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Breast cancer is a prevalent malignancy and one of the leading causes of cancer-
related mortality among women worldwide. This disease typically manifests through 
the abnormal proliferation and dissemination of malignant cells within breast 
tissue. Current diagnostic and therapeutic strategies face significant challenges 
in accurately identifying and localizing specific subtypes of breast cancer. In 
this study, we developed a novel machine learning-based predictor, BreCML, 
designed to accurately classify subpopulations of breast cancer cells and their 
associated marker genes. BreCML exhibits outstanding predictive performance, 
achieving an accuracy of 98.92% on the training dataset. Utilizing the XGBoost 
algorithm, BreCML demonstrates superior accuracy (98.67%), precision (99.15%), 
recall (99.49%), and F1-score (99.79%) on the test dataset. Through the application 
of machine learning and feature selection techniques, BreCML successfully 
identified new key genes. This predictor not only serves as a powerful tool for 
assessing breast cancer cellular status but also offers a rapid and efficient means 
to uncover potential biomarkers, providing critical insights for precision medicine 
and therapeutic strategies.
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Introduction

Breast cancer is considered the most common malignant tumor worldwide and is one of 
the leading causes of cancer-related deaths among women globally (1, 2). The incidence of 
breast cancer is influenced by multiple factors, including age, genetic background, and 
reproductive history and so on. Long-term exposure to ovarian steroids is widely recognized 
as a risk factor for breast cancer in women, and studies have shown a significant correlation 
between the total number of menstrual cycles and the risk of breast cancer (3–5). Breast cancer 
is commonly described as an “immunologically cold” tumor (6), characterized by a low 
mutation count, limited immune cell infiltration, and immunosuppressive features in the 
tumor microenvironment (7).

A detailed exploration of the cellular subtypes of breast cancer is crucial for developing 
more precise clinical treatment protocols and for advancing pathophysiological research. The 
genetic heterogeneity of breast cancer has been confirmed at a single-cell resolution, a process 
dependent on high-density genome coverage (8). With the ongoing advancement of single-cell 
sequencing technology, we are now able to explore the cellular heterogeneity of this cancer at 
an even higher resolution.
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Through single-cell transcriptomic analysis, Chung et  al. (9) 
explored the heterogeneity of tumor cells and their neighboring 
immune and stromal cells, revealing significant heterogeneity both 
within the tumor and among immune cells. Jang et al. (10) utilized 
single-cell RNA sequencing (scRNA-seq) technology to analyze the 
transcriptional and mutational features of breast cancer and immune 
cells. They identified high PD-L1 expression and significant 
microsatellite instability in radioresistant cells, along with complex 
interactions at immune checkpoints. These findings provide potential 
biomarkers and therapeutic strategies for immunotherapy and 
radiation therapy tailored to different subtypes of breast cancer. Liu 
et  al. (11) combined scRNA-seq with spatial transcriptomics to 
analyze the cell populations and their spatial distribution in breast 
cancer. They identified subpopulations of malignant cells, revealing 
their locations and the relationships with patient survival and 
therapeutic responses, which provided new insights into the 
heterogeneity of breast cancer and potential personalized treatment 
strategies. Ding et al. (12) discussed the application of scRNA-seq in 
breast cancer research. Through technological advancements, 
scRNA-seq has revealed cellular heterogeneity in the tumor 
microenvironment and identified disease-related rare cell types. This 
technique has demonstrated its potential in classifying breast cancer 
subtypes, recognizing immune cell subgroups, and identifying 
therapeutic targets, thereby facilitating the development of 
personalized treatment strategies.

Although existing research technologies in the field of breast 
cancer are relatively advanced, manual methods remain time-
consuming and labor-intensive when it comes to mining marker genes 
and identifying cell subgroups. Consequently, there is an urgent need 
for the development of computational methods to assist researchers 
in efficiently identifying breast cancer cell subgroups and thoroughly 
exploring their potential marker genes. To address these challenges, 
we introduced a computational framework named BreCML (Figure 1). 
This framework is designed to identify biomarkers within breast 
cancer cell subpopulations and infer their cellular developmental 
stages, thereby enhancing the accuracy and depth of research in this 
area. To achieve optimal predictive modeling results, we employed a 
combined feature selection and incremental feature selection (IFS) 
strategy. This strategy incorporates the use of four fundamental 
classification methods: K-nearest neighbors (KNN), extreme gradient 
boosting (XGBoost), support vector machine (SVM), and random 
forest classification (RFC).

Results

Identify important genes by BreCML

To identify key genes associated with subpopulations of breast 
cancer cells, we employed three feature selection methods F-score, 
coefficient of variation squared (CV2), and principal component 
analysis (PCA) to evaluate the significance of 29,733 genes and rank 
them according to their contribution (Figures 2A–C). Genes with 
importance scores less than or equal to zero were excluded from 
further analysis. The CV2, PCA, and F-score extracted 22,000 
important genes. Subsequently, machine learning models combined 
with incremental feature selection (IFS) were utilized to identify the 
optimal subset of genes. Using five-fold cross-validation, the machine 

learning models (SVM, RFC, XGBoost, and KNN) were trained with 
single-cell gene expression matrices as input features.

The analysis of the training dataset showed that the combination of 
F-score and XGBoost model (BreCML) using the top 360 genes achieved 
the best predictive performance, successfully classifying breast cancer 
cell subpopulations with 98.92% accuracy (Supplementary Table S3). 
Notably, significant predictive performance was also achieved when the 
four machine learning models were combined with PCA. However, 
BreCML uses only 360 feature genes, while XGBoost combined with 
PCA uses 20,000 feature genes, meaning that the complexity of the 
model was greatly reduced. Therefore, BreCML was selected as the 
classifier by us. To prevent the feature selection methods from exhibiting 
similar scoring preferences, we compared the top 100 genes ranked by 
each feature selection method. As demonstrated in Figure  2D, the 
top  100 genes selected by PCA, CV2, and F-score exhibit minimal 
overlap, thereby validating the distinct effectiveness of each feature 
selection method. These findings underscore the utility of combining 
diverse feature selection techniques to enhance the robustness and 
accuracy of predictive models in breast cancer research.

BreCML performance on test dataset

BreCML demonstrated exceptional performance on the test dataset, 
achieving outstanding results across several key metrics: accuracy of 
98.67%, precision of 99.15%, recall of 99.49%, and F1-score of 99.79% 
(Table 1). To further evaluate the model’s effectiveness, we assessed its 
predictive capabilities using Receiver Operating Characteristic (ROC) 
curves and confusion matrices. The ROC analysis revealed an 
impressive area under the curve (AUC) of 0.97 for the BreCML model, 
as shown in Figure 3A. Additionally, the confusion matrix provided a 
detailed breakdown of the model’s performance across different breast 
cancer subgroups, highlighting a notably low misclassification rate 
(Figure 3B). This strong performance underscores the robustness and 
reliability of the BreCML model in clinical diagnostics.

Predictive performance of BreCML on an 
independent test set

To evaluate the robustness of the proposed BreCML for breast 
cancer cell subpopulation prediction, we assessed the performance of 
BreCML in an independent dataset and compared it with two state-of-
the-art methods: eHSCPr, and HelPredictor. To ensure a fair 
comparison, these models were executed and evaluated using the same 
independent test set containing 360 genes. As shown in Table 2, BreCML 
achieved the best performance among all of the tested methods, with an 
accuracy of 94.78%, precision of 94.98%, recall of 95.54%, and 
F1-measure of 95.79%. Specifically, compared to other existing methods, 
the accuracy of our method is higher by 4.66 to 6.53%. The AUC of the 
three methods is shown in Figure 3C, and the AUC of BreCML is 0.97, 
which is outperformed by the other prediction models. Furthermore, 
the confusion matrix further validated the predictive performance of the 
model for each cell subpopulation, and the low misclassification rate 
demonstrated the power of the BreCML model (Figure 3D). Therefore, 
we  conclude that our method is more effective than eHSCPr, and 
HelPredictor in predicting breast cancer cell subpopulations.
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Expression analysis of the BreCML gene set

Further analysis was performed using Uniform Manifold 
Approximation and Projection (UMAP) on 4,874 single cells to 
evaluate the comparative performance of the 360 selected genes 
against the entire gene set. The results demonstrated that the 360 
selected genes significantly outperformed the full gene set in terms of 
clustering efficiency and specificity. When clustering was conducted 
using all genes, samples from different categories were almost entirely 
intermingled, resulting in poor classification outcomes (Figure 4A). 
In contrast, the application of the top 360 genes produced a clear and 
distinct distribution of cell subpopulations (Figure 4B). This enhanced 
clustering not only improved the visual differentiation of categories 
but also underscored the effectiveness of selecting key marker genes 
for precise subpopulation identification.

Additionally, we explored the representation of the 360 marker 
genes across the biological landscape, identifying several key genes 
that serve as robust markers for specific cell types within the immune 
system. Notably, genes such as CD4, IL7R, and CD3D were found to 
be  highly expressed in T-cells, underscoring their importance in 
cellular immunity functions. Similarly, CD68 was predominantly 
expressed in myeloid cells, while MS4A1 was identified as a 
characteristic gene of a B-cell subpopulation (Figure 5). These genes 
have undergone rigorous validation, and their expression patterns 
have been corroborated by extensive literature, highlighting their 
biological relevance and utility in cellular characterization.

Using multiple genes to characterize cellular subpopulations 
significantly enhances accuracy. For instance, GAPDH, RPL22, RPS12, 
RPS6, and RPS18 were crucial in identifying epithelial subpopulations. 
Similarly, CD74, HLA-DRA, and HLA-DPA1 exhibited high expression 
levels in B-cells, while SSR4, B2M, MZB1, HERPUD1, and XBP1 were 
prominently expressed in plasmablasts. Additionally, TMSB4X, 
ZFP36L2, HLA-A, and CCL5 were highly expressed in T-cells (Figure 6). 
This multi-gene approach not only improves the precision of cell type 
identification but also provides a more comprehensive understanding of 
the molecular signatures associated with different cellular subpopulations.

Conclusion

Breast cancer is one of the most prevalent malignant tumors in 
women, and single-cell RNA sequencing technology plays a crucial 
role in uncovering its tumor heterogeneity and developmental 
mechanisms. In this study, we  utilized single-cell sequencing 
technology to conduct an in-depth analysis of various cell 
subpopulations and their molecular characteristics within breast 
cancer tissues. We designed and developed a machine learning-based 
prediction model, BreCML, which demonstrated exceptional 
performance in predicting breast cancer cell subpopulations. This 
was evidenced by the results from an independent dataset, where 
BreCML achieved an accuracy of 98.92% and an ROC of 0.97. 
BreCML addresses the computational inefficiency and overfitting 

FIGURE 1

The workflow of constructing BreCML.
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issues typically associated with the high-dimensional feature space, 
thereby significantly enhancing the prediction accuracy and 
robustness of the model. Moreover, by analyzing the BreCML model, 
we identified a set of key genes that can serve as biomarkers for breast 

cancer cell subpopulations. These markers hold promise for providing 
new breakthroughs in early diagnosis and personalized treatment.

However, this study is certainly not without its limitations. A 
major limitation is the small sample size, and collaborative efforts 

FIGURE 2

The results of feature selection. (A–C) The IFS curves show the performance of three feature selections (F-score, CV2, and PCA) and the four classifiers 
in different gene subsets. (D) Comparative Venn diagram of the top 100 genes in F-score, CV2, and PCA.

TABLE 1 Performance comparison of different algorithms and feature selection strategies (test dataset).

Method Feature 
selection

No. of 
feature

Accuracy Precision Recall F1-measure

KNN F-score 360 94.78 94.98 95.54 95.79

RFC F-score 360 96.72 97.89 97.54 96.97

SVM F-score 860 99.08 99.78 99.68 99.82

XGBoost F-score 360 98.67 99.15 99.49 99.79

KNN CV2 1,500 88.92 89.22 89.74 89.18

RFC CV2 1,200 95.18 95.73 95.79 96.39

SVM CV2 1,200 98.15 98.76 99.27 98.94

XGBoost CV2 22,000 98.97 99.12 99.67 99.81

KNN PCA 160 70.67 71.49 70.91 71.59

RFC PCA 18,000 93.44 94.78 94.16 93.87

SVM PCA 3,200 95.59 96.48 96.29 95.91

XGBoost PCA 20,000 99.18 99.94 99.87 99.64

https://doi.org/10.3389/fmed.2024.1482726
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ke et al. 10.3389/fmed.2024.1482726

Frontiers in Medicine 05 frontiersin.org

in data collection may help to improve the model. Despite this 
potential limitation of the current study, our work provides a 
resource for studying biomarkers of breast cancer cell 
subpopulations at single-cell resolution. This not only enhances our 
understanding of the molecular mechanisms underlying breast 
cancer but also provides a vital molecular tool for assessing the 
complexity of breast cancer cell subpopulations, with profound 
implications for future clinical research.

Methods and materials

Dataset construction and preprocessing

Single-cell transcriptome data for human breast cancer were 
obtained from the National Center for Biotechnology Information 
(GSE176078) and include 4,874 cells (13). GSE176078 is one of the 
most comprehensive scRNA-seq dataset specifically focused on breast 
cancer, including a wide variety of breast cancer subpopulations. This 
dataset offers detailed transcriptional profiles of thousands of 
individual cells from multiple patients, making it highly suitable for 
studying intratumoral heterogeneity, identifying distinct cell 
subpopulations, and exploring cell-specific biomarkers. The BCL files 
were demultiplexed and aligned to the GRCh38 reference genome 
using Cell Ranger Single Cell software v2.0 (10× Genomics). Cell 
filtering was performed with the EmptyDrops method from the 
DropletUtils package v1.2.2, applying additional criteria: cells with 
more than 200 genes and 250 unique molecular identifiers, and a 

FIGURE 3

Predictive performance of BreCML. (A) ROC curves for BreCML on test dataset. (B) The confusion matrix shows the accuracy of BreCML using 360 
genes from BreCML algorithm on test dataset. (C) ROC curves and AUC show the performance of the BreCML with other state-of-the-art methods on 
an independent dataset. (D) Based on the BreCML optimal gene set, the confusion matrix of BreCML on the independent dataset.

TABLE 2 Performance comparison between BreCML and the other 
algorithms (independent dataset).

Method Accuracy Precision Recall F1-
measure

BreCML 94.78 94.98 95.54 95.79

eHSCPr 88.25 87.29 87.16 85.71

HelPredictor 90.12 88.02 88.32 96.33
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mitochondrial gene percentage below 20%. The dataset included five 
different cell subpopulations: B-cells (773), Cancer Epithelisl (1,184), 
Myeloid (897), Plasmablasts (1,020), and T-cells (1,000). The dataset 
was split into a training dataset and a test dataset at a 8:2 ratio. More 
dataset details are provided in the Supplementary Table S1. The 
Python packages Numpy (version 1.21.6), Pandas (version 1.3.5) and 
Scanpy (version 1.9.1) were used to read and process the data.

To further validate the robustness of BreCML, we collected single-
cell transcriptome data of breast cancer from Wu et al. (14) in the 
NCBI database (GSE158677). The dataset also included five different 
cell subpopulations: B cells (598), Cancer epithelial cells (600), 
myeloid cells (601), Plasmablasts cells (600), and T cells (599). This 
dataset was used as an independent test set to evaluate the BreCML 
performance (Supplementary Table S2).

FIGURE 4

The clustering effect on 4,874 cells was evaluated using 110 marker genes and all genes (A represents all genes, B represents the 110 marker genes). 
Each point represents a sample in the dataset, and different categories of samples are given different colors.

FIGURE 5

UMAP shows marker genes for human breast cancer cell fate determination.
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Biological analysis and visualization

In this study, we performed an extensive analysis to evaluate the 
predictive capability of 360 marker genes in identifying cell 
subpopulations. For the clustering analysis in Figure  4, UMAP 
visualization was executed using the python package umap-learn 
(version 0.3.9), with all settings maintained at default values. For the 
clustering analysis in Figure  5, we  used the Preprocessing and 
clustering module in Scanpy (version 1.9.1), which facilitated to 
identify specific subpopulations of cells associated with these marker 
genes; default parameters were used throughout. Pearson correlation 
analysis was conducted on five distinct human breast cancer cell 
populations, based on the expression profiles of the 360 marker genes, 
using Pandas (version 1.4.4).

Principal component analysis

Feature-scML is a scalable and friendly toolkit that allows users to 
comprehensively score and rank each feature in scRNA-seq data. The 
PCA module of Feature-scML was used to assess the feature 
importance of each gene. The source code is available at https://github.
com/liameihao/Feature-scML.

F-score algorithm

The F-score can be used to measure the degree of differentiation 
of features in different categories and has been shown to be a simple 
and effective method for feature selection. This method significantly 
improves the interpretability and classification performance of the 
model while reducing the bias (15). The F-score of the ith feature is 
defined as (16, 17):

( ) ( )

( ) ( ) ( ) ( )

2 2

2 21 1 1
, ,1 11 1

+ −
− + −

=
+ −+ −+ −

− + −∑ ∑= =− −+
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where iX  represents the average of the ith feature of the whole 
( )

iX
+

 is the number of positive samples, ( )
iX
−

 is the number of 
negative samples. ( )

,k iX + , ( )
,i iX −  are the ith feature of the kth positive and 

negative instances, respectively. The larger the F-score value, the 
stronger the distinguishing degree of the feature among 
different categories.

Squared coefficient of variation

The squared coefficient of variation (CV2) is a quantitative 
statistical method for quantifying technical variation at the gene level 
and assessing variability in cell biology, and is widely used in the field 
of single-cell experiments (18). The CV2 method operates by 
calculating the squares of the coefficients of variation and curve-fitting 
the observations using the generalized linear model (GLM) in the R 
package statmod,

 
2 1CV 0a α

µ
= +

 (2)

Extreme gradient boosting

Extreme gradient boosting (XGBoost) is recognized as an 
exceedingly complex and efficient machine learning algorithm, widely 
acknowledged for its outstanding performance in predictive modeling 
competitions (19). XGBoost attracts significant attention primarily 
due to its efficiency and effectiveness demonstrated in various 
competitive settings. The algorithm operates by sequentially 
constructing a series of decision trees, each designed to correct the 
errors of its predecessor. This approach allows the model to capture 
complex patterns in the data, thereby enhancing predictive accuracy. 
One major advantage of XGBoost is its ability to quickly and accurately 
process large datasets, making it an ideal tool for our research. 
Furthermore, compared to other models such as KNN and SVM, 
XGBoost also offers a direct method for assessing the importance of 
each input variable.

FIGURE 6

High expression marker genes screened by Scanpy.
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Model construction of BreCML

During the exploratory data analysis, it was crucial to identify key 
relationships and assign appropriate weights to features to filter out 
less relevant or weaker information. We  employed three feature 
selection techniques PCA, CV2, and F-score—to evaluate and rank the 
importance of genes in descending order. Genes with weights equal to 
or below zero were excluded from further analysis. The sorted gene 
expression profiles of breast cancer cell subpopulations served as input 
features for training machine learning models. Utilizing the 
incremental feature selection (IFS) strategy, we  formed 12 
combinations by integrating the three feature selection methods with 
four machine learning models: KNN, XGBoost, SVM, and RFC. Grid 
search was used to determine the optimal parameters for each 
combination. The optimal gene set for each combination was 
identified when the accuracy no longer showed improvement with the 
addition of more genes. Ultimately, the combination of F-score and 
XGBoost proved to be the most effective and was employed to develop 
the BreCML model.

Model evaluation

The four classic metrics were used to quantify the performance of 
the model predictions, namely, the accuracy (Acc), recall (Re), 
precision (Pre), and F1 measure (F1), defined as (20–28):

 
TP TNAccuracy

TP TN FP FN
+

=
+ + +  (3)

 
TPRecall

TP FN
=

+  (4)

 
TPPrecision

TP FP
=

+  (5)

 

( )2 precision recall
F1measure

precision recall
∗ ∗

=
+  (6)

where TP, TN, FP, and FN represent the numbers of true positives, 
true negatives, false positives and false negatives, respectively. In 
addition, the ROC curve was used to evaluate the performance of the 
BreCML (29–32).
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