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Screening key genes for 
intracranial aneurysm rupture 
using LASSO regression and the 
SVM-RFE algorithm
Qi Wu , Chunli Yang , Cuilan Huang  and Zhiying Lin *

Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 
Nanchang, China

Background: Although an intracranial aneurysm (IA) is widespread and fatal, few 
drugs can be  used to prevent its rupture. This study explored the molecular 
mechanism and potential targets of IA rupture through bioinformatics methods.

Methods: The gene expression matrices of GSE13353, GSE122897, and GSE15629 
were downloaded. Differentially expressed genes (DEGs) were screened using 
the limma package. Functional enrichment analysis was performed, and a PPI 
network was constructed. Furthermore, candidate key genes were identified 
using the least absolute shrinkage and selection operator (LASSO) regression 
model, support vector machine-recursive feature elimination (SVM-RFE) 
analysis, and PPI network analysis. ROC analysis was conducted to further verify 
the diagnostic value of the key genes.

Results: A total of 334 DEGs were screened, including 175 upregulated genes 
and 159 downregulated genes. Further functional analysis suggested that the 
DEGs were enriched in inflammation and immune response pathways. Fourteen 
hub genes were identified using the two algorithms. The PPI networks of the hub 
genes were analyzed using the Cytoscape plugin CytoNCA to obtain two key 
genes (IL10 and Integrin α5 (ITGA5)). The ROC curve analysis showed that the 
AUC values of IL10 and ITGA5 were 0.801, and 0.786, respectively. In addition, 
the two key genes were significantly positively correlated with macrophages 
and Treg (T) cells. The immune score and ESTIMATE score of the ruptured IA 
group were significantly higher than those of the unruptured IA group.

Conclusion: The increase in IL-10 and ITGA5 may weaken the vascular wall by 
promoting inflammation in blood vessels and immune cells, which could have a 
harmful effect on the rupture of IAs.
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Introduction

An intracranial aneurysm (IA) is an irreversible dilation of the intracranial arterial wall 
(1). Unruptured IAs account for 3% of the general population, with rupture and bleeding being 
the main risks (2). Currently, the surgical treatments for IAs are endovascular coiling and 
surgical clipping (3, 4), both of which can lead to various complications. Except for these two 
invasive procedures, there are no available preventive treatments for IAs prior to rupture (5). 
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Thus, the study aimed to explore the molecular mechanisms of IA 
rupture and identify key genes to prevent IA rupture. This could help 
improve the treatment strategy for this devastating complication.

Inflammation, immune response, and hemodynamic stress play 
important roles in the occurrence, development, and rupture of IAs 
(6–8). Recently, Tutino VM indicated that the expression of IA-related 
mRNA in peripheral blood neutrophils of patients with aneurysms 
was increased (9). IAs are closely related to several inflammatory 
factors, such as IL-1β and IL-6 (10, 11). Pera et al. compared ruptured 
IAs with unruptured IAs and a normal artery group, respectively, and 
found that the differentially expressed genes (DEGs) were enriched in 
the immune response (12).

In our study, we  made a preliminary attempt to elucidate 
biomarkers and the molecular mechanisms of IA rupture. 
We  downloaded the gene expression matrices of GSE13353, 
GSE15629, and GSE122897. We  further identified differentially 
expressed genes based on the gene expression matrices. Subsequently, 
function enrichment analyses (including GO analysis, KEGG 
enrichment pathway analysis, and Disease Ontology (DO) enrichment 
analysis) of the DEGs were carried out. Fourteen genes were screened 
using least absolute shrinkage and selection operator (LASSO) and 
support vector machine-recursive feature elimination (SVM-RFE) 
analysis. Furthermore, we built a PPI network of the fourteen genes to 
further identify the key genes. Finally, ROC curve analysis was used 
to verify the selected key genes.

Materials and methods

Data collection

The datasets GSE13353, GSE15629, and GSE122897 were selected 
from the Gene Expression Omnibus (GEO) database. Among them, 
GSE13353 included eight cases of unruptured IAs and 11 cases of 
ruptured IAs, GSE15629 included six cases of unruptured IAs and 
eight cases of ruptured IAs, and GSE122897 included 21 cases of 
unruptured IAs and 21 cases of ruptured IAs.

Differentially expressed genes (DEG) 
screening

We obtained the gene expression matrices and merged them into 
one matrix. Then, the processed gene matrix files were run in the 
impulse package and the limma package of R software, and missing 
value estimation and logarithmic conversion were performed on the 
data to obtain normalized data.

Functional enrichment analysis

Go and KEGG pathway analyses were carried out on the DEGs in 
each module to better understand their biological functions. 
According to the results of the functional analysis, the differences 
between the ruptured IA and unruptured IA groups were compared. 
DO enrichment analysis is a method used to identify and understand 
disease-related gene sets in biomedical research. It uses DO to 

organize and analyze data, which is helpful to discover the potential 
relationship between genes and diseases. DO is a tool for annotating 
genes from the perspective of diseases, which is very important for 
translating high-throughput sequencing results into clinical 
applications. DO provides a framework for integrating disease-related 
information and object annotations and supports the exploration of 
functional similarities between diseases and genes. It plays an 
important role in the organization, representation, and standardization 
of disease knowledge. DO can be used to guide diagnosis and the 
development of disease phenotypes and drug association prediction.

Model building

To predict the IA status, we used two algorithms to select sepsis 
characteristic genes. LASSO regression is a linear model that 
compresses the model coefficients by adding a penalty term, performs 
variable selection, and reduces model complexity. This penalty term 
is a function of the sum of the absolute values, which compresses some 
coefficients to zero, thus achieving the purpose of variable selection. 
In LASSO regression analysis, the strictness of variable selection can 
be  controlled by adjusting the coefficient λ of the penalty term. 
We built a LASSO regression model using the “glmnet” package to 
prevent over-fitting, and the optimal value of penalty parameter λ was 
determined by 10-fold cross-validation. Therefore, we could increase 
the plasticity of selecting hub genes (13–15).

An SVM is a supervised machine learning technology for disease 
classification (16). The SVM algorithm focuses on classification tasks 
and achieves the separation of different types of samples by finding the 
optimal combination, but it does not have the ability for feature 
selection. The RFE algorithm iteratively eliminates unimportant 
features so that feature selection can be carried out simultaneously 
with model training and the feature subset that has the highest 
influence on the classification results can be selected. In each iteration, 
the weights of features are recalculated, which can allow for better 
consideration of the correlation between features and help avoid the 
loss of information during the feature selection process. The method 
for SVM-based hub gene screening primarily involves RFE combined 
with an SVM, known as SVM-RFE. By eliminating unimportant 
features, the SVM-RFE algorithm can reduce the dimension of feature 
space and the complexity of the model, thus improving the 
generalization ability of the model. The selected feature subsets are 
often more interpretable because they are the most representative 
feature combinations in the data. In addition, the algorithm 
automatically calculates feature importance and iterates, thus reducing 
the possibility of artificially selecting variables. An SVM correctly 
classifies any linearly separable data and then fully separates these 
classified data. SVM-RFE selects the most important genes based on 
the weights assigned by the classifier (17).

Construction and module analysis of the 
PPI network

Overlapping genes are obtained by intersecting the genes 
identified by the LASSO regression model and SVM-RFE, which 
are then used for further PPI network analysis. The PPI network 
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is then imported into Cytoscape software (18). The CytoNCA 
plugin is used for centrality analysis, which includes three 
parameters: degree, betweenness, and eigenvector (19). The 
top 20% of nodes for each parameter are considered important 
nodes in the CytoNCA analysis, and the genes represented are 
regarded as key genes in centrality analysis.

Immunoinfiltration analysis

ssGSEA was performed to explore the differences in infiltration 
levels within the IA expression profile using the R package 
GSVA. The ESTIMATE algorithm evaluates the tumor 
microenvironment (TME) based on the immune score, stromal 
score, and ESTIMATE score.

Results

Screening for DEGs

A total of 334 DEGs were identified from the integration matrix. 
The DEGs comprised 175 upregulated genes and 159 downregulated 
genes, based on the criteria of |log2(FC)| > 1 (Figure 1A). The top five 
upregulated genes were PPBP, MCEMP1, PF4, SLC11A1, and 
HMOX1. The top five down-regulated genes were ADH1B, COMP, 
FMO2, MASP1, and SFRP2, respectively (Figure 1B; Table 1). The PPI 
network built from the DEGs consisted of 334 nodes and 13,438 edges 
(Supplementary Figure 1).

Functional analysis

The result of the GO functional analysis indicated that the DEGs 
were enriched in neutrophil activation, leukocyte migration, 
neutrophil-mediated immunity, and granulocyte migration 
(Figure 2A). The KEGG enrichment pathway analysis showed that the 
DEGs were mainly enriched in the IL-17 signaling pathway, cytokine-
cytokine receptor interaction, and the chemokine signaling pathway 
(Figure 2B; Supplementary Figure 2). The DO functional analysis 
indicated that the DEGs were related to diseases such as 
arteriosclerosis, arteriosclerotic cardiovascular disease, and coronary 
artery disease.

Screening hub genes using LASSO 
regression and the SVM-RFE algorithm

We applied LASSO regression and the SVM-RFE algorithm to 
filter underlying markers for analyzing hub genes in the PPI network 
composed of the DEGs. We  screened 23 genes using the LASSO 
regression algorithm (Figures  3A–C). A total of 37 genes were 
screened using the SVM-RFE algorithm (Figure  3C). Fourteen 
overlapping genes between the two algorithms were considered hub 
genes (two genes were excluded because they were unconnected 
points) (Figure 3D). The AUC value of the fourteen hub genes was 
over 0.7 (Supplementary Figure 3).

Identifying key genes

We used CytoNCA, a plugin from Cytoscape, to perform 
centrality analysis on a PPI network consisting of the 14 central genes. 
The top 20% of the intersection genes based on degree, betweenness, 
and eigenvector centrality in the PPI network were considered key 
genes. The results showed that IL10 and Integrin α5 (ITGA5) were 
identified as key genes for further analysis (Figure 3D).

Verifying key genes

To clarify the role of key genes in patients with an IA, we compared 
the expression of the key genes in 35 unruptured IA cases and 40 
ruptured IA cases. Figures 4A,B and Supplementary Figure 4 show 
that IL-10 and ITGA5 were higher in the patients with a ruptured IA 
than in those with an unruptured IA. The AUC values of IL10 and 
ITGA5 were 0.801 and 0.786, respectively (Figures 4C,D).

Immune infiltration landscape

The enrichment scores of 16 immune cells and 13 immune 
functions for each sample were quantified using the ssGSEA 
algorithm. Figure 5A shows the proportions of the immune cells in 
the IA sample. We then inferred the differences in the proportions of 
infiltrating immune cells. Compared to the unruptured IA group, 
we found that the ruptured IA group had relatively higher percentages 
of dendritic cells (DCs), macrophages, T helper 2 (Th2) cells, tumor-
infiltrating lymphocytes (TIL), and regulatory Treg (T) cells 
(Figure 5A). Previous studies have found that macrophages (20) and 
Treg cells (21) are associated with whether an IA is ruptured. 
Therefore, this study further analyzed the correlation between IL10 
and these two immune cells, as well as between ITGA5 and the two 
immune cells. The results showed that the correlation coefficients of 
IL-10 with macrophages and T cells were 0.7 and 0.6, respectively 
(Figures  5B,C). The correlation coefficients of ITGA5 with 
macrophages and T cells were 0.5 and 0.6, respectively (Figures 5D,E).

In addition, APC co-stimulation, CCR, check-point, 
parainflammation, and T cell co-stimulation were significantly higher 
in the ruptured IA group than in the unruptured IA group, and the 
type II IFN response was higher in the unruptured IA group 
(Figure 5F). The matrix score, immune score, and ESTIMATE score 
for all samples were estimated using the estimation package. The 
results showed no significant difference in the stromal score between 
the ruptured IA and unruptured IA groups. However, the immune 
score was higher in the ruptured IA group, as was the ESTIMATE 
score, indicating that the ruptured IA group was in an immune 
activation state (Figures 5G–I).

Discussion

An IA is a serious complication and represents one of the most 
challenging cerebrovascular complications faced by clinical staff (22). 
Given the complex pathogenesis of IAs, there is an urgent need to 
identify new biomarkers for early clinical diagnosis and prognosis 
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FIGURE 1

The screened DEGs in IA from the GSE13353, GSE122897, and GSE15629 datasets. (A) Volcano plot visualizing the DEGs identified using the limma 
package. The red and green points represent the significantly upregulated and downregulated DEGs, respectively; (B) Heatmap visualizing the top 20 
upregulated and downregulated DEGs.
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evaluation, as well as to explore the potential mechanisms of IA 
development, thereby aiding in the development of treatment 
strategies (23).

IL-10 is a cytokine with anti-inflammatory and immunomodulatory 
functions. It inhibits inflammation through various mechanisms. It can 
downregulate the expression of major histocompatibility complex II 
(MHC II) on the surface of monocytes, reduce its antigen presentation, 
downregulate the activity of T lymphocytes, and inhibit the activation, 
migration, and adhesion of inflammatory cells (24). At the same time, 
IL-10 can inhibit the synthesis and release of inflammatory factors (25). 
It also inhibits the cytokine production ability of antigen-presenting 
cells and the expression of costimulatory molecules (such as CD80 and 
CD86), thus reducing the inflammatory response (26). It plays a key role 
in regulating the immune response. It can inhibit IFN-g and IL-2 
produced by Th1 cells, as well as IL-4 and IL-5 produced by Th2 cells, 
thus reducing the activation of immune cells and inflammatory 
reactions (27, 28). This immunomodulatory effect may help slow down 
the development of aneurysms. Previous studies have shown an increase 
in the absolute plasma concentration of IL-10 in the IA lumen (29). 
Integrins, composed of α and β subunits, are heterodimeric 
transmembrane proteins that play the role of a surface adhesion receptor 
in cell communication. Integrin α5 (ITGA5) participates in the 
interaction between cells and the extracellular matrix and affects the 

TABLE 1 The 10 upregulated and downregulated genes among the DEGs.

Gene log2 (fold change) p
CD163 1.810304 0.000105

MARCO 1.820724 1.07E-06

SPOCD1 1.840896 1.46E-05

AQP9 1.865355 0.000118

CXCL5 1.950924 5.03E-05

HMOX1 2.007942 7.67E-05

SLC11A1 2.108484 1.50E-05

PF4 2.29994 2.86E-06

MCEMP1 2.397431 7.60E-06

PPBP 2.675522 9.65E-07

ADH1B −2.15643 5.90E-05

COMP −2.07683 0.001197

FMO2 −2.01231 7.52E-07

MASP1 −1.84773 4.54E-05

SFRP2 −1.81636 0.000276

LDB3 −1.80072 5.86E-05

AQP1 −1.79598 1.25E-05

ATP1A2 −1.77504 0.000163

TMEM130 −1.76982 8.10E-05

KCNA5 −1.74819 2.68E-05

FIGURE 2

Functional enrichment analysis of the DEGs. (A) GO functional enrichment analysis; (B) KEGG pathway enrichment analysis; (C) DO function analysis.
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FIGURE 3

Identification of key genes. (A) LASSO regression analysis. (B) SVM-REF algorithm. (C) The 14 overlapping genes between the LASSO regression and the 
SVM-RFE algorithm. (D) The PPI network of the overlapping genes.

processes of cell adhesion and proliferation. α5 integrins usually 
combine with β1 integrins to form α5β1 integrins, which are involved 
in many biological processes, including cell migration, tissue repair, and 
tumor invasion (30–32). ITGA5 interacts with various molecules, 
influencing cell adhesion, migration, and signal transduction. For 
example, ITGA5 binds to fibroblast activation protein α (FAPα) to form 
a protein complex that regulates osteoclast differentiation (33). Linli 
Zheng et  al. demonstrated that ITGA5 + synovial fibroblasts may 
regulate the progression of rheumatoid arthritis (RA) by remodeling 
proinflammatory microenvironments. Therefore, therapeutic 
modulation of this subpopulation could be  a potential treatment 
strategy for RA (34).

In our research, the screened 334 DEGs were subjected to 
functional analysis. The ruptured IAs were mainly enriched in the 
pathways related to inflammation and the immune response. Based 
on the LASSO model, SVM-RFE analysis, and the PPI network, two 
key genes, IL10 and ITGA5, were identified. The accuracy of the key 
genes screened was further validated using ROC curve analysis. In 
addition, the key genes showed a significant positive correlation with 
macrophages and Treg cells based on ssGSEA. The immune score and 
ESTIMATE score in the ruptured IA group were significantly higher 
than those in the unruptured IA group.

Conclusion

In conclusion, we identified two immune-related key genes, IL10 
and ITGA5, through a series of screening methods. The ROC curve 
and immune correlation analysis further confirmed the reliability of 
our findings. Therefore, IL10 and ITGA5 can serve as potential 
biomarkers for IA rupture.
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SUPPLEMENTARY FIGURE 1

The complex PPI network of the DEGs between ruptured IA and unruptured 
IA patients.

SUPPLEMENTARY FIGURE 2

The GSEA functional analysis of the DEGs. (A) Ruptured IA; (B) unruptured IA.

SUPPLEMENTARY FIGURE 3

The ROC curve analysis of the hub genes.

SUPPLEMENTARY FIGURE 4

Analysis on the difference of gene expression between IL10 (A) and ITGA5 
(B).

FIGURE 4

The role of the key genes in the patients with an IA. IL10 and ITGA5 expressions were higher in the ruptured IA group compared to the unruptured IA 
group (A,B). ROC curves for IL10 and ITGA5 in the ruptured IA group (C,D).
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FIGURE 5

The immune infiltration landscape of the patients with an IA. (A) The proportions of immune cells. (B–E) The correlation between IL10 and 
macrophages and Treg cells, respectively. (F) Differences in various immune processes between the disease and control groups estimated using the 
algorithm based on ssGSEA. (G–I) The stromal score, immune score, and ESTIMATE score in the ruptured IA and unruptured IA groups.
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