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Purpose: To develop a predictive model for orthokeratology (Ortho-K) lens

decentration 1 month after wear.

Methods: This study included myopic children who were fitted with Ortho-

K lenses at Fujian Provincial Hospital between December 2022 and May 2024.

Corneal topography parameters and other relevant metrics were collected pre-

and post-treatment. Feature selection was conducted using univariate logistic

regression and Lasso regression analysis. A machine learning approach was

used to develop multiple predictive models, including Decision Tree, Logistic

Regression, Multilayer Perceptron, Random Forest, and Support Vector Machine.

Model performance was evaluated using accuracy, sensitivity, specificity, ROC

curves, DCA curves, and calibration curves. SHAP values were employed to

interpret the models.

Results: The Logistic Regression model demonstrated the best predictive

performance, with an AUC of 0.82 (95% CI: 0.69–0.95), accuracy of 77.59%,

sensitivity of 85%, and specificity of 61.11%. The most significant predictors

identified were age, 8mm sag height di�erence, 5mm Kx1, and 7mm Kx2. SHAP

analysis confirmed the importance of these features, particularly the 8mm sag

height di�erence.

Conclusions: The Logistic Regression model successfully predicted the risk

of Ortho-K lens decentration using key corneal morphological metrics and

age. This model provides valuable support for clinicians in optimizing Ortho-

K lens fitting strategies, potentially reducing the risk of adverse outcomes and

improving the quality of vision for patients. Further validation in clinical settings

is recommended.

KEYWORDS

orthokeratology, lens decentration, predictive model, Logistic Regression model,

myopia

1 Introduction

Myopia has become a significant global public health issue, with the prevalence of

myopia and high myopia expected to increase to 4,758 billion and 938 million cases,

respectively, by 2050 (1). The number of people with vision impairment due to myopia-

related macular degeneration is projected to reach 55.7 million globally, with an estimated
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18.5 million expected to be blind (2). Effective control of myopia

is crucial for preventing vision impairment. Orthokeratology is

a non-surgical method that temporarily reshapes the cornea by

wearing rigid gas-permeable contact lenses overnight, allowing for

clear vision during the day without the need for glasses (3). It is

considered a reliable method for slowing the progression of myopia

in children and adolescents (4). However, the potential side effects

of Orthokeratology, such as corneal staining, microbial keratitis,

and chronic allergic conjunctivitis, have raised concerns among

ophthalmologists and parents (5). Lens decentration is a significant

risk factor contributing to these complications (6).

The occurrence of lens decentration is associated with multiple

factors, among which corneal morphological features play a crucial

role. Previous studies have indicated that the degree of lens

decentration can be evaluated and quantified using pre-treatment

corneal topography parameters (7, 8). Li et al. (9) also noted that

eyes with larger corneal elevation differences are often at a higher

risk of lens decentration.

Despite these findings, the prediction of lens decentration has

predominantly relied on clinical experience and limited parameter

analysis, lacking a systematic and quantitative assessment standard.

The emergence of machine learning presents an opportunity to

create precise predictive models, sometimes even outperforming

clinical practitioners (10). Fan et al. (11) developed a machine

learning model that improved the accuracy and efficiency of Ortho-

k lens fitting, reducing the need for trial lenses and the risk of

cross-infection during the pandemic. Similarly, Fang et al. (12)

also utilized machine learning models to identify ocular metrics

and clinical features for predicting orthokeratology treatment

outcomes. Building on these insights, this study aims to develop

a model to predict lens decentration 1 month after wear, leveraging

corneal morphological features and other relevant metrics. This

model will provide a scientific basis for optimizing lens fitting and

improving correction strategies in clinical practice.

2 Methods

2.1 Study population and data collection

This study included myopic children who were fitted with

Ortho-k lenses at Fujian Provincial Hospital between December

2022 and May 2024. The inclusion criteria were wearing Ortho-

k lenses for at least 1 month and having complete corneal

topography and decentration data. Exclusion criteria included

corneal abnormalities, a history of ocular diseases before treatment,

or inability to cooperate during examinations. All patients were

fitted by the same experienced ophthalmologist. None of the

participants had undergone orthokeratology treatment prior to this

study. This study received approval from the Ethics Committee

of Fujian Provincial Hospital (K2024-06-044) and adhered to the

principles outlined in the Declaration of Helsinki. All subjects were

duly informed and consented to participate in this study.

Before wearing Ortho-k lenses, a series of examinations were

conducted, including IOMASTER (Zeiss, Germany), subjective

and objective refraction (Phoroptor, Topcon CV-3000, Tokyo,

Japan), and slit-lamp evaluation (Suzhou 66 Vision Technology,

Suzhou, China). Corneal morphology was assessed using

corneal topography (Medmont E300 Topographer, Nunawading,

Australia), with each topographic image being automatically

captured and optimally focused. The recorded corneal topography

parameters included Flat K, Steep K, Kx (Steep K - Flat K), flat

eccentricity (E1), steep eccentricity (E2), E ratio (E1/E2), IS Index,

Corneal Surface Asymmetry Index, 8mm sag height difference,

Corneal Surface Regularity Index, Central Tear Film Surface

Quality, Tear Film Surface Quality, Vertical Q, and Horizontal Q.

The 8mm sag height difference was calculated based on corneal

topography maps, specifically using the elevation data. First, the

average value in the flat K direction was determined by measuring

the corneal height 4mm from the corneal center on both the nasal

and temporal sides. These two values were summed and divided

by two to obtain the average flat K direction height. Similarly, the

steep K direction height was measured by taking the corneal height

4mm from the center on both the superior and inferior sides,

summing these values, and dividing by two to obtain the average

steep K direction height. The difference between these two average

values (flat K and steep K directions) represents the 8mm sag height

difference (Figure 1).

Additionally, the curvatures of various corneal regions were

measured, including 0–3mm Corneal Flat Curvature 1, 0–3mm

Corneal Flat Curvature 2, 0–3mm Corneal Oblique Curvature

1, 0–3mm Corneal Oblique Curvature 2, 3–5mm Corneal Flat

Curvature 1, 3–5mm Corneal Flat Curvature 2, 3–5mm Corneal

Oblique Curvature 1, 3–5mm Corneal Oblique Curvature 2, 5–

7mm Corneal Flat Curvature 1, 5–7mm Corneal Flat Curvature

2, 5–7mm Corneal Oblique Curvature 1, and 5–7mm Corneal

Oblique Curvature 2.

The 3mmKx1 was defined as the difference between 0 to 3mm

Corneal Flat Curvature 2 and 0 to 3mm Corneal Flat Curvature

1. The 3mm Kx2 was defined as the difference between 0 to

3mm Corneal Oblique Curvature 2 and 0–3mm Corneal Oblique

Curvature 1. The 5mm Kx1 was defined as the difference between

3 to 5mm Corneal Flat Curvature 2 and 3 to 5mm Corneal Flat

Curvature 1. The 5mm Kx2 was defined as the difference between

3 to 5mm Corneal Oblique Curvature 2 and 3 to 5mm Corneal

Oblique Curvature 1. Finally, the 7mm Kx1 was defined as the

difference between 5 to 7mm Corneal Flat Curvature 2 and 5 to

7mmCorneal Flat Curvature 1, while the 7mmKx2 was defined as

the difference between 5 to 7mmCorneal Oblique Curvature 2 and

5 to 7mm Corneal Oblique Curvature 1.

Lens decentration was assessed 1 month after lens wear using

a follow-up corneal topography measurement. The difference

map was obtained by subtracting the pre-treatment tangential

curvature map from the post-treatment tangential curvature map.

Following the definition of decentration by Zhang et al. (13),

the decentration distance was determined by the topography

software, which automatically displayed the distance between the

“O point”—the central point of the treatment zone on the cornea,

determined by the curvature changes and geometric center created

by the orthokeratology lens—and the pupil center. Previous studies

suggest that decentration of <1.0mm is acceptable, while severe

decentration >1.0mm should be avoided (14, 15). Therefore, in

this study, a decentration distance of <1.0mm was considered

as non-decentration, while a decentration distance >1mm was

considered as decentration. The lens decentration images and well-

fitted images are shown in Figure 2.

Frontiers inMedicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2024.1490525
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Xiao et al. 10.3389/fmed.2024.1490525

FIGURE 1

Calculation of the 8mm sag height di�erence based on corneal topography.

FIGURE 2

Comparison of well-fitted and decentered orthokeratology lenses. (A) Well-fitted Ortho-k lens. (B) Decentered Ortho-k lens.

2.2 Lens fitting

The lens fitting procedure in this study followed standard

Ortho-K guidelines. We used two brands of Ortho-K lenses based

on the CRT design: Lucid (Lucid Korea Co., Ltd., Boston XO

material) and ESSENCE (U.S., Paragon HDS R© 100 material).

Lens selection was based on corneal curvature, sagittal height,

and refractive error, ensuring proper centration and an effective

treatment zone during wear. Trial lenses were used to assess

the initial fit, and a fluorescein evaluation was performed to

check the tear film under the lens. Patients were instructed on

proper lens handling, insertion, removal, and care. Follow-up visits

were scheduled to monitor lens performance, corneal response,

and make any necessary adjustments to the lens fit. All lens

parameters for the patients were determined by an experienced

attending physician.

2.3 Feature selection

To determine the variables included in the machine learning

models, univariate analysis was first conducted to assess the

differences between patients with and without decentration.

Variables with statistical significance (α = 0.05) were then

subjected to univariate logistic regression to estimate odds

ratios (OR) and 95% confidence intervals (CI). A p-value of

<0.05 was considered statistically significant. Additionally, Lasso

regression analysis with L1 regularization was used to determine

the inclusion and exclusion criteria based on the size of the

coefficients. Lasso regression introduces an L1 penalty in the loss

function, driving some coefficients to zero, thus enabling automatic

feature selection. Variables with coefficients driven to zero in

the Lasso regression were excluded, while non-zero variables

were retained. The final features included in the model were
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TABLE 1 Comparison of baseline characteristics between patients with and without lens decentration.

Variable Lens decentration p-valueb

No N = 127a Yes N = 66a

Age (years) <0.001

Median (Q1, Q3) 9.00 (8.00, 11.00) 10.00 (9.00, 12.00)

Sex (male) 66 (52%) 32 (48%) 0.6

Axial length (mm) 0.012

Median (Q1, Q3) 24.42 (23.92, 25.02) 24.75 (24.27, 25.21)

Spherical power (diopters) 0.002

Median (Q1, Q3) −1.50 (−2.25,−1.00) −2.13 (−3.25,−1.50)

Cylindrical power (diopters) <0.001

Median (Q1, Q3) −0.50 (−0.75,−0.25) −0.75 (−1.25,−0.50)

Astigmatism axis

Median (Q1, Q3) 165.00 (145.00, 170.00) 170.00 (160.00, 175.00) 0.10

Jesson factor 0.3

75 63 (50%) 38 (58%)

125 64 (50%) 28 (42%)

Lens diameter (mm) 0.3

10 2 (1.6%) 2 (3.0%)

10.2 22 (17%) 13 (20%)

10.4 17 (13%) 6 (9.1%)

10.6 77 (61%) 35 (53%)

10.8 9 (7.1%) 10 (15%)

Flat K (diopters) 0.9

Median (Q1, Q3) 42.64 (41.85, 43.55) 42.63 (41.79, 43.77)

Steep K (diopters) 0.10

Median (Q1, Q3) 43.59 (42.88, 44.49) 43.85 (43.28, 45.23)

Kx (diopters) <0.001

Median (Q1, Q3) 0.97 (0.73, 1.21) 1.33 (1.01, 1.78)

Corneal thickness (mm) >0.9

Median (Q1, Q3) 530.00 (508.00, 559.00) 534.00 (508.00, 552.00)

White to White (mm) 0.3

Median (Q1, Q3) 12.20 (12.00, 12.50) 12.10 (11.90, 12.40)

e1 0.7

Median (Q1, Q3) 0.65 (0.58, 0.71) 0.66 (0.59, 0.71)

e2 0.4

Median (Q1, Q3) 0.52 (0.42, 0.63) 0.47 (0.34, 0.65)

IS Index 0.4

Median (Q1, Q3) 0.05 (−0.26, 0.38) −0.04 (−0.35, 0.42)

Corneal Surface Asymmetry Index 0.11

Median (Q1, Q3) 0.58 (0.45, 0.83) 0.63 (0.52, 0.90)

Corneal Surface Regularity Index 0.4

Median (Q1, Q3) 0.51 (0.42, 0.69) 0.50 (0.42, 0.59)

(Continued)
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TABLE 1 (Continued)

Variable Lens decentration p-valueb

No N = 127a Yes N = 66a

Central Tear Film Surface Quality 0.2

Median (Q1, Q3) 0.05 (0.02, 0.07) 0.04 (0.02, 0.06)

Tear film surface quality 0.11

Median (Q1, Q3) 0.07 (0.05, 0.11) 0.06 (0.04, 0.09)

0–3mm Corneal Flat Curvature 1 (diopters) 0.9

Median (Q1, Q3) 42.30 (41.70, 43.50) 42.35 (41.60, 43.50)

0–3mm Corneal Flat Curvature 2 (diopters) >0.9

Median (Q1, Q3) 42.80 (42.10, 43.70) 42.80 (42.00, 43.90)

0–3mm Corneal Oblique Curvature 1 (diopters) 0.14

Median (Q1, Q3) 43.90 (43.20, 44.90) 44.20 (43.50, 45.70)

0–3mm Corneal Oblique Curvature 2 (diopters) 0.3

Median (Q1, Q3) 43.60 (42.80, 44.60) 43.90 (43.00, 44.90)

3–5mm Corneal Flat Curvature 1 (diopters) 0.9

Median (Q1, Q3) 42.10 (41.40, 43.20) 42.15 (41.20, 43.40)

3–5mm Corneal Flat Curvature 2 (diopters) 0.6

Median (Q1, Q3) 42.60 (41.80, 43.70) 42.70 (42.10, 43.80)

3–5mm Corneal Oblique Curvature 1 (diopters) 0.036

Median (Q1, Q3) 43.70 (43.00, 44.50) 44.10 (43.50, 45.50)

3–5mm Corneal Oblique Curvature 2 (diopters) 0.14

Median (Q1, Q3) 43.20 (42.40, 44.20) 43.50 (42.70, 44.90)

5–7mm Corneal Flat Curvature 1 (diopters) 0.7

Median (Q1, Q3) 41.40 (40.40, 42.30) 41.45 (40.40, 42.40)

5–7mm Corneal Flat Curvature 2 (diopters) >0.9

Median (Q1, Q3) 42.30 (41.70, 43.20) 42.25 (41.80, 43.60)

5–7mm Corneal Oblique Curvature 1 (diopters) 0.018

Median (Q1, Q3) 43.30 (42.50, 44.10) 43.60 (42.90, 44.90)

5–7mm Corneal Oblique Curvature 2 (diopters) 0.3

Median (Q1, Q3) 42.80 (42.10, 43.60) 42.95 (42.20, 44.40)

Vertical Q 0.13

Median (Q1, Q3) −0.53 (−0.63,−0.42) −0.46 (−0.63,−0.30)

Horizontal Q 0.8

Median (Q1, Q3) −0.42 (−0.51,−0.35) −0.42 (−0.50,−0.36)

3 mmKx1 (diopters) 0.5

Median (Q1, Q3) 0.30 (0.10, 0.50) 0.30 (0.10, 0.50)

3 mmkx2 (diopters) >0.9

Median (Q1, Q3) 0.30 (0.20, 0.50) 0.30 (0.10, 0.50)

5 mmkx1 (diopters) 0.2

Median (Q1, Q3) 0.50 (0.30, 0.80) 0.60 (0.30, 0.90)

5 mmkx2 (diopters) 0.5

Median (Q1, Q3) 0.40 (0.20, 0.60) 0.50 (0.20, 0.80)

(Continued)
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TABLE 1 (Continued)

Variable Lens decentration p-valueb

No N = 127a Yes N = 66a

7 mmkx1 (diopters) 0.9

Median (Q1, Q3) 0.90 (0.60, 1.50) 1.00 (0.70, 1.30)

7 mmkx2 (diopters) 0.001

Median (Q1, Q3) 0.40 (0.20, 0.70) 0.70 (0.30, 1.00)

8mm sag height di�erence <0.001

Median (Q1, Q3) 16.00 (10.00, 22.00) 28.00 (21.00, 40.00)

an (%).
bWilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test.

FIGURE 3

Univariate logistic regression analysis of variables associated with lens decentration.
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TABLE 2 Univariate logistic regression analysis of variables associated with lens decentration.

Variable OR Lower CI Upper CI p-value

Age 1.440592 1.200426 1.728806 <0.00001

Sex 0.869875 0.479712 1.577371 0.646169

Axial length 1.622888 1.086496 2.424092 0.018019

Spherical power 0.612215 0.463883 0.807977 0.000528

Cylindrical power 0.242711 0.121778 0.483737 <0.00001

Astigmatism axis 1.003409 0.998147 1.008699 0.204614

Jesson factor 0.993598 0.981758 1.005581 0.293695

Lens diameter 1.191306 0.253307 5.602714 0.824617

Flat K 0.977877 0.775797 1.232595 0.849769

Steep K 1.206916 0.969956 1.501767 0.091708

Kx 6.02348 2.864692 12.66534 <0.00001

Corneal thickness 0.998015 0.988983 1.007131 0.668474

White to white 0.815115 0.427562 1.553954 0.534612

e1 2.214293 0.092107 53.23275 0.624135

e2 0.626629 0.144921 2.709493 0.531521

IS index 0.756337 0.450386 1.270121 0.291007

Corneal Surface Asymmetry Index 1.975557 0.746751 5.226409 0.170165

Corneal Surface Regularity Index 0.463113 0.100389 2.136424 0.323727

Central Tear Film Surface Quality 0.005785 1.56E-05 2.148543 0.087882

Tear Film Surface Quality 0.057106 0.001084 3.009506 0.156977

0–3mm Corneal Flat Curvature 1 0.980719 0.775595 1.240094 0.87082

0–3mm Corneal Flat Curvature 2 1.02992 0.820136 1.293365 0.79973

0–3mm Corneal Oblique Curvature 1 1.172542 0.947251 1.451416 0.143687

0–3mm Corneal Oblique Curvature 2 1.156673 0.9278 1.442004 0.195722

3–5mm Corneal Flat Curvature 1 0.980365 0.778868 1.233989 0.865852

3–5mm Corneal Flat Curvature 2 1.062038 0.839585 1.343432 0.615719

3–5mm Corneal Oblique Curvature 1 1.26399 1.014774 1.574411 0.036538

3–5mm Corneal Oblique Curvature 2 1.220417 0.980395 1.519201 0.074621

5–7mm Corneal Flat Curvature 1 1.031232 0.824651 1.289563 0.787434

5–7mm Corneal Flat Curvature 2 1.021141 0.801836 1.300427 0.865324

5–7mm Corneal Oblique Curvature 1 1.313607 1.056296 1.633599 0.014191

5–7mm Corneal Oblique Curvature2 1.16766 0.936689 1.455585 0.168085

Vertical Q 2.949316 0.654758 13.285 0.158982

Horizontal Q 1.065003 0.088312 12.84342 0.96046

3 mmKx1 1.545533 0.780441 3.06067 0.211706

3 mmkx2 1.482172 0.623392 3.524002 0.373182

5 mmkx1 1.93691 0.977514 3.837923 0.058117

5 mmkx2 1.594231 0.734687 3.459396 0.238011

7 mmkx1 0.930556 0.547421 1.581842 0.79033

7 mmkx2 2.863445 1.496853 5.477703 0.001479

8mm sag height difference 1.148919 1.098197 1.201984 <0.00001
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determined by combining the variables identified through these

two models.

2.4 Model development and evaluation

Machine learning models were developed using R version

4.4.0 and the Tidymodels package. The data were randomly

divided into a training set and a testing set in a 7:3 ratio.

Multiple machine learning algorithms were used to build the

models (16), including Decision Tree (DT), Logistic Regression,

Multilayer Perceptron (MLP), Random Forest (RF), and Support

Vector Machine (SVM). Hyperparameter tuning was performed

through cross-validation and grid search to achieve optimal

model performance. The effectiveness of different algorithms in

predicting decentration was compared, and the best-performing

model was selected for final analysis. Feature importance analysis

was conducted to evaluate the contribution of different features

in predicting decentration. Finally, a computational platform was

developed using the best-performing model. Model performance

was validated on the testing set and evaluated using accuracy,

sensitivity, specificity, ROC curves, DCA curves, and calibration

curves. For model interpretability, Shapley Additive Planations

(SHAP) values were used to explain the model, allowing us to

understand the importance and specific impact of each feature in

predicting Ortho-k lens decentration.

3 Results

3.1 Baseline characteristics of the study
population

We conducted an initial comparison of baseline characteristics

between the lens decentration group (N = 66) and the non-

decentration group (N = 127). In the decentration group, there

were 32 males and 34 females, with an average age of (10.55 ±

1.92) years. In the non-decentration group, there were 66 males

and 61 females, with an average age of (9.45 ± 1.58) years. A

total of 42 variables were included in the study, encompassing

demographic information, lens parameters, patient refractive

status, and corneal topography parameters (Table 1). The analysis

revealed that the decentration group had significantly greater values

in age, axial length, spherical equivalent, cylindrical power, steep

K, Kx, 3–5mm corneal oblique curvature 1, 5–7mm corneal

oblique curvature 1, 7 mmkx2, and 8mm sag height difference

compared to the non-decentration group. These findings suggest

that these variables may be associated with the risk of Ortho-k

lens decentration.

3.2 Selection of predictive variables

To enhance the practicality and operability of the model, a

univariate logistic regression analysis was conducted on a set of

42 independent variables. The aim was to eliminate redundant

variables and identify a more efficient, concise, and accurate set

of predictors. The results showed that out of the 20 variables

evaluated, only nine were identified as independent predictors of

OK lens decentration (Figure 3 and Table 2). Specifically, Spherical

Power and Cylindrical Power were identified as independent

protective factors, while 3–5mm Corneal Oblique Curvature 1,

Axial Length, 5–7mm Corneal Oblique Curvature 1, 7 mmkx2,

Age, Kx, and 8mm sag height difference were identified as

independent risk factors.

To further control for confounding factors, Lasso regression

analysis was employed to perform an in-depth selection of the

42 independent variables (Figure 4). Cross-validation revealed that

the model achieved optimal fit when four variables were included.

The findings indicated that Age, 5 mmkx1, 8mm sag height

difference, and 7 mmkx2 were effective predictive variables. A

multicollinearity analysis of these four variables showed that the

Variance Inflation Factor (VIF) values were all below 2 (Table 3),

indicating that there was no significant multicollinearity among

the variables.

In this study, the intersection of variables identified by logistic

regression and Lasso regression includes Age, 5mm Kx1, 8mm

sag height difference, and 7mm Kx2. Clinical practice have shown

that these parameters effectively reflect the morphological changes

in the central and peripheral corneal regions and are crucial for

predicting lens decentration. Therefore, we selected them as the

final predictive variables for the model.

3.3 Comparison of predictive performance
across di�erent models

We compared the predictive performance of five different

machine learning models, including Decision Tree (DT), Logistic

Regression, Multilayer Perceptron (MLP), Random Forest (RF),

and Support Vector Machine (SVM). The results of this study

indicate that the Logistic Regression model outperformed the

other machine learning algorithms, achieving an AUC of 0.82

(95% CI: 0.69–0.95), an accuracy of 77.59%, a sensitivity

of 85%, and a specificity of 61.11% (Figures 5A, C and

Table 4).

The clinical utility of each model at various decision thresholds

was evaluated using Decision Curve Analysis (DCA; Figure 5B).

The results demonstrate that the Logistic Regression model

provided the highest net benefit across most threshold ranges,

particularly within the clinically relevant threshold range of 0.2–

0.8.

Additionally, we assessed the calibration of the

models by comparing the predicted probabilities to

the observed event rates using calibration curves. The

calibration curve for the Logistic Regression model closely

followed the ideal line (where predicted probabilities

perfectly match actual outcomes), especially in the mid-

probability range, indicating excellent agreement between

the predicted probabilities and the observed event rates.

Although there was some deviation in the high-probability

range, the overall calibration of the Logistic Regression

model was good, further confirming the reliability of its

predictions (Figure 5D).
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FIGURE 4

LASSO regression path and cross-validation results. (A) LASSO regression path. (B) LASSO cross-validation.

Considering all the evaluated metrics, the Logistic Regression

model outperformed the other machine learning algorithms in

terms of AUC, DCA, and calibration curve performance. This

suggests that the Logistic Regression model is highly accurate and

robust for this specific task, making it the most suitable predictive

tool in this study.
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TABLE 3 Variance inflation factor (VIF) method checks the

multicollinearity of the independent variable.

Variable VIF p-value

Age 1.09 0.006483

5 mmkx1 1.09 0.152453

8mm sag height

difference

1.20 <0.00001

7 mmkx2 1.21 0.281112

3.4 Model interpretability

To gain deeper insights into the decision-making process of

the logistic regressionmodel, we conducted interpretability analysis

using SHAP values. The SHAP values of features such as 8mm sag

height difference, 5 mmkx1, 7 mmkx2, and Age are predominantly

positive when indicated by red dots, suggesting that higher values

of these features tend to increase the predicted probability of lens

decentration. Conversely, the blue dots, which represent lower

feature values, show negative SHAP values (Figure 6A).

Among all the features, 8mm sag height difference exhibits the

highest mean SHAP value, highlighting its importance as the most

influential predictor in the model (Figure 6B). The SHAP force plot

illustrates how these features influence the predictive outcomes in a

specific individual (Figure 6C). The nomogram further visualizes

the contributions of each feature to the predictive outcome in a

straightforward manner (Figure 6D). By using the nomogram, it

is clear how the scores corresponding to each feature value are

summed to predict the overall outcome. The nomogram illustrates

how the predicted probability changes with varying values of

each feature, emphasizing that 8mm sag height difference has the

greatest impact on the prediction, while other features such as Age,

7 mmkx2, and 5 mmkx1 have relatively smaller effects.

4 Discussion

Lens decentration is a significant risk factor for adverse

outcomes during ortho-k lens wear. Given that lens decentration

can lead to suboptimal vision, corneal damage, and even more

severe complications, early identification of high-risk individuals

and timely clinical intervention are crucial to reducing adverse

events and enhancing the quality of vision for patients (17, 18).

Some scholars are also using machine learning technology to make

Ortho-K lens fitting more convenient. Koo et al. (19) developed a

model for determining comprehensive Ortho-k lens parameters,

which can even achieve expert-level accuracy. In this study, we

included 42 clinical parameters related to lens decentration and

constructed several machine learning models based on these

variables. The logistic regression model, incorporating corneal

topography parameters (such as 8mm sag height difference, 5

mmkx1, 7 mmkx2) and age, demonstrated excellent performance

in predicting the risk of ortho-k lens decentration. The

interpretability of the model was supported by SHAP analysis and

the nomogram.

To the best of our knowledge, this is the first study to

construct a machine learning model for ortho-k lens decentration

usingmultidimensional corneal morphological parameters (such as

8mm sag height difference, 5mm Kx1, and 7mm Kx2). Previous

research has primarily focused on single or limited parameters

and lacked the establishment of reliable models. In this study,

the Logistic model achieved an AUC of 0.82 (95% CI: 0.69–

0.95). Although this is slightly lower than the AUC of 0.84 (95%

CI: 0.72–0.96) achieved by the MLP model, the Decision Curve

Analysis (DCA) of the Logistic Regression model showed superior

performance across multiple threshold ranges, especially in the

mid-threshold range (0.3–0.7). The higher net benefit in this range

suggests that the Logistic model has greater practical utility in

clinical settings. Compared to more complex models, the Logistic

Regression model is easier to understand and interpret, which is

particularly important for clinical decision-making where model

interpretability is critical (20). These suggest that the predictions

made by the Logistic Regression model are more practical and can

effectively guide clinical decision-making.

The interpretability of predictive models is crucial for their

acceptance by clinicians (16). SHAP analysis suggest that higher

values of features are associated with a increased probability

of decentration. The 8mm sag height difference had the most

substantial impact on the prediction results. It is well-known

that the shape of the corneal periphery is crucial for lens fit

and stability (21). A larger 8mm sag height difference indicates

significant height variations in the corneal periphery, which could

prevent the lens from conforming fully to the corneal surface,

increasing the risk of lens displacement during wear. Recent

research has also identified the 8mm sag height difference as an

effective predictor of ortho-k lens decentration (14), consistent

with our findings. 7 mmkx2 (the oblique curvature difference at

7mm) and 5 mmkx1 (the flat curvature difference at 5mm) were

also identified as significant predictors in our study. The SHAP

values for 7 mmkx2 were clustered around 0, indicating that this

feature contributes minimally to the prediction overall. However,

in certain cases, higher SHAP values suggest that 7 mmkx2 can

significantly influence model output, indicating that patients with

significant curvature variation at 7mm may experience less stable

lens fitting. Some data points for 5 mmkx1 had negative SHAP

values, indicating that in some cases, 5 mmkx1 might slightly

reduce the predicted risk of decentration. Gu et al. (7) suggested

that central curvature differences might help support the lens and

prevent severe decentration, as eye blinking tends to move the lens

up or down during ortho-k lens wear.

Greater age was associated with positive SHAP values,

indicating an increased risk of decentration, which has not

been previously reported but could be related to changes in

sleep patterns. As individuals age, their sleep patterns tend to

change significantly. Older individuals often experience lighter

sleep and more frequent awakenings (22), which may cause more

disturbances to the lens during overnight wear, increasing the

likelihood of lens displacement and thus the risk of decentration.

Additionally, with age, corneal morphology and biomechanical

properties may change, potentially affecting lens fit and stability.

Older corneas may be stiffer and less deformable (23), which could

contribute to lens decentration. Meanwhile, older children wearing

Ortho-K lenses, who are likely transitioning to junior high or

high school, may experience reduced lens centration and stability

during sleep. This can be attributed to shorter sleep durations

and increased academic stress, potentially elevating the risk of

lens decentration.

Frontiers inMedicine 10 frontiersin.org

https://doi.org/10.3389/fmed.2024.1490525
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Xiao et al. 10.3389/fmed.2024.1490525

FIGURE 5

Model performance evaluation. (A) ROC curves. (B) DCA curves. (C) AUC with 95% confidence intervals. (D) Calibration curve.

TABLE 4 Di�erent model metrics evaluation.

Model Accuracy AUC Sensitivity Specifity

Decision tree 82.75% 0.77 (0.65–0.89) 92.5% 61.11%

Logistic regression 77.59% 0.82 (0.69–0.95) 85% 61.11%

MLP 79.31% 0.84 (0.72–0.96) 85% 66.67%

Random forest 72.41% 0.80 (0.66–0.94) 72.5% 72.2%

SVM 75.86% 0.81 (0.67–0.94) 82.5% 61.11%

In this study, the nomogram provides a practical application for

the predictive model. After obtaining the key parameters, clinicians

can find the corresponding score for each parameter on the “Points”

scale. By summing the scores for each parameter, a total score

is obtained. Based on the total score, clinicians can determine

the predicted risk on the “Predicted Value” scale. If a patient

has a higher predicted risk, the clinician can take appropriate

interventions based on the model’s results, such as adjusting the

lens design parameters (e.g., increasing the back optic zone or

diameter), increasing the frequency of follow-ups to monitor lens

positioning, or implementing other measures to reduce the risk

of decentration.

Despite the meaningful findings of this study, there are some

limitations. First, the sample size was relatively small, which

might affect the generalizability of the model. Future studies

should include a larger sample size and consider incorporating

additional clinical variables to further improve the predictive

accuracy of the model. Second, this study primarily focused on the

development and preliminary validation of the model, and it has

not yet been widely applied and validated in real-world clinical

settings. Subsequent research should evaluate its applicability

and effectiveness in different populations. Finally, the imbalance

in sample size between the decentration and non-decentration

groups, may lead to better model fitting for the non-decentration

group during training, potentially affecting the accuracy of

predictions for patients in the decentration group. Future research

should aim to increase the sample size of the decentration

group or apply weighting methods to correct for this imbalance,

enhancing the model’s predictive performance and its applicability

in clinical practice.

5 Conclusion

This study successfully developed a Logistic-based predictive

model to assess the risk of lens decentration in ortho-k lens wear.

The findings indicate that corneal morphological metrics (8mm sag

height difference, 5 mmkx1, 7 mmkx2) and age are key predictive

factors influencing lens decentration. This model provides valuable

data support for clinicians during the ortho-k lens fitting process,

aiding in the prediction of decentration risk. Consequently, it
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FIGURE 6

SHAP analysis and nomogram for the Logistic Regression model. (A) SHAP Beeswarm plot. (B) SHAP feature importance. (C) SHAP force plot. (D)

Nomogram.

can help optimize personalized fitting strategies and reduce the

occurrence of lens decentration.
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