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Different subpopulations of 
macrophages, neutrophils, mast 
cells, and fibroblasts are involved 
in the control of tumor 
angiogenesis
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The tumor microenvironment comprises diverse cell types, including T and B 
lymphocytes, macrophages, dendritic cells, natural killer cells, myeloid-derived 
suppressor cells, neutrophils, eosinophils, mast cells, and fibroblasts. Cells in the tumor 
microenvironment can be either tumor-suppressive or tumor-supporting cells. In 
this review article, we analyze the double role played by tumor macrophages, tumor 
neutrophils, tumor mast cells, and tumor fibroblasts, in promoting angiogenesis 
during tumor progression. Different strategies to target the tumor microenvironment 
have been developed in this context, including the depletion of tumor-supporting 
cells, or their “re-education” as tumor-suppressor cells.
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Introduction

Tumor cells undergo a Darwinian selection and can survive and enter an equilibrium state 
where the innate and adaptive immune system controls the tumor (1, 2). Some tumor cells 
acquire mutations, chromosome amplifications and deletions, and epigenetic modifications, 
resulting in gene silencing or synthesis of abnormal proteins. Overall, these events allow tumor 
cells to escape the control of the immune system, increase, and give rise to a clinically 
detectable tumor.

The link between chronic inflammation and tumorigenesis was first proposed by Rudolf 
Virchow in 1863 after the observation that infiltrating leukocytes are a hallmark of tumors and 
first established a causative connection between the lymphoreticular infiltrate at sites of 
chronic inflammation and the development of cancer (3). Dvorak described tumors as wounds 
that never heal (4). Under a variety of inflammatory conditions, both innate and adaptive 
immune cells are capable of polarization into their “tumoricidal” (growth arresting) or 
“tumorigenic” (growth promoting) forms. The tumor microenvironment comprises diverse 
cell types, including T and B lymphocytes, macrophages, dendritic cells, natural killer cells, 
myeloid-derived suppressor cells, neutrophils, eosinophils, mast cells, and fibroblasts. Cells in 
the tumor microenvironment can be either tumor-suppressive or tumor-supporting cells. 
Different strategies to target the tumor microenvironment have been developed in this context, 
including the depletion of tumor-supporting cells, or their “re-education” as tumor-suppressor 
cells. In this review article, we analyze the double role played by tumor macrophages, 
neutrophils, mast cells, and fibroblasts, in promoting angiogenesis during tumor progression.
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Macrophages

Two different macrophage subpopulations have been described: 
classically activated or inflammatory macrophages (M1) and 
alternatively activated or anti-inflammatory macrophages (M2) 
(Table 1). M2 macrophages can be divided into four subsets consisting 
of M2a, M2b, M2c, and M2d, based on the stimuli used to derive them 
in tissue culture experiments (5). M1 macrophages are induced by 
interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα), or 
lipopolysaccharide (LPS), and secrete different pro-inflammatory 
cytokines, including TNFα, interleukin 1 alpha, beta, 6, 12, 23 (IL-1α, 
IL-1β, IL-6, IL-12, IL-23), cyclooxygenase 2 (COX-2), whereas M2 
macrophages are induced by IL-4, IL-10, IL-13, IL-21, IL-33, activin 
A, corticosteroids, prostaglandins (PGs), and vitamin D3 (6).

Macrophages are the most represented immune cells in the tumor 
microenvironment. Tumor-associated macrophages (TAMs) include 
tissue-resident macrophages (TRMs) and a large proportion of bone 
marrow-derived macrophages (BMDMs). TRMs derive from 
CX3CR1+ Kit+ erythromyeloid progenitors, while BMDMs originate 
from peripheral blood mononuclear cells. TRMs, including alveolar 
macrophages in the lung, brain microglia, and Kupffer cells in the 
liver, develop in the embryonic yolk sac and fetal liver, self-maintain 
throughout adulthood, and are involved in tissue homeostasis and 
integrity (7). BMDMs derive from circulating monocytes that exit the 
bloodstream and undergo differentiation into macrophages within 
different tissues. Monocyte chemoattractant protein-1 (MCP-1) 
secreted by activated fibroblasts, endothelial cells, vascular smooth 
muscle cells, monocytes, and T cells, triggers chemotaxis and 
migration of monocytes by interacting with the CC chemokine 
receptor 2 (CCR-2) on monocytes (8). TRMs and BMDMs are 
involved in forming a pre-metastatic niche, facilitating cancer 
engraftment at the metastatic sites (9).

TAM infiltration correlates with angiogenesis, poor prognosis, 
tumor progression, and metastasis in different tumors, including 
ovarian and breast cancer, follicular B lymphoma, soft tissue sarcoma, 
classic Hodgkin lymphoma, melanoma, glioma, squamous cell 
carcinoma of the esophagus, and bladder and prostate carcinoma. 
Increased TAMs are associated with poor prognosis and therapeutic 
resistance (9, 10). Single-cell RNA sequencing (scRNA-seq) analysis 

has demonstrated the co-existence of multiple subsets of TAMs in 
individual tumors, showing that TAMs simultaneously co-express M1 
and M2 marker genes (11). TAMs with M1 phenotype suppress tumor 
formation through direct phagocytosis of tumor cells, the induction 
of T cell-mediated cell cytotoxicity, and the stimulation of antibody-
mediated immune response.

TAMs generally display an M2-like phenotype (12). In the initial 
stage of cancer, TAMs exert an immunostimulant function. In 
contrast, at later stages, they acquire an M2 phenotype, exerting a 
tumor-promoting function, promoting angiogenesis, repairing and 
remodeling wounded or damaged tissues, and suppressing adaptive 
immunity (12, 13). M2 TAMs produce immune-suppressive cytokines, 
including PGE2, IL-10, and transforming growth factor beta (TGFβ) 
(14). They can also suppress dendritic cell differentiation and inhibit 
their functions through IL-10 production. The accumulation of M2 
TAMs is linked to a poor prognosis in human cancers. The phenotype 
of polarized M1-M2 TAMs may be reversed (15), and a continuum 
exists between the two phenotypes (16). Negative regulation of CD47 
and its ligand signal regulatory protein alpha (SIRPα) can restore 
TAM phagocytic capacity (17).

TAMs are generally localized in the hypoxic areas of tumors, 
where they express hypoxia-inducible factor 1 alpha (HIF1α) that, in 
turn, induces the transcription of the angiogenic factors vascular 
endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF-2), 
and platelet derived growth factor (PDGF) (18). TAMs regulate the 
angiogenic switch in a mouse model of breast cancer (19). VEGF 
restores delayed tumor progression in tumors depleted of macrophages 
(20). Pharmacological depletion of TAMs results in an inhibition of 
angiogenesis in tumors (12). TAMS express a broad array of 
angiogenesis-modulating enzymes, including matrix 
metalloproteinase (MMP)-2, −7, −9, −12, and cyclooxygenase-2 
(COX-2) (21–23).

Radiotherapy or chemotherapy increases the number of M2 
TAMs favoring tumor recurrence (24, 25). Therapeutic strategies to 
reduce TAMs pro-tumoral activities include reduced monocyte 
recruitment, promotion of macrophage phagocytosis, and induction 
of M2 macrophage reprogramming, which may be  obtained with 
different strategies including receptor tyrosine kinase RON inhibitors, 
angiopoietin-2 (Ang-2) receptor inhibitors, histone acetyl deacetylase 
(HDAC) inhibitors, PI3kδ inhibitors, miRNA inhibitors, CD40 
agonists, Toll-like receptor (TLR) agonists, and macrophage receptors 
with collagenous structure (MARCO) neutralization antibodies.

The primary population of pro-angiogenic TAMs corresponds to 
TIE-2 expressing monocytes (TEMs), which secrete VEGF and 
MMP-9 (26). Most of the circulating TEMs do not express endothelial 
cell/endothelial precursor cells markers, such as VEGFR-2, AC133, 
CD146, and CD34, whereas they express hematopoietic markers, such 
as CD45. Moreover, circulating human TEMs do not express CCR-2, 
the receptor for MCP-1, a chemokine that regulates the recruitment 
of monocytes to inflamed tissues and tumors. TEMs might be attracted 
to tumors in a CCR-2-independent manner, by signals produced by 
tumor cells, stromal cells, or endothelial cells. TEM knockout prevents 
human glioma neovascularization in a mouse model and induces 
tumor regression (26). Ang-2 (a TIE-2 ligand) blockade abrogates 
TIE-2 expression and inhibits tumor growth and metastasis by 
impairing angiogenesis (27). TEMs do not differentiate into 
endothelial cells, suggesting that their pro-angiogenic activity could 
consist of a paracrine stimulation of angiogenesis. TEMs are localized 

TABLE 1 Comparative differences between M1 and M2 macrophages.

Pro-inflammatory macrophage (M1)

  Classically activated

  Polarized by lipopolysaccharide (LPS) and interferon-gamma (IFNγ)

  Releases immunostimulatory cytokines

  Tumor suppressing phenotype

  Releases anti-angiogenic factors

  Phagocytes tumor cells

  Stimulates T helper cells

Anti-inflammatory macrophages (M2)

  Alternatively activated

  Polarized by interleukin-4 and − 13 (IL-4 and IL-13)

  Release anti-inflammatory cytokines

  Release pro-angiogenic factors

  Promote metastasis

  Impede anti-tumor response from T cells
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both in perivascular and avascular viable (hypoxic) areas of tumors 
and are absent in non-neoplastic tissues adjacent to tumors (28). 
Exposure to both hypoxia and Ang-2 markedly suppressed the release 
of an anti-angiogenic IL-12 (29).

The selective elimination of TEMs using a suicide gene impaired 
angiogenesis in mouse tumors and induced substantial tumor 
regression and TEM elimination does not affect the overall number of 
TAMs and granulocytes, indicating that TEMs represent a distinct 
monocyte subset with specific pro-angiogenic activity (26, 29).

Neutrophils

Neutrophils are the most abundant circulating leukocytes, 
constituting a significant component of infiltrated immune and 
inflammatory cells in the tumor microenvironment. Besides their 
recruitment to primary tumors, neutrophils accumulate in the 
blood and distant organs of tumor-bearing hosts. Tumor-associated 
neutrophils (TANs) are polarized in anti-tumor (N1) or pro-tumor 
(N2) phenotypes. N1 TANs are short-living, highly cytotoxic, and 
highly immune-stimulating. They recruit and activate immune cells 
by producing cytokines, chemokines, and proteases able to 
stimulate T cell proliferation, NK, and dendritic cell maturation (30, 
31). N2 TANs are long-living, low-cytotoxic, with high 
pro-angiogenic, pro-metastatic, and immunosuppressive activities 
(32, 33). In mouse tumor models, TANs assume N1 or N2 
phenotype and function, according to different tumor progression 
times. TGFβ stimulates N2 and inhibits N1 polarization, whereas 
inhibition of TGFβ results in a shift to the N1 phenotype (32). N2 
TANs release different angiogenic factors, such as VEGF, IL-8, 
TNF-α, hepatocyte growth factor (HGF) and MMPs (34–36). 
Microarray analysis has demonstrated about thirty angiogenesis-
relevant genes in human neutrophils (37). Neutrophil contribution 
to pathological angiogenesis may be  sustained by an autocrine 
amplification mechanism.

VEGF release occurs at sites of neutrophil accumulation. 
Production and release of VEGF from neutrophils depend on 
granulocyte-colony stimulating factor (G-CSF) (38). Moreover, 
neutrophil-derived VEGF can stimulate neutrophil migration (39).

Mast cells

Mast cells are well known for their role in allergies and 
autoimmunity, but they can also infiltrate tumors, where exert both pro- 
and anti-tumorigenic activities depending on their microenvironmental 
stimuli. Mast cells attracted in the tumor microenvironment by stem 
cell factor (SCF) secreted by tumor cells produce several angiogenic 
factors as well as MMPs, which promote tumor vascularization and 
invasiveness, respectively (40). H1 receptor antagonists significantly 
improved overall survival rates and suppressed tumor growth as well as 
the infiltration of mast cells and VEGF levels through the inhibition of 
HIF-1α expression in B16F10 melanoma-bearing mice (41). Mast cells 
exert immunosuppression releasing TNF-α and IL-10 and stimulating 
immune tolerance and tumor promotion (42, 43). Mast cells may 
promote inflammation, inhibition of tumor cell growth, and tumor cell 
apoptosis by releasing cytokines, such as IL-1, IL-4, IL-6, IL-8, monocyte 
chemotactic protein-3 and -4 (MCP-3 and MCP-4), TGF-β, and 
chymase. Chondroitin sulfate inhibits tumor cell diffusion and tryptase 

causes tumor cell disruption and inflammation through the activation 
of protease-activated receptors (PAR-1 and -2) (44).

Mast cells store in their secretory granules pre-formed active 
serine proteases, including tryptase and chymase (45). Tryptase 
stimulates the proliferation of endothelial cells, promotes vascular 
tube formation in vitro, degrades connective tissue matrix, and 
activates MMPs and plasminogen activator, which in turn degrade the 
extracellular matrix with consequent release of VEGF or FGF-2 from 
their matrix-bound state (46). Mast cells contain MMPs, and tissue 
inhibitors of MMPs (TIMPs), which intervene in regulation of 
extracellular matrix degradation, allowing the release of angiogenic 
factors. Mast cell-deficient W/Wv mice exhibit a decreased rate of 
tumor angiogenesis (47). Development of squamous cell carcinoma in 
a human papillomavirus (HPV) 16 infected transgenic mouse model 
of epithelial carcinogenesis provided experimental support for the 
early participation of mast cells in tumor growth and angiogenesis (48, 
49). Mast cells infiltrated hyperplasia, dysplasias, and the invasive 
front of carcinomas, but not the core of tumors. Accumulation 
occurred proximal to developing capillaries and the stroma 
surrounding the advancing tumor mass (48). Infiltration of mast cells 
and activation of MMP-9 coincided with the angiogenic switch in 
premalignant lesions through the release of pro-angiogenic molecules 
from the extracellular matrix. Remarkably, premalignant angiogenesis 
was abrogated in a mast cell-deficient HPV 16 transgenic mouse 
indicating that neoplastic progression in this model involved 
infiltration of mast cells in the skin (48, 49). An increased number of 
mast cells have been demonstrated in angiogenesis associated with 
vascular tumors, like hemangioma and hemangioblastoma, as well as 
several hematological and solid tumors, including lymphomas, 
multiple myeloma myelodysplastic syndrome, B-cell chronic 
lymphocytic leukemia, breast cancer, gastric and colon-rectal cancer, 
uterine cervix cancer, melanoma, and pulmonary adenocarcinoma, in 
which mast cell accumulation correlate with increased 
neovascularization, mast cell VEGF and FGF-2 expression, tumor 
aggressiveness and poor prognosis (40).

Fibroblasts

Fibroblasts are interconnected with tumor cells by promoting tumor 
growth, angiogenesis, and the metastatic process (50). Cancer-associated 
fibroblasts (CAFs) are characterized by the expression of specific 
markers and secrete growth factors and angiogenic factors (Table 2). A 
source of CAFs is represented by the expansion of tissue-resident 
fibroblasts in the early stages of tumor progression (51, 52). CAFs may 
also originate from transdifferentiation of myofibroblasts, bone marrow-
derived mesenchymal stem cells, stellate cells, and adipocytes (53–56). 
CAFs modulate tumor growth by secreting: (i) growth factors able to 
increase tumor cell proliferation and exert an anti-apoptotic activity; (ii) 
chemotactic factors recruiting other stromal cells, including leukocytes, 
monocytes/macrophages, and mast cells. CAFs have both 
pro-tumorigenic and anti-tumorigenic roles. CAFs (type 1 polarized 
fibroblasts) induce immunosuppression by an increase in Th2 cells, 
Th17 cells, and Tregs, and are also involved in therapy resistance (57). 
Co-injection of CAFs with tumor cells resulted in enhanced tumor 
formation (58). CAFs (type 2 polarized fibroblasts) exert a tumor-
promoting function under the influence of growth factors and 
chemokines. They stimulate cancer cell survival, growth, and invasion, 
by secreting cytokines, exosomes, and growth factors, contribute to 
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angiogenesis through the release of angiogenic cytokines, including 
VEGF, TGFβ, IL-6, and TNFα, and activate other immune cells (58). 
ScRNA-seq of precursor lesions of human pancreatic adenocarcinoma 
(PDCA) revealed dynamic changes in the composition of CAF subsets 
during tumor progression (59). The progression of premalignant 
Barrett’s esophagus to esophageal adenocarcinoma is characterized by 
increased inflammatory-related gene expression by fibroblasts (60).

Therapeutic strategies

VEGF/VEGF receptors (VEGFRs) inhibition represents the most 
widely used anti-angiogenic strategy, including anti-VEGF and anti-
VEGFRs specific antibodies, VEGF decoy receptors (VEGF-TRAP), 
receptor tyrosine kinase (RTK) inhibitors. An alternative anti-
angiogenic strategy is the use of Ang2/Tie2 inhibitors.

Tumor microenvironment cells represent attractive therapeutic 
strategies (61). Different approaches have been developed to enhance 
TAMs anti-tumor immune activity, including TAM apoptosis by 
blocking CSF-1/CSF1-R signaling (62); CSF1-R inhibitors suppress 
macrophage differentiation toward the M2 phenotype and 
macrophage-related angiogenesis (63); inhibition of TAM recruitment 
to tumor microenvironment by blocking CCL2 of CCR2 axis, 
improving the prognosis (64); increase of TAM-mediated phagocytosis 
of cancer cells; blocking programmed cell death protein (PD-1)/ 
programmed cell death ligand-1 (PD-L1) signaling improve 
phagocytic activity of TAMs (65); reprogramming of TAMs by 
enhancing their antigen presentation to T cells via CD40 agonists, or 
by promoting their re-education to anti-tumoral phenotypes (66); 
Ang2/Tie2 signaling inhibits tumor growth by blocking angiogenesis 
signals and the immunosuppressive functions of TAMs (63).

Different studies have demonstrated the anti-cancer activity of 
CAFs, including inhibition of fibroblast activation protein, TGFβ 
inhibitors, or vitamin S analog Paricalcitol (50).

Strategies explored to inhibit neutrophils include the inhibition of 
CXC receptors like CXCR2 that are associated with the migration of 
neutrophils to tumor areas. CXCR1 and CXCR2 inhibitors are 
currently in clinical development in cancer. Inhibition of the IL-23 
and IL-17 axis is another approach, as IL-17 and IL-23 stimulate the 
expansion of neutrophils mediated by G-CSF (67).

Mast cells might act as a new target for the adjuvant treatment of 
tumors through the selective inhibition of angiogenesis, tissue 
remodeling, and tumor-promoting molecules, allowing the secretion 

of cytotoxic cytokines, and preventing mast cell-mediated immune 
suppression. Pre-clinical studies using anti-c-kit antibodies, anti-
TNF-α antibodies, or the mast cells stabilizer disodium cromoglycate 
(cromolyn) in mouse models have demonstrated promising results (68).

Concluding remarks

This mini review provides an overview of our knowledge of the 
crosstalk between different inflammatory cell subpopulations and 
tumor angiogenesis. Targeting these cells has proven to be  a 
promising strategy for tumor treatment. The binary concept of 
dividing these cells into two subpopulations with, respectively, pro- 
and anti-inflammatory activities is too simplistic considering their 
functional plasticity and the context-dependent nature of their 
behaviors and functions. These inflammatory cells exist in a wide 
spectrum of phenotypes driven by tumor-derived signals and tissue-
specific microenvironments. Recent new technologies including 
CRISPR gene editing and single-cell sequencing allow us to 
understand better how these cells regulate tumor angiogenesis. 
Moreover, the potential transition between immunosuppressive and 
immunostimulatory phenotypes should be further investigated in the 
context of different biomarkers of signaling pathways. Future 
exploration and characterization of specific subgroups will lead to a 
new direction for targeted tumor angiogenesis.
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