis contribution. From approximately 0.3 ratio, where epistasis 
effect approaches 30%, we  start seeing the noticeable difference 
between linear and non-linear models. Thus, Lasso regression results 
decline as the ratio increases, while gradient boosting and neural 
networks demonstrate the ability to capture epistasis, as their metrics 
grow in the far-right side of the graphs. It should be noted that for the 
best performance neural networks require an extensive dataset with 
high feature-to-instance ratio, which depends on complexity and 
quality of data. For instance, when we used 20,000 instances for 1,000 
features (1:20 ratio), none of the neural networks was able to 
distinguish strong epistasis phenotypes. That ratio is also the case 
when all metrics were the furthest from the theoretical AUC-ROC. As 
the feature-to-instance ratio increases, models stabilize their 
performance. When we used 10,000 instances with 100 features, all 
models showed their most stable results, nearly reaching the 
theoretical AUC-ROC. While MLP and CNN demonstrated similar 
performances, RNN had the worst metrics and least stability among 
all non-linear models. Additionally, we tested how heritability of 2-loci 
and 3-loci epistatsis affects the complexity of phenotype profile (see 
Supplementary Figure 3). The simulation indicates that the higher-
order epistasis is harder to detect.

Manifestations of epistasis take quite complex forms. To better 
understand how different forms of epistasis may affect the 
predictive abilities of machine-learning algorithms, we simulated 
three theoretical epistasis models previously described by 
Marchini et al. (49): additive (also known as “Multiplicative within 
and between loci”), multiplicative and threshold. First model 

https://doi.org/10.3389/fmed.2024.1479717
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Perelygin et al. 10.3389/fmed.2024.1479717

Frontiers in Medicine 05 frontiersin.org

describes an interaction within and between loci, where effect is 
proportional to the number of causal alleles. The second type is 
called multiplicative, and it is characterized by constant 
probability of a disease, unless both loci have at least one causal 
allele, in which case the effect grows similarly to the additive 
model. Finally, the threshold model manifests as two types of 
constant effects: minor and major effect, where the latest 
corresponds to both loci possessing disease-associated alleles 
(refer to Figure 1 of Marchini et al. (49) for graphical presentation 
of the models). In this simulation, we  tested sub-optimal 
conditions for training models using datasets with low feature-to-
instance ratio (1:20).

The results obtained on simulated data convincingly prove that 
usage of non-linear models might be beneficial in predicting the risks 
heavily influenced by epistasis (Table 1).

Additive epistasis (Figure 2), being the simplest form, is relatively 
easy to detect because its penetrance table contains only explicit 
dependence on the alleles. Indeed, that is proven by the simulation 
results, as both linear and non-linear models performed at a similar 
level, with LightGBM outperforming the others. When classifying 
multiplicative epistasis, all performance metrics reduced significantly. 
While all non-linear models, except for CNN, demonstrated higher 
AUC-ROC, the best results were achieved by the gradient boosting 
(0.771 ± 0.002). Noticeably, MLP and CNN showed the highest 
variance across all metrics. Finally, the threshold model corresponded 
to the lowest values across all metrics. Highest AUC-ROC was 
achieved by the gradient boosting (0.695 ± 0.001), followed by MLP 
(0.687 ± 0.002) and RF (0.680 ± 0.003). The worst results were 
demonstrated by the linear model (Lasso regression) (0.654 ± 0.002). 
For the reasons that will be discussed in the next section, accuracy and 

FIGURE 1

Graphs of AUC-ROC values measured for different machine learning methods. Each value at the X axis corresponds to a phenotype with a certain 
contribution of epistasis. For each AUC-ROC value, the boundaries of the 95% confidence interval are indicated. Each graph corresponds to a different 
dataset composition and feature-to-instance ratio. In all cases, 3-loci epistasis model with heritability of 0.25 was used.
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F1-score were found to be in reverse correlation. For instance, in the 
threshold model of epistasis simulation MLP had the highest F1-score 
and the lowest accuracy. This correlation stays true for all models. 
Here we  also tested three gradient boosting algorithms and 
comparison of different implementations of gradient boosting 
algorithm performances can be found in Supplementary Figure 2.

The results of the models for classification of real phenotypes 
based on genetic data are presented in Table 2. For obesity, all tested 
models performed similarly. Among neural network architectures 
only MLP marginally surpasses Lasso regression, while CNN, RNN, 
hybrid RNN-CNN and other gradient boosting models stay behind. 
For type 1 diabetes, models based on RNN appeared to be the most 
effective according to average metrics, closely followed by the hybrid 
RNN-CNN and MLP. Finally, in experiments with psoriasis data, all 
tested models demonstrated similar results.

4 Discussion

In the simulation experiment with varying strength of epistasis, 
we  clearly see the difference in linear and non-linear model 
performances. When phenotype consists of only linear effects, all 
models provide nearly identical results. Once the epistasis vs. linear 
proportion reaches 30–40%, we  see how performance of Lasso 
regression started to decline, while non-linear approaches retain their 
prediction ability. Moreover, as the linear dependence decreases, these 
models produce higher performance metrics. This experiment proves 

that in certain phenotypes non-linear algorithms might be the tool of 
choice. However, in the absence of or with insignificant effect of 
epistasis the linear models can compete with non-linear. This may 
be the reason that in a number of publications linear models or classical 
PRS algorithms provide similar (50) or even better results (51) than 
non-linear. In addition, the availability of quality data for training and 
testing plays a key role in the resulting outcome. Thus, when the 
feature-to-instance ratio is low (for example, 1:20), none of the neural 
networks was able to get sufficient training. Even when the ratio grew 
to 1:200, RNN was still unable to detect epistatic phenotypes. Only 
with the highest ratio of 1:1000, all non-linear models provided 
satisfactory results. Finally, the complexity and order of epistasis, which 
can consist of 2, 3, or more loci, may vary, leading to varying levels of 
inability to detect epistasis by linear models. Figure 1 summarizes the 
results for 3-loci epistasis with heritability of 0.25, where AUC-ROC of 
Lasso regression drops consistently regardless of the feature-to-instance 
ratio. This is not always the case. For instance, 2-loci epistasis with 
extremely high heritability of 0.5, is detected by Lasso regression with 
nearly the same metrics as the other models. Higher order epistasis, 
such as 3-loci, is much harder to detect by linear models, even when it 
has large heritability. Supplementary Figure 3 provides a summary of 
performances for 2- and 3-loci epistasis with heritability of 0.1, 0.25 
and 0.5.

Models showed expected results for additive epistasis, which is the 
simplest form, and its marginal effects are easy to estimate. All metrics 
were similar with the exception of Gradient Boosting which 
demonstrated the best results in all three epistasis types. Essentially, 

TABLE 1 Comparison of metrics produced by tested machine learning models on simulated data with three types of epistasis.

AUC-ROC Accuracy Recall Precision F1-score

Additive

Lasso regression 0.850 ± 0.001 0.770 ± 0.001 0.768 ± 0.002 0.772 ± 0.001 0.770 ± 0.001

MLP 0.846 ± 0.001 0.769 ± 0.002 0.727 ± 0.011 0.794 ± 0.005 0.758 ± 0.004

CNN 0.843 ± 0.003 0.725 ± 0.021 0.842 ± 0.026 0.699 ± 0.025 0.756 ± 0.008

RNN 0.854 ± 0.001 0.773 ± 0.001 0.753 ± 0.003 0.785 ± 0.002 0.768 ± 0.002

Random Forest 0.854 ± 0.001 0.775 ± 0.001 0.760 ± 0.003 0.784 ± 0.002 0.772 ± 0.001

Gradient Boosting 0.877 ± 0.001 0.805 ± 0.002 0.775 ± 0.003 0.781 ± 0.002 0.814 ± 0.00

Multiplicative

Lasso regression 0.721 ± 0.002 0.662 ± 0.002 0.640 ± 0.003 0.670 ± 0.002 0.655 ± 0.002

MLP 0.733 ± 0.002 0.646 ± 0.014 0.719 ± 0.030 0.642 ± 0.022 0.670 ± 0.003

CNN 0.686 ± 0.022 0.593 ± 0.026 0.800 ± 0.058 0.597 ± 0.030 0.661 ± 0.003

RNN 0.730 ± 0.002 0.674 ± 0.002 0.625 ± 0.003 0.693 ± 0.002 0.658 ± 0.002

Random Forest 0.734 ± 0.002 0.668 ± 0.002 0.681 ± 0.003 0.664 ± 0.003 0.672 ± 0.002

Gradient Boosting 0.771 ± 0.002 0.731 ± 0.002 0.659 ± 0.002 0.769 ± 0.002 0.710 ± 0.002

Threshold

Lasso regression 0.654 ± 0.002 0.608 ± 0.002 0.611 ± 0.003 0.607 ± 0.002 0.609 ± 0.002

MLP 0.687 ± 0.002 0.591 ± 0.008 0.717 ± 0.025 0.577 ± 0.010 0.636 ± 0.004

CNN 0.662 ± 0.009 0.556 ± 0.017 0.673 ± 0.106 0.529 ± 0.068 0.553 ± 0.066

RNN 0.672 ± 0.002 0.621 ± 0.001 0.578 ± 0.004 0.633 ± 0.002 0.604 ± 0.002

Random Forest 0.680 ± 0.003 0.611 ± 0.002 0.650 ± 0.004 0.603 ± 0.002 0.626 ± 0.002

Gradient Boosting 0.695 ± 0.001 0.656 ± 0.001 0.507 ± 0.002 0.723 ± 0.002 0.596 ± 0.001

Indicated values are mean and standard deviation measured across 10 replicate datasets for each epistasis type. The best performance metrics are indicated in bold.
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FIGURE 2

Distributions of metrics measured for different machine learning models. Three theoretical forms of epistasis and their corresponding datasets were 
generated using GAMETES (LR, Lasso regression; GB, Gradient Boosting).
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additive form demonstrates linear behavior, and therefore any model 
can produce satisfying results. On the other hand, more complex types 
of epistasis can pose a problem. Thus, the most challenging aspect of 
the multiplicative epistasis is the abrupt switch from constant to 
additive marginal effects when both alleles include causal variants. 
Non-linear models can distinguish such complex phenotypes, while 
linear cannot produce the same results. This tendency is even more 
obvious when it comes to the threshold type that has only two constant 
marginal effects. It seems that Lasso regression can comprehend the 
additive part of multiplicative epistasis; therefore, when both loci 
possess causal alleles, it classifies the cases similarly to non-linear 
competitors. However, threshold type abruptly switches the marginal 
effects from one constant value to another. That behavior is a serious 
problem for a linear model, which becomes apparent when 
we compare AUC-ROC of Lasso regression and the other models.

Special attention should be paid to the trade-off between accuracy 
and F1-score. By changing the threshold of a classification probability, 
we can balance these metrics. In fact, the accuracy measured in these 
experiments is reversely correlated with F1-score. For example, in 
threshold epistasis, MLP had the highest F1-score and the lowest 
accuracy. Graphs demonstrating this behavior are presented in 
Supplementary Figure 4. Thus, by choosing an appropriate probability 
threshold, it is possible to increase one of two metrics at the expense 
of the other.

We have conducted a simulation study that has several limitations. 
One of these limitations is the number of SNPs in the synthetic 
dataset. Deep learning models are time- and resource-intensive, so to 
make the computations feasible, we limited the number of simulated 
SNPs to 1,000. On one hand, this might be  reasonable if we  use 
GWAS-based filtration to select the top SNPs for further analysis. On 
the other hand, we  believe that in the near future, deep learning 
methods will become faster and more cost-effective. Additionally, 
we fixed the MAF in these simulations. More extensive and realistic 
simulations could be applied in future research to study the feasibility 
of epistasis detection in greater detail.

In this study, we assumed that genotype data is available for a large 
cohort. This assumption is quite reasonable given the increasing 
number of biobanks and genetic testing companies with hundreds of 
thousands of genomes that have emerged in recent years. However, 
researchers often use GWAS summary statistics and additional 
cohorts to train and validate polygenic risk scores (PRS; e.g., PRSice 
2, LDPred2, lassosum, etc.). Some methods, like LDPred2, recalculate 

the weights to account for linkage disequilibrium (LD). As a direction 
for future research, it would be interesting to test the ability of these 
methods to account for epistasis using both simulated and real data.

Overall, the experiments on simulated data have shown that 
nonlinear models can outperform conventional linear approaches for 
some phenotypes. The difference in performance considerably 
increases with the increase of contribution of epistasis.

The results obtained on the simulated data were confirmed by the 
experiments on the real genetic data, and are in agreement with 
previously published studies (4). Thus, for obesity, all models 
demonstrated similar results. The explanation why non-linear 
approaches do not show a substantial difference from the linear model 
may lie in the nature of this disease. Even though, a number of 
epistatic interactions may affect body mass index (52), GWAS statistics 
revealed nearly a thousand of SNPs highly associated with the BMI 
(with p-values <1 × 10−8) (53). Therefore, it is possible that the impact 
of these interactions can be  overshadowed by SNPs with linear 
contribution to phenotype. Furthermore, obesity is highly correlated 
with various socio-economic factors. Thus, a person may be genetically 
predisposed to obesity, but lifestyle and easy availability of high-
calorie food remain the key risk factors (13, 15).

The results for type 1 diabetes support the idea that some 
phenotypes may benefit from usage of non-linear models. It has been 
proven that diabetes is highly affected by epistatic interactions (37). 
Moreover, typical GWAS for type 1 diabetes consists of only a small 
number of SNPs with statistically significant associations (54). Thus, 
the combination of a small number of genetic features, some of which 
are associated with strong epistasis, makes diabetes an excellent 
example of a disease for which non-linear models will be more reliable 
in genetic risk prediction. In fact, all tested neural network 
architectures demonstrated high and consistent predictive capabilities, 
while gradient boosting and random forest remained at the level of 
performance of Lasso regression.

Although a number of studies shows that epistasis plays a 
significant role in the manifestation of psoriasis (55, 56), tested 
non-linear approaches were not able to outperform linear models. 
One possible reason may lie in the insufficient number of cases 
available for training. It is known that in order for advanced models 
to reach their full potential, it is necessary to provide an extensive 
dataset with balanced data. Another possible explanation is that the 
effect of epistasis could be less than that for the type 1 diabetes. As 
it was shown on simulated data, non-linear methods are most 

TABLE 2 Average metrics of various machine learning models for real genetic data.

Obesity Type 1 diabetes Psoriasis

AUC-ROC Accuracy AUC-ROC Accuracy AUC-ROC Accuracy

Lasso regression 0.773 ± 0.002 0.857 ± 0.001 0.787 ± 0.004 0.759 ± 0.004 0.699 ± 0.004 0.696 ± 0.004

MLP 0.775 ± 0.002 0.855 ± 0.001 0.820 ± 0.004 0.764 ± 0.021 0.693 ± 0.004 0.641 ± 0.006

CNN 0.769 ± 0.002 0.849 ± 0.001 0.815 ± 0.003 0.741 ± 0.027 0.700 ± 0.003 0.584 ± 0.012

RNN 0.752 ± 0.002 0.851 ± 0.001 0.823 ± 0.004 0.798 ± 0.006 0.697 ± 0.003 0.679 ± 0.005

RNN-CNN 0.763 ± 0.002 0.854 ± 0.001 0.822 ± 0.004 0.747 ± 0.010 0.701 ± 0.004 0.648 ± 0.011

Gradient Boosting 0.774 ± 0.002 0.858 ± 0.001 0.805 ± 0.005 0.954 ± 0.001 0.688 ± 0.004 0.869 ± 0.001

Random Forest 0.714 ± 0.001 0.855 ± 0.001 0.792 ± 0.006 0.954 ± 0.001 0.676 ± 0.004 0.869 ± 0.001

The targeted phenotypes include obesity, type 1 diabetes and psoriasis. The results represent the average value and the standard deviation of the measured metrics on 10 independent training 
and testing cycles. The best performance metrics are indicated in bold.
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effective for a substantial epistatic interaction. Finally, phenotypic 
information is self-reported and was obtained from client’s 
voluntary survey. Since some clients might not want to disclose 
information about their illnesses, some of the data may have been 
incorrectly marked up. Thus, some of the controls could actually 
relate to cases, thereby creating an error in the dataset. However, it 
is important to note that the metrics obtained in our study are 
comparable to the metrics from studies of other clinical cohorts 
(57, 58).

The models evaluated in this study are not designed for 
epistasis detection but rather for predicting phenotypes based on 
genetic data. The most significant increase in AUC was observed 
for Type 1 Diabetes, with RNN achieving an AUC of 0.82 compared 
to 0.79 for Lasso, potentially indicating the presence of epistatic 
effects. Conversely, non-linear models yielded the same AUC for 
obesity and psoriasis. However, this should not be interpreted as 
evidence of the absence of epistasis for these two phenotypes, as 
our study has several limitations. For instance, epistatic genetic 
variants may be excluded during the pre-selection of SNPs, and our 
sample size may be insufficient to detect weak epistatic interactions. 
From a practical standpoint, our findings corroborate previous 
research suggesting that non-linear models for Type 1 Diabetes 
outperform linear models and are more suitable for individual 
risk estimation.

Experiments on simulated data have shown that the results of 
various machine learning models directly depend on the complexity 
of targeted phenotype. Thus, all models show similar results when 
dependence between SNPs and disease is linear. In the case when 
epistasis plays a significant role, non-linear models significantly 
outperform linear. For different models of epistasis, whether it is 
additive, multiplicative, or threshold, the performance of different 
machine-learning models directly depends on the order and 
complexity of epistasis. Another crucial factor in model performance 
is the feature-to-instance ratio, since complex non-linear approaches, 
especially neural networks, require large balanced datasets. Overall, 
we created two simulation setups to assess different aspects of epistasis: 
its form and strength. Clearly, these experiments cannot fully capture 
the complex nature of a multifactorial disease. However, such analysis 
of separate characteristics of epistasis in isolated experiments allows 
us to better understand this intricate phenomenon. Creating a 
simulation that more closely resembles a real multifactorial disease 
will be one of the tasks in our future studies.

Experiments with real genetic data further support the thesis that 
non-linear models outperform linear approaches, especially for 
phenotypes with significant contribution of epistasis. Thus, non-linear 
models outperform linear in type 1 diabetes that, according to recent 
studies, has a significant contribution of epistasis and a small number 
of causal SNPs. For obesity, gradient boosting model was able to 
slightly improve prediction performance of linear models, though the 
total amount of SNPs that have genetic contribution to this phenotype 
is highly disputable and the effect of epistasis is smaller. It is worth 
mentioning that according to our simulation results, non-linear 
methods perform similarly to linear models when epistasis takes a 
simple form or has a small effect. Unfortunately, it is impossible to 
draw an unambiguous conclusion about the characteristics of 
epistasis in a real disease based only on statistical analysis and 
machine learning. Meanwhile, a major advantage of non-linear 

methods is that, unlike their linear alternatives, they do not require 
an accurate account of intricate genetic interactions for 
high performance.

Finally, it is worth noting that there is no single model that can 
effectively predict the risks of several diseases at the same time. 
Different diseases have different risk factors, including varying 
complexity of the epistatic contribution. Therefore, for each disease it 
is necessary to build the optimal model, which, most likely, will not 
suit another phenotype.
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