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Traditional immunotherapies mainly focus on αβ T cell-based strategies,

which depend on MHC-mediated antigen recognition. However, this approach

poses significant challenges in treating recurrent tumors, as immune escape

mechanisms are widespread. γδ T cells, with their ability for MHC-independent

antigen presentation, o�er a promising alternative that could potentially

overcome limitations observed in traditional immunotherapies. These cells play

a role in tumor immune surveillance through a unique mechanism of antigen

recognition and synergistic interactions with other immune e�ector cells. In this

review, wewill discuss the biological properties of the Vδ1 and Vδ2T subsets of γδ

T cells, their immunomodulatory role within the tumor microenvironment, and

the most recent clinical advances in γδ T cell-based related immunotherapies,

including cell engaging strategies and adoptive cell therapy.

KEYWORDS

gamma delta T cell, tumor microenvironment, immunotherapy, adoptive cell therapy,
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1 Introduction

T cells are pivotal in the realm of cancer immunotherapy research (1). They can

be classified into αβ T cells and γδ T cells, distinct by their T cell receptor structures.

γδ T cells possess a unique TCR composed of γ and δ chains (2), enabling γδ T cells

to recognize various antigens, performing multiple roles, including antitumor activities,

immune surveillance, and anti-infection capabilities (3–5). Additionally, activated γδ T

cells secrete different cytokines depending on the local microenvironment and interact

with other cells to participate in the host’s antitumor immune response (6, 7). While

γδ T cells show immense therapeutic promise, their biological functions and clinical

applications remain relatively understudied. Recent research has started to reveal the

various roles of γδ T cells in the tumor microenvironment (TME) and explore novel

approaches for their clinical application, including the expansion of γδ T cells and the

development of chimeric antigen receptor (CAR)-γδ T cells (8–10).

This review provides a comprehensive overview of the current understanding of the

mechanisms of γδ T cell recognition and their immunomodulatory role in TME. We will

also explore recent advances in γδ T cell-based immunotherapy and discuss the barriers

and future directions for γδ T cell research. The primary aim is to connect fundamental

research with clinical application to optimize the efficacy of γδ T cell therapy for cancer.
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2 Tumor recognition mechanisms of
γδ T cells

γδ T cells consist of three main functional subsets: Vδ1, Vδ2,

and Vδ3 (11, 12). In humans, Vδ2 T cells mainly express the Vδ2

chain and often pair with Vγ9 to form Vγ9Vδ2 T cells, primarily

found in peripheral blood (13, 14). Vγ9Vδ2 T cells have been

extensively studied due tomultiple tumor cell recognition receptors

and their ease of expansion in vitro (15–17). Vδ1 T cells are the

second most abundant type in the peripheral blood (18, 19).

These cells recognize MHC class irrelated polymorphic molecules

through natural killer group 2 member D (NKG2D) receptors (20).

Proteins encoded by MHC class I-chain related genes A and B

(MICA and MICB), along with UL16-binding proteins (ULBP)

(21), are expressed under conditions of cellular stress, damage, or

transformation and bind to NKG2D receptors, serving as “kill me”

signals to cytotoxic T cells (22, 23). Vδ3 T cells comprise a relatively

rare subpopulation in the peripheral blood, liver, and intestines

(24, 25). They multiply in reaction to cytomegalovirus infection

and are involved in developing dendritic cells (DCs) and B cells.

The diverse distribution of different γδ T cell types in various

tissues highlights their versatile function in immune responses.

More research has been conducted onVδ2 and Vδ1 T cells in cancer

immunotherapy, so this review specifically focuses on these subsets.

2.1 BTN3A1 and BTN2A1 mediate
recognition of phosphoantigens by γδ T
cells

The process by which γδ T cells identify tumor-associated

antigens (TAAs) primarily involves the TCR and NKR pathways

(6). Under conditions of cellular stress, Vγ9Vδ2 TCR recognizes

phosphoantigens (pAgs) to initiate immune responses (26). pAgs

products produced by the isoprene biosynthetic pathway. For

instance, a common pAg, isoprene pyrophosphate (IPP), is present

in all living organisms. Another potent activator, (E)-4-hydroxy-

3-methyl-but-2-enyl pyrophosphate (HMBPP), originating from

specific microbes and parasites (27, 28). HMBPP activates the

Vγ9Vδ2 T cell receptor much more effectively than IPP (29). The

level of pAgs in normal cells is extremely low. However, tumor

cell development can lead to the accumulation of endogenous

pAgs, making them rapidly identifiable and targetable by Vδ2 T

cells. Clinical studies have demonstrated that increasing the

IPP levels promotes the activity of farnesyl pyrophosphate

synthase in the isoprenoid pathway. Various strategies involve

the use of aminobisphosphonates, such as zoledronate (ZOL)

and pamidronate, or synthetic pAg analogs to directly activate

Vγ9Vδ2 T cells. Studies have shown that γδT cells exhibit moderate

cytotoxicity against tumor cells without pAg. However, when

HMBPP or ZOL is added, it induces TCR-dependent cytotoxicity

in γδ T cells (30).

Vδ2 T cells do not directly recognize pAgs but depend on

the combined action of butyrophilin subfamily 3 member A1

(BTN3A1) and BTN2A1 (31) (Figure 1). The pioneering study by

Harly and colleagues first identified a crucial role of BTN3A1 in

regulating pAgs responses in Vδ2 T cells (32). BTN3A1 (CD277)

and BTN2A1 are members of the butyrophilin family. They

are part of the immunoglobulin-like molecules with extracellular

segments containing IgV and IgC domains, and intracellular

segments consisting of B30.2/SPRY cytoplasmic domains (33). The

interaction mechanism among these molecules is still debated, but

the prevailing hypothesis supports an “inside-out signaling” model.

According to this hypothesis, after the increase of intracellular

IPP levels, BTN3A2 or BTN3A3 form heterodimers with a unique

surface topology different from the homodimers of BTN3A1. In

this process, these heterodimers allow structurally diverse pAg

molecules to bind to the intracellular B30.2 domain of BTN3A1,

forming amolecular glue complex interface (34). pAgs directly bind

to BTN2A1 through this interface. pAgs directly bind to BTN2A1

through this interface. By varying affinities, BTN2A1 articulates

onto the Vγ9 chain of the γδ TCR, forming a complex with distinct

BTN3A1-V and BTN2A1-V domain topologies (35), initiating

TCR-mediated γδ T cell activation (36). This mechanism operates

independently of αβ T cells, offering potential for therapeutic

development. However, further in-depth studies are required to

clarify whether the Vδ2 chain of the Vγ9Vδ2 TCR is involved in

recognizing the antigenic process. Recent studies have identified

AMPK regulating BTN2A1 and BTN3A interactions within Vδ2 T

cells, unveiling a stress-mediated regulatory mechanism that

enhances the cytotoxic capabilities of Vδ2 T cells (37). Overall,

the mechanism by which Vδ2 T cells recognize TAAs through

BTN3A1 and BTN2A1 provides new opportunities for antitumor

therapy. The Vg9Vd2 TCR can also recognize F1-ATPase (which

binds to apolipoprotein AI, referred to as Apo AI) (38). F1-ATPase

is ectopically expressed on the cell membrane of specific tumor

cells, for instance human leukemia (K562) cells and lymphoma

(Raji) cells. ZOL can bind to ApoA1 as a presenting molecule

after high-dose ZOL treatment, enhancing its stimulatory effect on

Vδ2 T cells (39). Furthermore, aberrantly expressed MutS homolog

two composed complex (MSH2) has also been discovered to

mediate γδT cells recognition, thereby triggering cytolysis of tumor

cells (40–42).

2.2 Role of NKG2D and its ligands in γδ T
cell activation

γδ T cells recognize TAAs not only through the γδ TCR but

also through various natural killer receptors (NKR) expression,

such as natural killer group 2 member D (NKG2D) and DNAX

accessory molecule-1 (DNAM1) (43). NKG2D in Vδ2 T cells binds

to MHC class I polypeptide-related sequence A/B (MICA/B) (44),

retinoic acid early inducible 1 (Rae-1) and UL16 binding proteins

(ULBP) found on tumor cells (45). Concurrently, DNAM1 interacts

with Nectin-5, Nectin-2, and the poliovirus receptor (PVR) on

the surface of tumor cells. Such interactions mediate the cytotoxic

response, targeting killing tumor cells via the perforin-granzyme

pathway (46, 47) (Figure 1).

NKG2D, an activating cell surface receptor, is primarily found

in cytotoxic immune cells, including NK cells, NKT cells, and

specific γδ T cell subsets (43). The ligand for this receptor is

absent in normal cells but is frequently present in malignant cells.

Upon encountering tumor cells, the Vδ2 T cell subset undergoes
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FIGURE 1

Major receptor-ligand recognition between Vδ2/Vδ1T cells and tumor cells. Recognition of phosphoantigens by the human Vγ9Vδ2 TCR mainly

depends on the synergistic action of BTN3A1/BTN2A1. Vδ2T cells also recognize a complex of F1-ATPase bound to ApoAI and MutS homolog 2

(MSH2). Nectin-2 from tumor cells can also activate Vδ2T cells by binding to DNAM-1. The Vδ1 TCR recognizes CD1d and its presented lipids, and its

expression of NKp30 and NKp44 receptors can bind to ligands B7-H6. In addition to this, NKG2D receptors expressed on Vδ2 and Vδ1T cells both

recognize MICA/B and ULBP molecular ligands.

rapid proliferation and upregulates NKG2D expression, bolstering

immune surveillance (48). Nadia et al. demonstrated that mice

deficient in NKG2D have a higher prevalence of highly malignant

prostate cancer and promote tumor progression (49). Moreover,

a rapid response of NKG2D to its ligand Rae-1 was observed in

mouse γδ T cells. Persistent overexpression of Rae-1 downregulates

NKG2D expression, thereby attenuating the antitumor functions

of T cells (50). Moreover, the DNAM-1 receptor is pivotal in

mediating γδ T cell targeting tumor cells. The antitumor response

of human γδ T cells strongly correlates with the presence of

DNAM-1 ligands on tumor cells (51, 52). The study found that

the inhibition of PVR and Nectin-2 led to a marked decrease in

the cytotoxic capabilities and cytokine secretion activities of γδ T

cells (47).

2.3 CD1d is the key driver of vδ1T cell
activation

In human Vδ1 T cells, CD1d has emerged as a critical

antigen-presenting molecule (53). CD1d, a glycolipid antigen-

presenting molecule, is expressed in various cancers, including

renal cell (54), medulloblastoma (55), glioma (56), multiple

myeloma (57), breast (58), and prostate (59). The Vδ1 TCR

can recognize CD1d and its lipid antigens (5), which may

facilitate tumor growth by prompting type 1 NKT cells to

release immunosuppressive cytokines, thereby aiding protumor

NKT cell subsets (60). Besides CD1d, Vδ1 T cells depend on the

expression of NKp30 and NKp44 receptors (61). Researchers have

shown that the targeted knockdown of the B7-H6 ligand, bound

to the NKp30 receptor, utilizing the CRISPR/Cas9 gene-editing

technology significantly diminishes the antitumor response of γδ

T cells in acute myeloid leukemia (AML) (62). In addition, it

is reported that NKp46 is expressed explicitly on intraepithelial

Vδ1 T cells in the intestine (63). Remarkably, the Vδ1 T cells

can also recognize MICA/B via NKG2D, and direct binding of

MICA/B to Vδ1 has been demonstrated (64). These findings

provide new insights into the role of Vδ1 T cells in tumor

immunity and offer potential new targets for cancer therapy

(Figure 1).

3 Immunomodulatory role of γδ T
cells in the TME

3.1 Cytokine-mediated modulation of γδ T
cell functions

γδ T cells induce apoptosis of tumor cells mainly through

the perforin-granzyme mechanism or the Fas/FasL and TRAIL

pathways (65, 66). They can also target tumor cells for killing

through antibody-dependent cell-mediated cytotoxicity in tumor

immunosurveillance (67, 68). γδ T cells stimulate immune

responses indirectly by secreting cytokines like interferon-γ

(IFN-γ), tumor necrosis factor-α (TNF-α), interleukin (IL)-2,

IL-10, IL-12, and IL-15, impacting both tumor cells and the

microenvironment (69, 70) (Figure 2).

γδ T cells serve as a primary and early source of pro-

inflammatory cytokines upon activation, both in vitro and in vivo

(71). Activated gd T cells secrete IFN-γ and TNF-α to inhibit

tumor cell growth. Upon activation, they secrete IFN-γ and TNF-

α, which inhibit tumor cell growth. IFN-γ release stimulates

cancer stem cells (CSCs) to upregulate MHC class I molecules and

intercellular cell adhesion molecule-1(ICAM-1), enhancing CD8+

T cell-mediated cytotoxicity against tumor cells (72, 73). In the

presence of pAgs, IL-15-cultured dendritic cells (DCs) significantly

boost the anti-tumor activity of γδ T cells through the secretion

of soluble IL-15. This secretion upregulates cytotoxic molecules

(CD16) and co-stimulatory molecules (CD80/86) on γδ T cells

(74). Adding IL-12 and vitamin C (VitC) to the culture medium

significantly enhances proliferation of γδ T cells and production

of IFN-γ (75–77). Under the influence of VitC, expanded γδ T

cells in vitro display heightened antitumor response in preclinical

humanized mouse models and tumor cell assays (78).

γδ T cells producing IL-17 and those producing IFN-γ in the

TME have opposing effects on patient prognosis (79). Elevated

levels of IL-17 are closely linked with tumor metastasis and poor
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FIGURE 2

The role of γδ T cell in tumor microenvironment. Activation of γδ T cells induces tumor cell apoptosis primarily through the perforin-granzyme

mechanism, Fas/FasL, and TRAIL pathways. Additionally, γδ T cells eliminate tumor cells by releasing cytokines such as IFN-γ and TNF-α, synergizing

with the activation of αβ T cells and NK cells and promoting the conversion of antibodies in B cells as well as the antigen-presenting role of DC cells.

In certain instances, γδ T cells di�erentiate into γδ T17 or γδ Treg cells, which secrete IL-17, IL-10, and TGF-β to facilitate the proliferation of tumor

cells, playing an immunosuppressive role. Tumor-derived exosomes (TDE), immunosuppressive receptors have also been shown to modulate γδ T

cell immunoregulation in TME.

outcomes (80). IL-10 and transforming growth factor-β (TGF-

β) within the TME facilitate the differentiation of γδ T cells

into different functional subsets, such as γδT17 cells and γδTregs

(81, 82). Numerous studies in mice have demonstrated that IL-

17 promotes cancer progression through various mechanisms,

including promoting angiogenesis, increasing endothelial cell

permeability, and upregulating adhesion molecules (83). Liu et al.

further reported that in multiple myeloma (MM), bone marrow

stromal cells (BMSC) produce CXCL10, recruiting peripheral

blood γδ T cells to the bone marrow microenvironment. Hypoxic

conditions within the TME promote IL-17 secretion by γδ T

cells via the SRC3/RORγt/IL-17 pathway. Interestingly, there are

conflicting findings regarding colorectal cancer (CRC) (84). Wu

et al. observed high levels of γδT17 cells in γδ T tumor-infiltrating

lymphocytes (TILs) in CRC (83). At the same time, Meraviglia

et al. found very low IL-17 secretion by γδ T cells in different CRC

patient cohorts (85). However, a recent study suggested that IL-

17 could be linked to antitumor activity. In a KIT-driven mouse

model of gastrointestinal stromal tumor (GIST), γδ T cells were

activated and highly expressed programmed cell death protein-1

(PD-1) and secreted IL-17. It was observed that γδT17 cells could

be further activated to release IL-17 with tyrosine kinase inhibitors

(86). The improved antitumor efficacy indicated that IL-17 might

contribute to antitumor effects. Within the TME, γδTregs may

suppress γδ T cell proliferation and cytotoxicity by producing

immunosuppressive molecules such as IL-10, IL-8, and adenosine

(ADO) (87, 88). γδTreg cells exhibit high surface expression of

CD39 and CD73 (89, 90), suppressing other effector cells in an

ADO-dependent manner. This suppression involves upregulating

programmed cell death ligand-1 (PD-L1) and activating the STAT3

signaling pathway in DCs, leading to DCs senescence to promote

tumor growth (91).

3.2 Innate immunity and antigen
presentation of γδ T cells

γδ T cells, recognized for their MHC-independent activity,

exhibit innate immune functions and antigen-presenting

capabilities, similar to NK cells, DCs, macrophages, and B

cells (92, 93). Upon activation, γδ T cells secrete pro-inflammatory

cytokines and chemokines, creating an inflammatory environment

that promotes the presentation of MHC class I- and II-restricted

peptides on tumor cells (94). This enhances the expression

of co-stimulatory molecules, such as CD80/86, and robustly

stimulates CD4+/CD8+ αβ T cell activation and proliferation

(95). Additionally, activated γδ T cells indirectly promote αβ T
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cell proliferation by co-stimulating NK cells via the ICOS/ICOS-L

and CD137/CD137L pathways, thereby increasing IFN-γ and

TNF-α production (96). Notably, following IL-21 and HMBPP

stimulation, γδ T cells induce B cell homing, migration, and

aggregation in lymph nodes, facilitating antibody production and

class switching (97–99). Mature DCs synergize with ATP, IPP,

and BTN3A1 to activate γδ T cells by secreting cytokines like

IL-12, IL-18, IFN-γ, and TNF-α (100, 101). In turn, γδ T cells

promote DC maturation by secreting IFN-γ and TNF-α, thereby

enhancing the activation of both αβ and γδ T cells and amplifying

antitumor responses (102). However, COX-2-expressing MSCs

and Prostaglandin E2 (PGE2) from tumor cells can inhibit γδ T

cell cytotoxicity (81). Furthermore, galectin-9 on γδ T cells and

tumor cells drives the polarization of M2-like tumor-associated

macrophages, which secrete immunosuppressive molecules that

impede the antitumor activity of γδ T cells (103). In conclusion,

understanding the intricate relationship between immunity

effector cells and γδ T cells within the TME is crucial for harnessing

the therapeutic γδ T cells in cancer treatment.

3.3 Exosome-mediated modulation of γδ T
cells

The interaction between tumor-derived exosomes (TDEs)

and γδ T cell responses within the TME plays a dual role

in promoting and inhibiting tumor immunity (104). In vitro,

stimulation of γδ T cells with TDEs significantly upregulated PD-

1 expression, unaffected by miR-21 overexpression or anti-PD-L1

agents, to induce tumor immune escape. Hypoxic TDEs further

enhanced the immunosuppressive functions of myeloid-derived

suppressor cells (MDSCs) and inhibited γδ T cell proliferation

(105). In contrast, gastric cancer cell-derived exosomes enriched

with THBS1 enhanced Vγ9Vδ2 T cell cytotoxicity against gastric

cancer, increasing the production of IFN-γ, TNF-α, perforin,

and granzyme B both in vivo and in vitro (106). Additionally,

exosomes from Vδ2 T cells (Vδ2-T-Exos) activate FasL and TRAIL

pathways, effectively killing EBV-associated tumor cells while

expanding EBV-specific CD4+ and CD8+ T cells. In a mouse

model, administration of Vd2-T-Exos effectively controlled EBV-

associated tumors (107). Despite these promising findings, further

research is necessary to fully utilize exosomes for enhancing the

clinical effectiveness of γδ T cells. A thorough understanding of the

exact interactions and optimal utilization of TDEsmay lead tomore

efficacious γδ T cell-based immunotherapies.

3.4 PD-1/PD-L1-mediated γδ T cell
regulation

While activated γδ T cells can enhance αβ T cell responses,

they may also negatively regulate them by upregulating PD-

1/PD-L1 (61). Meanwhile, γδT17 cells secrete cytokines like IL-17

and TNF-α, promoting IL-6 secretion and activating the STAT3

pathway, which induces PD-L1 expression and contributes to

immunosuppression (108–110). Upon stimulation by ZOL and IL-

2, the PD-1 expression of Vδ2 T cells returns to baseline levels after

the temporary increase (111). Research shows that PD-1-expressing

γδ T cells produce less IFN-γ post-stimulation, reducing their

antitumor efficacy (112). In contrast, pembrolizumab treatment

rapidly expands γδ T cells, enhancing their recruitment to tumors

and IFN-γ and TNF-α secretion (113). Rancan et al. showed

that non-Vδ2 T cells are the primary population expressing PD-

1, TIGIT, and TIM3 within tumor tissues. Higher transcriptional

scores in these cells correlate with improved 5-year survival

rates in patients. Additionally, Vδ2– T cells can express 4-1BB,

CD39, and CTLA-4, promoting the secretion of IFN-γ, perforin,

and granzymes A/K (17). Overall, γδ T cells exert antitumor

effects through multiple direct and indirect mechanisms, and their

demonstrated function in the tumor microenvironment makes

them essential players in cancer therapy.

4 Cancer immunotherapy with γδ T
cells

γδ T cells are uniquely positioned to recognize and target

killing tumor cells, enriched within tumor tissues are correlated

with improved clinical outcomes, under-scoring their potential as

a promising target for immunotherapeutic strategies. Currently,

immunotherapy for γδ T cell tumors primarily involves killing

tumor cells by activated γδ T cells using cell engagers. Another

approach is adoptive cellular therapies (ACTs), which involves

selectively expanding γδ T cells in patients using small molecule

pAgs or reintroducing in vitro-expanded allogeneic γδ T cells into

the human body.Moreover, tumor-targeted activation of CAR-γδ T

cells have demonstrated potential in addressing both hematological

malignancies and solid tumors (114, 115).

4.1 γδ T cell engagers target and kill tumor
cells directly

Cell engagers involve using monospecific or bispecific

antibodies to connect γδ T cells with tumor targets, resulting in

highly targeted tumor destruction. Vγ9Vδ2 T cells can interact

with dystrophin via TCR-mediated interactions, and the BTN3A1

antibody induces mimicry of pAg-induced conformational changes

to activate the targeting and killing of tumor cells by γδ T cells (116)

(Figure 3). Payne et al. demonstrated that anti-BTN3A antibodies

induced activation of Vγ9Vδ2 T cells and eliminated inhibition of

αβ T cells by BTN3A1 (117). BTN3A1 binds to N-mannosylated

residues in CD45 residues on the surface of αβ T cells, hindering

their antigen-specific activation. The research on a humanized

monoclonal antibody ICT01 targeting BTN3A indicates its ability

to rapidly activate non-pAg-dependent Vγ9Vδ2 T cells migrating

to tumor tissue. Initial findings from the Phase I/IIa EVICTION

trial (NCT04243499; Table 1) of ICT01 in 26 patients with advanced

recurrent or refractory cancers revealed a promising safety profile,

with no occurrence of serious adverse events. Furthermore, BTN3

antibodies selectively enhance the antitumor function of Vγ9Vδ2 T

cells and NK cells without inducing exhaustion of Vγ9Vδ2 T

cells caused by ICT01 in vitro studies. These findings suggest that

treatment with ICT01 can enhance the recruitment and retention
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FIGURE 3

Cancer immunotherapy with γδ T cells. (A) Agonist antibodies targeting BTN3A1. (B) Bispecific T cell engagers. (C) CAR-γδ T cells.

TABLE 1 Current clinical trials of cell engagers.

Type of therapy Phase Malignancy Status Start Study identifier

PSMA-V2TCR bispecific antibody 1/2a R/R mCRPC Recruting 20220627 NCT05369000/LAVA-1207

CD1d-V2TCR bispecific antibody 1/2a R/R CLL MM AML Advanced 20210712 NCT04887259/LAVA-051

BTN3A agonist antibody+VEN/AZA 1/2a Newly diagnosed AML Recruting 20200210 NCT04243499

BTN3A agonist antibody+IL-2 1/2a Solid Tumors Recruting 20220419 NCT05307874/ICT01-102

of Vδ2 T cells in the TME. Compared to bisphosphonates, ICT01

has a longer plasma half-life, potentially offering greater tumor

penetration (118). The EVICTION trial also explores the use of

ICT01 in combination with pembrolizumab. Concurrently, an

additional clinical trial EVICTION-2 (NCT05307874; Table 1)

aims to assess the synergistic effects of ICT01 combined with

subcutaneous IL-2 in augmenting T cell responses.

Recent work by Mamedov et al. provided further insight into

how AMPK regulates the expression of BTN2A1 and BTN3A,

thereby influencing the cytotoxicity of γδ and αβ T cells (37).

In cellular models and patient tumor tissues, small molecule

activation of AMPK increased the expression of BTN2A1-BTN3A

complexes and enhanced Vγ9Vδ2 TCR-mediated cytotoxicity.

Ongoing clinical trials focused on TEG001 (a hyperactive

Vγ9Vδ2 TCR variant, NTR6541) indicate that AMPK agonist

treatment heightened the sensitivity of breast cancer organoids

and Duodi cells (a typical B lymphoblast) to Vγ9Vδ2 T cell-

mediated antitumor response (37). These results emphasize the

profound impact of AMPK-dependent metabolic stress-induced

upregulation of ligand expression on the interaction of cancer cells

with the Vγ9Vδ2 TCR.

Another type γδ T cell engagers consist of two single-chain

variable fragments (scFvs) that combine Vδ2 TCR specificity with

tumor-targeting VHH antibodies (Figure 3). These engagers target

specific molecules such as CD40, CD1d (119), EGFR, and HER2.

CD40 is overexpressed on malignant B cells. Researchers have

created bispecific T-cell engagers (BiTEs) targeting CD40, such

as the CD40-specific Vγ9Vδ2 T cell engager (LAVA-1278). Study

have demonstrated its effectiveness in activating and inducing

cytotoxicity against malignant B lymphocytes in vitro and in vivo

trials. The fraction targeting the CD40 receptor was observed

to inhibit the CD40L-induced pro-survival signaling pathways,

subsequently diminishing the resistance of Chronic Lymphocytic

Leukemia (CLL) cells toward Bcl-2 inhibitors. A noticeable increase

in survival rates was observed in mouse models treated with

a combination therapy of both CD40 and Vγ9Vδ2 T-cell dual-

specific antibodies, compared to those treated with Vγ9Vδ2 T cells

alone (120). CD1d is also expressed upregulated on hematological

malignant cells. A BiTE targeting CD1d and Vd2 activates

Vg9Vd2T cells and type 1 NK T cells, leading to the targeting

and eliminating malignant and immunosuppressive cells through

the perforin/granzyme pathway. In contrast, cytotoxicity against B

cells and monocytes is relatively controllable, implying a low risk of

on-target-tumor toxicity (60).

Furthermore, the EGFR-Vγ9Vδ2 TCR bispecific engager has

successfully activated Vγ9Vδ2 T cells and killed tumor cells in

vitro and a mouse model, extending the survival of the mice

(121). Presently, LAVA-1207, a BiTE that binds with PSMA,

activates Vγ9Vδ2 T cells to eliminate PSMA-expressing tumor cells

effectively. This agent is currently being evaluated in a Phase

I/IIa clinical trial for treating patients with metastatic castration-

resistant prostate cancer (NCT05369000; Table 1).

Novel γδ TCR anti-CD3 bispecific molecules (GABs) present

an innovative approach to T cell engagers (Figure 3). They link

the extracellular domain of the Vγ9Vδ2 TCR, with the CD3

binding domain to form a Vγ9Vδ2 TCR-CD3 complex (122).

Traditional BiTEs face challenges in efficacy against solid tumors

and often induce relatively high cytokine release syndrome (CRS)

toxicity. GABs can potentially reduce toxicity while achieving better

efficacy and safety profiles (123). In mouse xenograft models,

the Vγ9Vδ2 TCR of GABs redirects αβ T cells to tumor tissues

through pAg recognition, significantly inhibiting tumor growth.
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Cibisatamab (RO6958688) is a GAB that binds carcinoembryonic

antigen (CEA) and CD3, promoting T cell infiltration and cytokine

release within tumor tissues (124). Notably, cibisatamab can

also convert PD-L1-negative tumor cells to PD-L1-positive (125).

Moreover, combining cibisatamab with anti-PD-L1 antibodies has

demonstrated better control of tumor progression in various tumor

types and mouse models (126). Current clinical trials in cell

engagers are summarized in Table 1.

4.2 Adoptive cellular therapies

4.2.1 Expanding Vγ9Vδ2T cells for enhanced
tumor immunotherapy

Compared to αβ T cells, γδ T cells offer unique advantages

in ACT due to their distribution across various tissues, rapid

target response, and swift effector function production (127).

Vδ2 T cells were the initial subset of γδ T cells tested in ACT

studies. ZOL and IL-2 are the most commonly utilized stimulants.

ZOL affects the isoprene biosynthesis pathway by explicitly

targeting farnesyl pyrophosphate synthase (FPPS), leading to

the accumulation of intracellular pAgs (128). This approach

effectively expands and activates Vγ9Vδ2 T cells in vitro. Another

pAg, 2-methyl-3-butenyl-1-pyrophosphate (2M3B1PP), efficiently

stimulates and expands Vγ9Vδ2 T cells (129). Several clinical

studies have investigated the co-administration of bisphosphonates

or synthetic antibodies alongside IL-2, yet the results regarding

their effectiveness in vivo have generally failed tomeet expectations.

Yan Xu et al. combined IL-15 and vitC with ZOL and

IL-2, significantly expanding Vγ9Vδ2 T cells in vitro and

improving antigen presentation to effector T cells, thus correlating

with intense immune response. In addition, experiments in

a mouse transplantation tumor model demonstrated that this

regimen effectively suppressed tumor growth in vivo and notably

extended the survival time of tumor-bearing mice (76). Using

bisphosphonate prodrugs and nanotechnology-based Nitrogen-

containing bisphosphonate (N-BP) delivery vectors shows great

promise in enhancing Vγ9Vδ2 T cell-based immunotherapy.

Bisphosphonate prodrugs utilize phosphate groups with chemical

masks, facilitating the cellular entry of these compounds (130).

On the other hand, nanotechnology-based drugs can enhance the

efficacy of killing malignant cells by increasing NKG2D expression

in Vγ9Vδ2 T cells and triggering the release of cytokines (131).

4.2.2 Allogeneic Vγ9Vδ2 and vδ1T cells represent
a dual approach to cancer therapy

Allogeneic treatment involves the transfer of allogeneic γδ T

cells, which have been grown and activated outside the body, from a

healthy donor to a patient with neoplastic conditions. The first team

to conduct allogeneic treatment performed a clinical study on 132

patients with advanced liver and lung cancer, utilizing Vγ9Vδ2 T

cells from healthy donors. The results demonstrated that after

414 cell infusions, no patients experienced severe adverse effects,

with only transient and mild clinical reactions observed in some

cases. Furthermore, 18 patients with liver and lung cancer who

receivedmultiple cell infusions experienced significantly prolonged

survival (76). Vδ1 T cells are also emerging as potential candidates

for cancer therapy. However, the lack of reliable methods for their

expansion and differentiation has posed a challenge. Sebestyen’s

team has developed a rapid clinical translation method to produce

antitumor effector Vd1T cells, called Delta One T (DOT) cells.

These cells were expanded and differentiated to increase the

expression of multiple NKRs, including NKp30, NKG2D, and

DNAM-1, and to maintain the expression of immunosuppressive

molecules, such as PD-1 and CTLA-4, at low levels or not at

all. In vitro and xenograft models have demonstrated that DOT

cells exhibit significant anti-AML activity (132). The research

team has initiated a clinical trial for relapsed/refractory AML

(NCT05886491) and is exploring their potential applications in

solid tumors. Additionally, a study has suggested that Vδ1 T

cells may possess superior tumor cytotoxicity compared to Vδ2 T

cells in mouse xenograft tumor models (133). Hence, a deeper

understanding of the functional disparities between these two

isoforms could aid in fully exploiting their respective clinical

benefits. Current clinical trials in ACT using γδ T cells are

summarized in Table 2.

4.2.3 CAR-modified Vδ2 and Vδ1T cells
Genetically modified γδ T-cells (CAR) are at the forefront

of cancer immunotherapy. Initially, CAR-γδ T cell therapies

primarily targeted the Vδ2 subset (Figure 3). Around 20 years

ago, Rischer and colleagues were the first to describe CAR-γδ

T cells. They used recombinant retroviruses to introduce G(D2)

or CD19-CARs γδ T cells. These cells were then expanded in a

laboratory setting under ZOL activation, resulting in an enriched

Vγ9Vδ2 T cell population. Upon encountering antigen-expressing

tumor target cells, these cells upregulated CD69 and secreted large

amounts of IFN-γ, eliminating Burkitt lymphoma cells in vitro.

In subsequent studies, Deniger et al. utilized the Sleeping Beauty

transposon system for gene transfer to indicate that CD19-CAR-

γδ T cells could form a highly polyclonal population with dual

specificity. These cells exhibited continuous proliferation, secretion

of proinflammatory cytokines, improved lysis of CD19 tumor

targets, and demonstrated anti-leukemic activity in xenograft

mouse models. Another approach uses mRNA electroporation to

modify γδ T cells, which show potent anticancer activity against

CD19-positive cancer cell lines in vitro and in vivo (134).

Compared to Vδ2 T cells, Vδ1 T cells have a reduced sensitivity

to their activation-induced cell death (AICD), implying a longer

survival time in vivo (135). Hence, allogeneic CAR-Vδ1 T cells

have recently been developed. DOT cells transduced with CD123-

directed CAR showed high efficiency in inhibiting AML growth

in vitro and in vivo (136). A single dose of CAR-DOT cells

in combination with IL-15, achieved robust tumor control even

after rechallenge. Makkouk et al. has developed CAR-Vδ1 T cells

in preclinical studies that were genetically modified to target

phosphatidylinositol proteoglycan 3 (glypican-3, GPC-3) and

release IL-15 in laboratory conditions. This development aims to

treat hepatocellular carcinoma and other solid tumors that may

exhibit overexpression of GPC-3. Further research has shown

that GPC-3 CAR/sIL-15 Vδ-1 T cells exhibited significant anti-

tumor effects in live mouse models without inducing GvHD
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TABLE 2 Current clinical trials of expanded γδ T cell subsets.

Type of therapy Phase Malignancy Status Start Study identifier

Allogeneic Vγ9Vδ2 T cells 1 R/R AML Recruting 20200131 NCT03533816

Allogeneic Vδ1 T cells 1/2a R/R AML Recruting 20230711 NCT05886491/TAK-012-1501

Allogeneic γδ T cells 1/2 Solid Tumors Recruting 20210301 NCT04765462

γδ T cell Infusion 1 AML Recruting 20220321 NCT05015426

Allogeneic expanded γδ T cells with chemotherapy 1 Glioblastoma Advanced 20200211 NCT04165941

Allogeneic γδ T-lymphocytes 2 R/R AMLMDS Recruting 20220815 NCT05358808/TCB008-001

Expanded γδ T cell infusion 1/2 AML ALL MDS Recruting 20210912 NCT04764513

Allogeneic γδ T cells combined with targeted therapy and

immunotherapy

1 Hepatocellular Carcinoma No yet 20240426 NCT06364787/NCT06364800

Allogeneic γδ T cells with GD2 chemoimmunotherapy 1 Osteosarcoma Neuroblastoma Recruting 20231106 NCT05400603

Allogeneic or autologous γδ T cells (DeltEx) combinated

with chemotherapy

1b/2 Glioblastoma Recruting 20230908 NCT05664243

Allogeneic γδ T clls 1 R/R MDS AML No yet 202501 NCT06463327

ZOL, IL-2 and dinutuximab beta 2 Leiomyosarcoma Recruting 20211115 NCT05080790

TABLE 3 Current clinical trials of CAR-γδ T cells.

Type of therapy Phase Malignancy Status Start Study identifier

Allogenic CD19-targeting CAR-γδ T cell 1/2a R/R NHL Recruting 20221211 NCT05554939

Allogenic B7H3-targeting CAR-γδ T cell 1/2 R/R B7H3 Positive malignant brain

glioma

Recruting 20230601 NCT06018363

Allogeneic CD20-specific CAR-Vδ1T cells 1 R/R B-cell NHL DLBCL Recruting 20210304 NCT04735471/NCT04911478

CAR-γδ T Cells 1/2 R/R Solid Tumors No yet 20240430 NCT06150885

Allogeneic CD70-specific CAR-Vδ1T cells 1/2 R/R ccRCC No yet 202309 NCT06480565

when used as a standalone treatment (137). Another ADI-001

targeting malignant B cells via the CD20 antigen showed an overall

remission rate (ORR) of 75% in eight patients who had received

multiple treatments in a Phase I study (NCT04735471; Table 1),

with instances of complete remission (CR). ADI-001 exhibited

considerable tolerance among subjects without reports of severe

adverse reactions, demonstrating a favorable safety profile and

substantial preliminary efficacy (138).

While traditional CAR-γδ T cell therapy has shown significant

progress in treating certain leukemia and lymphoma patients,

its effectiveness in treating solid tumors remains limited (9).

Consequently, there remains a persisting necessity to enhance both

the structural design and the functional efficacy of CAR-γδ T cells.

Recent studies have indicated that second-generation CAR-γδ T

cells expressing the CD28 co-stimulatory domain enhance IFN-γ

secretion and cytotoxicity against prostate cancer cells. In mouse

models, CAR-γδ T cell immunotherapy has been demonstrated to

slow tumor growth, and when combined with ZOL, it enhances

cytotoxicity and cytokine secretion (139).

Apart from the strategies mentioned above, new therapies

based on γδ T cells are continually emerging. Murai et al. have

successfully generated nearly unlimited regenerative γδT cells from

γδ T-induced pluripotent stem cells (iPSCs) (140). iPSC-derived γδ

T cells (iγδ-T) demonstrate MHC-unrestricted cytotoxicity against

cancer cells. However, challenges persist in clinical applications

due to using heterologous serum and feeder cells in the iγδ-

T induction regimen (141). Lastly, to provide a comprehensive

overview of current advances in CAR-γδ T cell immunotherapy,

we have compiled ongoing clinical trials as shown in Table 3. These

trials cover a wide range of cancer types, further demonstrating the

road promise of CAR-γδ T cells immunotherapy.

5 Conclusion

The distinctive antigen recognition mechanism and

immunoregulatory function of γδ T cells render them highly

advantageous in tumor immunotherapy. Nevertheless, the

limited foundational research on γδ T cells restricts their

therapeutic efficacy and broader clinical application. Future

research should investigate the mechanisms underlying γδ T

cell maturation, activation, and proliferation. It is crucial to

comprehend the antigen recognition mechanisms of γδ TCRs

and to identify TAAs targeted by γδ T cells. Understanding

the dynamic functions of different γδ T cell subsets within

the complex TME will be pivotal in optimizing their clinical

use. Addressing the significant challenges in clinical trials,

including the limited expansion of γδ T cells and their
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exhaustion post-activation, is also essential. Comprehensive

development and optimization of γδ T cells from various

perspectives are imperative to maximize the therapeutic

potential of γδ T cell-based immunotherapy. By overcoming

these challenges and leveraging the unique properties of γδ T

cells, we can progress toward more effective and personalized

cancer immunotherapies.
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