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Department of Hematology and Oncology, Anhui Provincial Children’s Hospital (Anhui Hospital,

Pediatric Hospital of Fudan University), Hefei, China

Objective: This study aims to identify key risk factors associated with the

development of breakthrough invasive fungal infections (BIFI) in pediatric acute

leukemia patients to improve early detection and intervention strategies.

Method: A retrospective analysis was conducted on 160 pediatric patients

with acute leukemia admitted to Anhui Provincial Children’s Hospital between

October 2018 and June 2022. The study evaluated the impact of various clinical

parameters on BIFI risk using univariate and multivariable analyses, with data

including patient demographics, treatment regimens, and infection outcomes.

The predictive model was assessed using receiver operating characteristic (ROC)

curve analysis, calibration plots, and decision curve analysis (DCA).

Result: Among the 160 pediatric acute leukemia patients, 34 (22.22%) developed

BIFI. Univariate analysis identified longer durations of neutrophil deficiency (P <

0.001), broad-spectrum antibiotic use (P < 0.001), higher volumes of red blood

cell transfusions (P = 0.001), and elevated C-reactive protein (CRP) levels (P <

0.001) as significant factors associated with BIFI. Multivariable analysis confirmed

these as significant predictors, with odds ratios for neutrophil deficiency (OR

= 1.38, 95% CI [1.15, 1.69]), antibiotic use (OR = 1.41, 95% CI [1.10, 1.84]),

transfusions (OR = 2.54, 95% CI [1.39, 5.13]), and CRP levels (OR = 1.10, 95% CI

[1.04, 1.17]). The model validation showed strong predictive performance with

an AUC of 0.890 (95% CI: 0.828–0.952), good calibration (Brier score = 0.099),

and demonstrated clinical utility across a range of risk thresholds.

Conclusion: The study highlights the importance of considering these key

predictors in the management of pediatric acute leukemia patients to mitigate

the risk of BIFI. Incorporating these factors into personalized treatment strategies

could enhance early intervention, reduce infection rates, and improve overall

patient outcomes.

KEYWORDS

pediatric acute leukemia, breakthrough invasive fungal infections, predictive factors,

neutropenia, risk model development

Frontiers inMedicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2024.1488514
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2024.1488514&domain=pdf&date_stamp=2024-12-10
mailto:13515657759@126.com
https://doi.org/10.3389/fmed.2024.1488514
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2024.1488514/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2024.1488514

1 Introduction

Acute leukemia, a frequently encountered clinical condition

characterized by the malignant proliferation of hematopoietic stem

cells, includes both acute lymphoblastic leukemia (ALL) and acute

myeloid leukemia (AML). Although ALL and AML are among the

most common types of leukemia in children, their incidence varies

by geographic region and demographic factors. For instance, in the

United States, the incidence of ALL is estimated at 1.6 per 100,000

population, whereas in developing countries, the annual incidence

ranges from 3 to 5 per 100,000. The incidence of AML is typically

lower than that of ALL. The global incidence rates for both ALL

and AML in children are influenced by multiple factors, including

environmental and genetic predispositions (1–3). Recent studies

in medical technology and continuous optimization of treatment

protocols have significantly improved the five-year overall survival

rate of children with acute leukemia, now exceeding 70% (3, 4).

Despite these advancements, chemotherapy for pediatric acute

leukemia not only targets the proliferation of tumor cells but

also inhibits the proliferation and differentiation of normal

hematopoietic stem cells. A study from a developing country found

that up to 70% of deaths in acute leukemia patients during the

induction phase of treatment were associated with infections (5).

However, these findings may not be generalizable to other settings

or beyond the initial induction phase of therapy, as mortality rates

and causes of death can vary significantly across different stages of

treatment and geographical locations. Further research is needed

to understand the role of infections in leukemia patient mortality

in other clinical contexts. In previous study, the incidence of

invasive fungal infection (IFI) episodes was 10.4% (6). IFIs, which

occur when fungi invade the body and trigger an inflammatory

response, continue to pose a high mortality risk—second only to

leukemia relapse—despite the availability of new antifungal agents,

with mortality rates reported between 20% and 70% in various

studies (7–10).

In clinical practice, medications such as voriconazole and

fluconazole are commonly used to prevent and treat IFI in

children (11). These interventions have reduced the risk of IFI in

pediatric acute leukemia patients to some extent. However, due to

variations in prevention strategies, central treatment protocols, and

the distribution of pathogenic fungi among immunocompromised

populations, a subset of pediatric acute leukemia patients still

develop breakthrough invasive fungal infections (BIFI) (12, 13).

This phenomenon further elevates the mortality rate among

these children.

Understanding the risk factors associated with BIFI in children

with acute leukemia is crucial for early clinical intervention,

improving survival rates, and enhancing the quality of life for

affected patients. This study aims to explore these risk factors to

inform and improve clinical practices.

2 Methods

2.1 Study population and data acquisition

A retrospective analysis was conducted, collecting clinical

data from 160 pediatric patients with acute leukemia admitted

to Anhui Provincial Children’s Hospital between October 2018

and June 2022. The collected categorical data included gender,

disease classification, chemotherapy regimen, disease outcome,

usage of broad-spectrum antibiotics, prophylactic antifungal

medication, types of antimicrobial agents used, and history

of fungal infection. The continuous data collected included

patient age, length of hospital stay, neutrophil count, duration

of neutropenia, duration of broad-spectrum antibiotic use,

red blood cell transfusion volume, cluster of differentiation

4 (CD4+) count, cluster of differentiation 8 (CD8+) count,

CD4+/CD8+ ratio, and C-reactive protein (CRP) levels. In this

retrospective study, neutrophil counts were measured every 2

days throughout the treatment process. CD4+ and CD8+ counts

were primarily measured on the day following the identification

of neutropenia in patients. For treatment protocols, refer to

Supplementary material 1.

2.2 Inclusion and exclusion criteria

A database review was conducted for entries from

October 2018 to June 2022. Patients were eligible for

analysis if they received at least 4 days of systemic

antifungal prophylaxis during AML and ALL induction or

consolidation chemotherapy, with an anticipated duration

of neutropenia (defined as an absolute neutrophil count

≤500/mL) exceeding seven days. Each patient was included

only once.

2.3 Definitions

Based on the 2020 revised consensus by the European

Organization for Research and Treatment of Cancer/Infectious

Diseases Group and the National Institute of Allergy (14) and

Infectious Diseases Mycoses Study Group, along with the sixth

revision of China’s diagnostic and treatment principles for invasive

fungal disease in hematological disease/malignancy patients (15),

the criteria for defining probable, possible, and proven BIFIs were

established. Any IFI occurring during active antifungal prophylaxis

was considered a BIFI. For invasive candidiasis/candidemia, the

observation period is at least 4 weeks after starting treatment,

and for invasive mold diseases, it is 6 to 12 weeks after

initial treatment.

2.4 Statistical analysis

This study began by confirming the normality of the

data distribution using the Kolmogorov-Smirnov test (16).

Univariate analysis was then conducted using independent t-tests

for continuous variables and chi-square tests for categorical

variables to identify potential risk factors associated with

BIFI (17). A P < 0.05 was considered statistically significant.

Subsequently, all variables were then included in the stepwise

(backward: conditional) multivariable logistic regression

analysis model based on the Akaike Information Criterion,
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TABLE 1 Univariate analysis of factors associated with BIFI in pediatric acute leukemia patients.

Variables BIFI group (n = 34) Non BIFI group (n = 119) P

Sex# (male) 20 (58.82) 78 (65.55) 0.605

Age∗ (years) 6.00 (5.25,9.00) 7.00 (5.00,9.00) 0.917

Previous history of fungal infection# 7 (20.59) 12 (10.08) 0.179

Neutrophil count∗ (×109/L) 0.43 (0.40, 0.48) 0.44 (0.40, 0.52) 0.243

Neutrophil deficiency∗ (d) 15.00 (12.25, 18.00) 12.00 (10.00, 14.00) <0.001

Usage of broad-spectrum antibiotics∗ (d) 9.00 (8.00, 10.00) 7.00 (6.00, 8.50) <0.001

Red blood cell transfusions∗ (U/m2) 5.07 (4.52, 5.40) 4.42 (3.81, 5.06) 0.001

CD4+∗

count (mm3) 1,295.96 (1,202.14, 1,414.72) 1,271.21 (1,196.45, 1,377.22) 0.602

CD8+∗

count (mm3) 1,147.43 (1,084.30, 1,234.11) 1,143.27 (1,069.01, 1,209.62) 0.278

CD4/CD8∗ 1.13 (1.05, 1.25) 1.13 (1.03, 1.24) 0.855

CRP∗ (mg/L) 40.42 (32.13, 47.00) 29.23 (23.86, 33.94) <0.001

Disease classification ALL# 22 (64.71) 85 (71.43) 0.588

AML# 12 (35.29) 34 (28.57)

Chemotherapy regimen Steroid contained# 22 (64.71) 85 (71.43) 0.588

Steroid free# 12 (35.29) 34 (28.57)

Preventive antifungal
agents Drug use

Voriconazole# 17 (50.00) 62 (52.10) 0.983

Fluconazole# 17 (50.00) 57 (47.90)

Antibacterial drugs
Usage types#

≤2 27 (79.41) 110 (92.44) 0.061

3 7 (20.59) 9 (7.56)

Disease outcome Resolved# 25 (73.53) 82 (68.91) 0.759

Unresolved# 9 (26.47) 37 (31.09)

Hospitalization∗ (d) 21.50 (19.25, 24.75) 15.00 (12.50, 18.00) <0.001

∗values are expressed as interquartile spacing (median [¼,¾ digits]); #values are reported as counts and percentages (N, %) for categorical variables.

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; BIFI, breakthrough invasive fungal infections; CRP, C-reactive protein; d:days.

with odds ratios (OR) and 95% confidence intervals (CI)

calculated to quantify these associations (18). The model’s

predictive performance was assessed using receiver operating

characteristic (ROC) curve analysis (19) and brier score (20),

the latter of which measures the accuracy of probabilistic

predictions by evaluating the mean squared difference between

predicted probabilities and actual outcomes. The performance

of our model was evaluated through internal validation using

1,000 bootstrap resamples. To assess this, we calculated the

Variance Inflation Factor (VIF) for each predictor variable.

Variables with a VIF >5 were considered to indicate potential

multicollinearity and were reviewed for inclusion in the final

model. Finally, the model’s clinical utility across various risk

thresholds was further assessed through calibration plots (21)

and decision curve analysis (DCA) (22). Model validation

was assessed in terms of both discrimination and calibration.

Additionally, we constructed a nomogram using variables

with a P < 0.05 in the multivariable analysis to aid in clinical

decision-making.

3 Results

3.1 Univariate analysis of BIFI in pediatric
acute leukemia patients

Seven patients were excluded due to missing clinical data. A

univariate analysis of 153 pediatric acute leukemia patients revealed

that 34 patients (22.22%) developed BIFI in Table 1. Significant

factors associated with BIFI included longer durations of neutrophil

deficiency (median 15 days vs. 12 days, P < 0.001), extended use of

broad-spectrum antibiotics (median 9 days vs. 7 days, P < 0.001),

higher volumes of red blood cell transfusions (median 5.07 U/m²

vs. 4.42 U/m², P = 0.001), elevated CRP levels (median 40.42 mg/L

vs. 29.23 mg/L, P < 0.001), and longer hospital stays (median

21.50 days vs. 15.00 days, P < 0.001). No significant differences

were observed in sex, age, previous history of fungal infection,

neutrophil count, CD4+ and CD8+ counts, disease classification,

chemotherapy regimen, preventive antifungal agents, or disease

outcome between the groups.
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3.2 Significant predictors of BIFI in
pediatric acute leukemia identified by
multivariable regression analysis

The multivariable linear regression analysis identified four

significant predictors of BIFI in pediatric acute leukemia patients.

In Table 2, these predictors include the duration of neutrophil

deficiency (OR = 1.38, 95% CI [1.15, 1.69], P = 0.001), the

duration of broad-spectrum antibiotic use (OR = 1.41, 95%

TABLE 2 Multivariable linear regression analysis identifying independent

factors associated with BIFI.

Variables OR [95% CI] P value

Neutrophil deficiency (day) 1.38 [1.15, 1.69] 0.001

Broad-spectrum antibiotic use
(day)

1.41 [1.10, 1.84] 0.009

Red blood cell transfusions (unit) 2.54 [1.39, 5.13] 0.005

C-reactive protein (mg/L) 1.10 [1.04, 1.17] 0.001

OR, odds ratio; CI, confidence intervals.

CI [1.10, 1.84], P = 0.009), red blood cell transfusions (OR

= 2.54, 95% CI [1.39, 5.13], P = 0.005), and CRP levels

(OR = 1.10, 95% CI [1.04, 1.17], P = 0.001). These findings

highlight the importance of these factors in increasing the risk

of developing BIFI. The Figure 1 demonstrates that prolonged

neutrophil deficiency, extended use of broad-spectrum antibiotics,

higher volumes of red blood cell transfusions, and elevated CRP

levels are all significant predictors of increased risk for developing

breakthrough invasive fungal infections in pediatric acute leukemia

patients. The confidence intervals in each graph suggest some

variability in predictions, especially at higher values of these

predictors. Supplementary material 2 provides a multivariable

linear regression analysis for BIFI.

3.3 Model performance for BIFI in pediatric
acute leukemia: ROC and calibration
analysis

The Table 3 presents model variables along with their

corresponding cut-off values, area under the curve (AUC), and 95%

FIGURE 1

Visualization of key risk factors for breakthrough invasive fungal infections in pediatric acute leukemia. (A) Impact of neutrophil deficiency duration

on the risk of BIFI. (B) Impact of broad-spectrum antibiotic use on BIFI risk. (C) Impact of red blood cell transfusions on BIFI risk. (D) Impact of

C-reactive protein of BIFI risk. BIFI, breakthrough invasive fungal infections.
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TABLE 3 Predictive value of model variables for BIFI patient.

Variables Cut o� AUC ROC 95% CI

Neutrophil deficiency
(day)

14.500 0.749 0.649–0.849

Broad-spectrum
antibiotic use (day)

7.500 0.753 0.665–0.840

Red blood cell
transfusions (unit)

4.075 0.691 0.596–0.785

C-reactive protein
(mg/L)

34.385 0.761 0.654–0.867

AUC ROC, Area under the receiver operating characteristic curves; CI, confidence intervals.

FIGURE 2

ROC Curve for BIFI prediction model in pediatric acute leukemia

patients.

CI. The ROC curves are presented in Supplementary material 3.

Neutrophil deficiency has a cut-off value of 14.500, an AUC of

0.749, and a 95% CI of 0.649–0.849. Broad-spectrum antibiotic use

shows a cut-off value of 7.500, an AUC of 0.753, and a 95% CI

of 0.665–0.840. Red blood cell transfusions have a cut-off value

of 4.075, with an AUC of 0.691, supported by a 95% CI of 0.596–

0.785. C-reactive protein is noted with a cut-off value of 34.385, an

AUC of 0.761, and a 95% CI of 0.654–0.867. The VIF values for our

model were as follows: Neutrophil deficiency: 1.10, Broad-spectrum

antibiotic use: 1.01, Red blood cell transfusions: 1.10, C-reactive

protein: 1.00.

In Figure 2, the ROC curve demonstrates that the model,

which includes neutrophil deficiency, broad-spectrum antibiotic

use, red blood cell transfusions, and CRP, has excellent predictive

performance for BIFI in pediatric acute leukemia patients, with an

AUC of 0.890 (95% CI: 0.828–0.952). At a threshold of 0.315, the

model achieves a sensitivity of 0.866 and a specificity of 0.794.

The calibration plot demonstrates that the predicted

probabilities of developing BIFI align closely with the observed

probabilities, with a Brier score of 0.099. The mean absolute error

is 0.021, based on 1,000 bootstrap repetitions in Figure 3.

FIGURE 3

Calibration plot for BIFI prediction model in pediatric acute leukemia

patients.

3.4 Nomogram and decision curve analysis
for predicting BIFI risk in pediatric acute
leukemia

In Figure 4, the nomogram shown is designed to estimate the

risk of BIFI in patients based on four predictor variables: neutrophil

deficiency (days), broad-spectrum antibiotic use (days), red blood

cell transfusions (units), and C-reactive protein (mg/L). For each

predictor, specific values correspond to a point score on the top

“Points” scale. For example, 10 days of neutrophil deficiency would

yield approximately 15 points, while 7 days of broad-spectrum

antibiotic use would yield around 40 points. These individual scores

are then summed to obtain a total point score, which is located on

the “Total Points” axis. The corresponding risk of BIFI is found

by aligning the total score with the “Risk” scale at the bottom,

which provides the predicted probability of BIFI for the patient.

This nomogram allows clinicians to quantify individual patient risk,

aiding in clinical decision-making by identifying patients who may

benefit from closer monitoring or preventative interventions.

In Figure 5, the decision curve analysis curve shows that the

predictive model for BIFI in pediatric acute leukemia patients

provides a net benefit across a wide range of high-risk thresholds,

particularly between 0.1 and 0.8. The red line representing the

model demonstrates a higher standardized net benefit compared

to treating all patients (gray line) or none (black line) within this

threshold range. This indicates that the model is clinically useful

and beneficial for decision-making in predicting BIFI risk, with the

highest net benefit observed around the threshold of 0.2 to 0.3.

4 Discussion

The analysis of pediatric acute leukemia patients revealed

significant predictors for the development of BIFI. Key factors

Frontiers inMedicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2024.1488514
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2024.1488514

FIGURE 4

Nomogram for predicting BIFI risk in pediatric acute leukemia patients.

FIGURE 5

Decision curve analysis for predicting BIFI risk in pediatric acute

leukemia patients.

include the duration of neutrophil deficiency, duration of broad-

spectrum antibiotic use, red blood cell transfusions, and CRP levels.

4.1 Role of neutrophil deficiency in BIFI
development

Neutrophils play a crucial role in the body’s defense

against fungal infections. As the first line of defense in

innate immunity, neutrophils are responsible for identifying and

neutralizing pathogens such as fungi. When neutrophil counts

are significantly reduced, patients become highly susceptible to

infections, particularly IFIs. In pediatric acute leukemia patients,

prolonged neutropenia is a common side effect of chemotherapy,

which significantly compromises the immune system. Previous

research has established that there is a critical threshold in the

duration of neutropenia, beyond which the risk of infection

increases significantly (23). Additionally, a study by Marr et al.

demonstrated that in hematopoietic stem cell transplant recipients,

the longer the duration of neutropenia, the higher the incidence of

mold infections, further supporting the strong association between

prolonged neutropenia and the risk of invasive fungal infections

(24). Our study further confirms the significant positive correlation

between the duration of neutropenia and the risk of developing

BIFI. Specifically, the longer the period of neutropenia, the greater

the likelihood that the patient will develop breakthrough invasive

fungal infections. This finding aligns with existing literature,

emphasizing the critical role of neutropenia duration in the context

of infection risk.

4.2 Role of broad-spectrum antibiotics in
BIFI development

The duration of broad-spectrum antibiotic use emerged as a

significant predictor of BIFI in pediatric acute leukemia patients.

Prolonged antibiotic use disrupts the natural gut microbiota,

reducing bacterial competition and creating an environment

conducive to fungal overgrowth. This finding aligns with existing

research that highlights the impact of antibiotic-induced dysbiosis

on increasing the risk of fungal infections (25). The balance

between effective bacterial infection control and the risk of

inducing fungal infections presents a critical challenge in managing

immunocompromised patients. Incorporating these findings into
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personalized treatment plans can improve outcomes and reduce

the incidence of BIFI, as supported by both the study and existing

research (26).

It is important to note that the study did not directly assess

the impact of microbiota-preserving strategies, which represents a

potential area for future research. Investigating these interventions

could provide valuable insights into more holistic approaches to

infection prevention in this vulnerable population.

4.3 Role of red blood cell transfusions in
BIFI development

Our study identified a significant positive correlation between

the volume of red blood cell transfusions and the risk of BIFI

in pediatric acute leukemia patients. This finding aligns with

existing literature that highlights the immunosuppressive effects

of transfusions, known as transfusion-related immunomodulation,

which can increase susceptibility to infections (27). Moreover,

repeated transfusions can lead to iron overload, which is a known

risk factor for fungal infections due to iron’s role in promoting the

growth of pathogens like Candida and Aspergillus (28).

To mitigate these risks, clinicians should carefully assess

the need for transfusions and consider strategies such as

using leukoreduced or irradiated blood products to minimize

immunosuppression (29). Close monitoring of transfusion-

dependent patients for early signs of infection and iron overload

is essential, along with exploring alternatives to transfusions, such

as erythropoiesis-stimulating agents (30). Personalized transfusion

strategies, guided by the patient’s risk profile, can help balance

the immediate benefits of transfusions with the long-term goal of

reducing infection risks, including BIFI.

The study did not explore the long-term outcomes of different

transfusion strategies, nor did it account for potential variations

in transfusion practices across different institutions. Future studies

should aim to address these gaps by examining the impact of

specific transfusion protocols on BIFI incidence and outcomes in

larger, multi-center cohorts.

4.4 Role of CRP in BIFI development

The study identified a strong correlation between elevated CRP

levels and the risk of BIFI in pediatric acute leukemia patients,

suggesting that CRP can serve as a valuable predictive biomarker

for these infections. This finding is supported by existing literature,

which highlights the role of CRP as an indicator of systemic

inflammation and immune dysregulation, both of which increase

susceptibility to fungal infections in immunocompromised patients

(31). Notably, CRP demonstrates a cut-off value of 34.385, an area

under the curve (AUC) of 0.761, and a 95% confidence interval

(CI) of 0.654–0.867, confirming its strong predictive effectiveness

in this context.

In addition to CRP, our analysis also revealed that neutrophil

deficiency (cut-off value: 14.500, AUC: 0.749, 95% CI: 0.649–0.849)

and broad-spectrum antibiotic use (cut-off value: 7.500, AUC:

0.753, 95% CI: 0.665–0.840) serve as important predictive factors

for BIFI risk. However, red blood cell transfusions exhibited a

weaker predictive power, with a cut-off value of 4.075 and an AUC

of 0.691 (95% CI: 0.596–0.785).

Given its predictive value, CRP levels can be used to guide

antifungal therapy, with elevated levels prompting early initiation

or escalation of treatment (32). Additionally, CRP monitoring

can help assess the effectiveness of ongoing antifungal therapy,

with decreasing levels indicating a favorable response. However,

due to its lack of specificity, CRP should be interpreted alongside

other clinical and diagnostic information to ensure accurate risk

assessment and management of BIFI in this vulnerable population.

4.5 Interrelationship of key risk factors for
BIFI

The three identified risk factors for BIFI (duration of

neutropenia, length of antibiotic use, and RBC transfusion)

are inherently interrelated, as patients experiencing prolonged

myelosuppression frommyelotoxic therapies will inevitably require

extended periods of neutropenia, necessitating longer courses

of broad-spectrum antibiotic prophylaxis and more frequent

RBC transfusions to manage treatment-induced anemia; this self-

reinforcing cycle, where each factor contributes to and exacerbates

the others, underscores the mutually dependent nature of these key

risk determinants for BIFI, and recognizing this interdependence is

crucial for developing comprehensive prevention and management

strategies that consider the complex interactions between these

variables, with interventions targeting one factor potentially

having downstream benefits on the others, though the precise

quantitative relationships between these factors require further

investigation.Recent findings have highlighted the high rate of

breakthrough invasive aspergillosis among patients receiving

caspofungin for persistent fever and neutropenia, underscoring

the need for vigilant monitoring and possibly adjusting antifungal

therapy based on CRP levels and other biomarkers (33, 34).

4.6 Clinical utility of nomogram and DCA
for BIFI risk stratification

In our study, we developed a nomogram based on key

predictors to estimate the risk of BIFI in pediatric acute leukemia

patients. The nomogram assigns scores to specific values of

each predictor, allowing clinicians to calculate an individualized

risk score for BIFI. By visually mapping each variable’s impact,

the nomogram aids in translating complex statistical results

into an accessible tool for clinical decision-making. This tool

has significant potential for clinical application, as it allows

healthcare providers to assess BIFI risk in real-time and personalize

preventive and therapeutic strategies based on individual patient

risk. For instance, patients identified as high-risk may benefit

from enhanced monitoring, timely antifungal interventions, or

additional preventive measures. However, while the nomogram

shows promise in risk stratification, its applicability should

be further validated in independent cohorts to confirm its

generalizability and clinical utility.
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In this study, decision curve analysis indicated a potential

benefit of the predictive model relative to treating all patients or

none, which suggests its utility in identifying patients at higher

risk of BIFI. While all patients in this cohort received antifungal

prophylaxis, our findings support the idea that, the model

could help stratify risk levels, guiding personalized prophylactic

strategies. Importantly, we do not propose the removal of

prophylaxis in low-risk patients solely based on this model.

Instead, we suggest that such a risk-based approach could refine

prophylactic intensity in clinical practice, potentially optimizing

outcomes. Additionally, most risk factors included in the model,

such as patient demographics, initial disease status, and baseline

laboratory values, would generally be available early in the

treatment process, supporting its potential application in real-

time decision-making.

A limitation of this study is that it did not evaluate other

inflammatory markers that may also be predictive of BIFI.

Furthermore, the study did not include the length of hospital

stay in the analysis, as BIFI may also contribute to prolonged

hospitalization, leading to a potential bidirectional causality

between the two variables. Additionally, the relatively small sample

size limits the generalizability of our findings. Future research

would benefit from a larger cohort, ideally with external data for

validation, to enhance both the predictive accuracy and robustness

of the model. A broader investigation into the role of multiple

biomarkers and factors such as hospital stay duration could provide

more comprehensive tools for clinical decision-making.

5 Conclusion

The study identifies key predictors of BIFI in pediatric acute

leukemia patients, offering valuable insights for early identification

and personalized management strategies. By leveraging these

findings, clinicians can improve patient outcomes and reduce the

burden of invasive fungal infections in this vulnerable population.
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