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Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common 
multi-factorial liver disease, and its incidence is gradually increasing worldwide. 
Many reports have revealed that intestinal flora plays a crucial role for the occurrence 
and development of MASLD, through mechanisms such as flora translocation, 
endogenous ethanol production, dysregulation of choline metabolism and bile 
acid, and endotoxemia. Here, we review the relationship between intestinal flora 
and MASLD, as well as interventions for MASLD, such as prebiotics, probiotics, 
synbiotics, and intestinal flora transplantation. Intervention strategies targeting 
the intestinal flora along with its metabolites may be new targets for preventing 
and treating MASLD.
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1 Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as 
non-alcoholic fatty liver disease, comprises a group of acquired metabolic stress-related liver 
diseases (1) and is characterized by the abnormal accumulation of liver fat and metabolic 
stress-induced liver damage, excluding viral infections, alcohol excessive use, and other factors. 
MASLD can gradually progress from isolated liver steatosis to metabolic dysfunction 
associated stem liver disease (MASH). If left untreated, MASH can further progress to 
cirrhosis, liver failure, and hepatocellular carcinoma (2). MASLD is related to metabolic 
syndromes such as insulin resistance, centripetal obesity, hypertension, and hyperlipidemia 
(3, 4). In addition, there is evidence to suggest that MASLD increases the risk of cardiovascular 
disease and chronic kidney disease (5, 6).

With changes in lifestyle, eating habits, and other factors, the incidence rate of MASLD 
has reached as high as 25%, and approximately two billion people worldwide are affected (7). 
MASLD is the most common chronic liver disease globally. The Middle East and South 
America show the highest incidence rates of 31.8 and 30.5%, respectively (8). The overall 
prevalence of MASLD in Asian countries is 29.6% and is increasing (9).

The pathogenesis of MASLD is unclear. In addition to fat accumulation, lipid oxidative 
stress, insulin resistance, gut microbiota, metabolites, and abnormal intestinal barrier function 
are also closely involved in the incidence and development of MASLD. The liver and the 
intestine have a close structural and functional relationship known as the “gut-liver axis.” 
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Seventy five percent of the liver blood supply comes from the portal 
vein, making it the first organ to be exposed to the gut microbiota and 
metabolites via the portal blood supply (10). A normal intestinal 
barrier can prevent the transfer of gut microbiota, metabolites, or 
toxins outside the intestinal cavity. Dysregulation of the gut microbiota 
can affect its metabolites and intestinal permeability, causing gut 
microbiota translocation, overactivation of the immune system, and 
exacerbation of the occurrence and progression of MASLD. This 
article reviews the mechanisms of action and prevention methods of 
the gut microbiota and its metabolites in MASLD pathogenesis.

2 MASLD and changes in gut 
microbiota species

The gut microbiota is a multifaceted ecosystem that has a 
symbiotic relationship with the host, containing 1,000–1,500 species 
of approximately 10–10 trillion bacteria (10 times the number of 

human cells). Among these, Bacteroidetes and Firmicutes are 
dominant and are associated with steatosis (11). Clinical trials have 
revealed that an increase in Bacteroidetes abundance is independently 
associated with MASH, whereas an increase in Ruminococcus 
abundance is independently associated with fibrosis (12). Compared 
with healthy individuals, patients with MASLD exhibit a significant 
reduction in intestinal flora diversity, significant changes in intestinal 
flora composition, a remarkable increase in the abundance of gram-
negative bacteria, and a remarkable reduction in the abundance of 
Firmicutes (13, 14). A significant correlation between liver fibrosis and 
a high abundance of Bacteroides and Escherichia coli was observed in 
the metagenomic sequencing data (15). Additionally, an increased 
abundance of Escherichia, Shigella, and Enterobacteriaceae is closely 
related to advanced fibrosis (16). The proportion of Bacteroidetes in 
patients with MASH is lower than that in healthy controls and is 
unrelated to diet or body mass index (17). Studies have also indicated 
no changes in the levels of Bacteroidetes between those with MASH 
and healthy controls (14). Various factors, such as geographical 
location, diet, age, and study population, may cause these inconsistent 
results. Therefore, more studies are needed to elucidate the exact 
mechanism of the interaction between gut microbiota and 
liver inflammation.

The intestinal flora is easily affected by external factors, such as 
dietary habits and lifestyle. Long-term high-sugar and high-fat 
diets can lead to an imbalance in the intestinal flora ecology, 
damaging barrier function and disrupting immune homeostasis 
(18). Many bacteria, along with their metabolites and cytokines, 
enter the liver via the portal vein, exceeding the processing capacity 
of the mononuclear macrophage system (19, 20), triggering a 
cytokine cascade reaction, inducing excessive activation of 
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immune cells, releasing large amounts of inflammatory mediators, 
exacerbating damage, inflammation, and fibrosis, and accelerating 
the development of MASLD (21, 22). Therefore, the gut microbiota 
is a key factor in MASLD pathogenesis.

3 Metabolites of gut microbiota and 
MASLD

3.1 Bile acids

In liver cells, bile acids are synthesized from cholesterol through 
a series of enzymatic reactions, secreted into the bile, and released into 
the intestine to promote the emulsification and absorption of dietary 
fat, cholesterol, and fat-soluble vitamins. The gut microbiota regulates 
bile acid metabolism through the bile acid receptors farnesol X 
receptor (FXR) and G protein-coupled bile acid receptor 5 (TGR5). 
This regulation involves gene expression related to bile acid synthesis, 
metabolism, and reabsorption, and it plays a critical role in 
maintaining liver glucose, lipid, and energy metabolism (23).

FXR-mediated signaling has favorable effects on carbohydrate 
metabolism and hepatic lipid. FXR is activated by primary bile 
acids. After activation, it stimulates the peroxisome proliferator-
activated receptor α (PPARα) expression, induces the expression 
and secretion of fibroblast growth factor 21 (FGF21), and activates 
the mammalian target of rapamycin. FXR enhances glucose 
uptake in adipocytes and stimulates fatty-acid oxidation in 
differentiated adipocytes by modulating the activity and stability 
of PPARγ, the main transcriptional regulator of adipogenesis (24, 
25). In mice fed with a high-fat diet (HFD) to model MASLD, FXR 
reduced hepatic lipogenesis by regulating the intestinal 
antagonism of gut microbiota (26). Activating FXR receptors can 
change the gut microbiota, especially gram-positive bacteria, e.g., 
Streptococcus thermophilus, Lactobacillus lactis, and Lactobacillus 
casei (27). The FXR agonist obeticholic acid prevents intestinal 
barrier damage and improves MASH (28, 29). A phase III clinical 
trial of MASH combined with fibrosis revealed that obeticholic 
acid significantly improved the degree of fibrosis (30). These 
studies suggest that FXR receptor agonists, as well as tissue-
selective FXR activation, could be  promising targets for the 
prevention and treatment of metabolic syndromes, including fatty 
liver disease and MASH.

TGR5 is activated primarily by secondary bile acids. Kupffer and 
endothelial cells express TGR5 in the liver tissue and regulates liver 
inflammation and glucose metabolism. TGR5 reduces inflammatory 
responses by inhibiting nuclear factor kappa-B (NF-κB) activity and 
cytokine production in macrophages (31). The intestinal microbiota 
affects the homeostasis of the bile acid pool by metabolizing the main 
bile acids into secondary bile acids, which regulate lipid and energy 
metabolic pathways in MASLD. In mice fed a Western diet, the 
selective TGR5 agonist RDX8940 improved insulin sensitivity and 
liver steatosis (32). Moreover, BAR502 is a non-steroidal dual FXR and 
TGR5 agonist that stimulates white adipose tissue browning and 
reverses liver steatosis inducted in HFD-fed mice (33).

Recent studies have reported bile acids as key nutrient sensors and 
metabolic integrators that play important roles in maintaining 
metabolic homeostasis. The intestinal microbiota can regulate the 
incidence and development of MASLD via BA metabolism and FXR/

TGR5 signal transduction pathways, providing basic evidence for 
intestinal flora-targeted treatment of MASLD.

3.2 Short-chain fatty acids

Short-chain fatty acids (SCFAs) are saturated fatty acids composed 
of five or fewer carbon atoms. SCFAs are absorbed and delivered to 
the liver via the portal vein and affect liver lipid metabolism through 
a protein kinase (adenosine monophosphate kinase, AMPK)-
dependent mechanism activated by adenosine monophosphate, 
participating in the occurrence and development of MASLD (34). 
Additionally, SCFAs exert immunomodulatory effects on Treg cell 
differentiation by dysregulating histone deacetylase and the G protein-
coupled receptor 43 (GPR43) pathway. It reduces the migration and 
proliferation of various immune cells, such as macrophages, 
neutrophils, T lymphocytes, and monocytes. It also reduces the 
expression of pro-inflammatory cytokines, upregulates the anti-
inflammatory cytokine prostaglandin E2, and exerts anti-
inflammatory effects (35). In the liver, SCFAs also promote energy 
consumption and fat oxidation, affecting the host energy supply and 
metabolic homeostasis (36). Dietary supplementation with SCFAs 
prevents and reverses metabolic abnormalities induced by HFD-fed 
mice (37).

SCFAs are derived from the fermentation of dietary fiber by 
intestinal bacteria, among which butyric acid and acetic acid, have the 
highest contents in the intestine (38). Acetate and propionate are 
produced by Bacteroidetes in the intestine and play key roles in 
hepatic lipogenesis and gluconeogenesis. Propionate supplements can 
significantly reduce body weight and intrahepatic lipid content, have 
beneficial effects on β-cell function in the body, and stimulate human 
colon cells to release polypeptide-YY and glucagon-like peptide 1 
(GLP-1) (39). Acetate affects GPR, GPR43, and GPR41. These 
receptors are distributed in intestinal endocrine L-cells, white 
adipocytes, skeletal muscle, liver, and pancreatic β cells. L-cells release 
GLP-1, which acts directly on liver cells, activating genes related to 
fatty acid β-oxidation, thereby contributing to MASLD development 
(40, 41).

Butyric acid is primarily produced by Firmicutes. Butyrate can 
activate AMPK and improve intestinal flora imbalance to alleviate 
steatohepatitis induced by a high-fat diet (42, 43). Animal experiments 
(44) have demonstrated that butyrate-producing probiotics correct 
enterohepatic immune disorders and MASH caused by a HFD, and 
this effect is mediated by SCFAs. Butyrate supplementation can 
alleviate high-fat diet-induced MASH, and its potential mechanism 
involves improving intestinal flora imbalance and gastrointestinal 
barrier function, thereby hindering the transport of intestinal-derived 
endotoxins to the liver (42). Oral administration of sodium butyrate 
inhibits liver inflammation in mice, thereby preventing MASH 
development (45).

Increasing the SCFAs derived from dietary fiber fermentation is 
an important strategy for preventing and alleviating MASLD. However, 
whether reduced SCFA production due to gut dysbiosis is a major 
factor exacerbating hepatic metabolic disorders remains unclear. 
Moreover, supplementation with SCFAs alone does not always 
alleviate fat metabolism disorders, which may be related to individual 
differences in the intervention time, SCFA type, or health status. 
Research on the regulatory effects of SCFAs on the host has improved 
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the understanding of the relationship between MASLD and SCFA; 
however, further research is still needed.

3.3 Lipopolysaccharides

Lipopolysaccharides (LPS), an endotoxin, is the main part of the 
outer membrane of gram-negative bacteria (46). Overgrowth of gram-
negative intestinal bacteria is associated with increased intestinal 
permeability (47). Gut microbiota disorders destroy the integrity of 
the intestine and impair intestinal barrier function, allowing LPS 
produced by intestinal bacteria to enter the portal vein via the blood 
flow dynamics, thus promoting the liver’s inflammatory response. 
Increased LPS damages the intestinal barrier through toll-like receptor 
(TLR)-dependent upregulation of myosin light chain kinase and 
activation of interleukin-1 receptor-associated kinase function, 
causing increased intestinal permeability. LPS and its downstream 
pathways substantially affect liver inflammation in MASLD (48, 49). 
TLR4, widely expressed in hepatocytes, is a pattern-recognition 
receptor for LPS and various free fatty acids. LPS reaches the liver via 
the portal vein and induces TLR4 activation. Once TLR4 is triggered, 
the essential adapter protein myeloid differentiation primary response 
88 (MyD88) is simultaneously activated, leading to the activation of 
NF-κB, which triggers inflammation and promotes the release of 
inflammatory factors (50–52). When liver Kupffer cells are exposed to 
bacterial LPS, they release pro-inflammatory cytokines and 
chemokines by activating TLR4, MyD88, and NF-κB pathways, 
stimulating stellate cells, and promoting hepatic stellate cells and 
fibrosis formation (53, 54). Therefore, the activation of the TLR4-
mediated NF-κB inflammatory pathway induced by gut-derived 
bacterial LPS may be key to MASH development.

The intestinal permeability of patients with MASLD is double that 
of normal individuals, and this abnormality is related to excess 
bacteria build up and the destruction of tight junction integrity in the 
small intestine (55). LPS activity in serum is elevated in patients with 
MASLD, with increases of 38–40% compared with those in patients 
with metabolic disorders without MASLD (48, 56). LPS from biopsy-
proven human MASLD showed increased localization in hepatocytes, 
considerably associated with inflammation of the liver via the TLR4 
pathway (48). Reducing the plasma LPS levels can improve hepatic 
steatosis, suggesting that chronic low-grade inflammation induced by 
LPS is an important factor in MASLD progression.

3.4 Endogenous ethanol from gut 
microbiota sources

In a healthy state, the microbiota continuously produces ethanol 
in the intestine, which is metabolized by alcohol dehydrogenase 
enzymes in liver. As a metabolite of gut microbiota, endogenous 
ethanol blocks the tricarboxylic acid cycle and increases acetate levels, 
promoting the accumulation of triglycerides in hepatocytes (57). 
Acetaldehyde, the product of ethanol metabolism, is involved in 
destabilizing intestinal tight-junction proteins and is related to the 
downregulation of antimicrobial peptide expression in the intestine 
(58). It also increases intestinal barrier permeability and LPS levels, 
activates TLRs and inflammasomes, and aggravates liver damage (59). 
Additionally, ethanol can directly damage the liver after absorption. 

Ethanol causes P450 2E1 mRNA and protein over-expression, leading 
to free radical formation, mitochondrial dysfunction, and liver 
damage (57).

The blood ethanol level of children with MASLD is remarkably 
higher than that of healthy children and is positively correlated with 
the levels of leptin, and triglyceride in the blood (60). In MASH 
patients who do not consume alcohol, variations in the composition 
of the intestinal flora causing dysbiosis increase the blood levels of 
insulin, leptin, and triglyceride. This finding suggests dysbiosis may 
lead to endogenous ethanol production via intestinal microbial 
fermentation (61). Further analysis revealed that the gut microbiota 
of MASH patients contained the Escherichia genus, Proteobacteria, 
and Enterobacteriaceae, which have ethanol-producing functions 
and was significantly higher in patients with obesity than in healthy 
individuals. Preclinical and clinical studies have identified E. coli, 
Enterobacteriaceae, and Klebsiella pneumoniae as ethanol-producing 
bacteria that are abundant in mice and patients with MASLD (62). 
For example, studies using a highly alcohol-producing 
K. pneumoniae strain W14 demonstrated that its mutant W14-Δadh 
can induce steatosis in HepG2 hepatocytes, reduce adenosine 
triphosphate content, increase mitochondrial reactive oxygen 
species accumulation, and cause DNA damage. Additionally, mouse 
hepatocytes have been observed in animal experiments (liver and 
mitochondrial damage) (57). Transplanting fecal microbiota 
containing a strain of K. pneumoniae (HiAlc Kpn) isolated from 
individuals with MASLD into mice and selectively eliminating the 
HiAlc Kpn strain before fecal microbiota transplantation (FMT) can 
prevent the development of MASLD in recipient mice, demonstrating 
that changes in the gut microbiota lead to excess endogenous alcohol 
production (63).

MASLD and alcohol-associated liver injury share common 
histological features and similar pathogenic pathways. The regulation 
of the gut bacteria produces various metabolites, eventually leading to 
MASLD development. However, the role of endogenous ethanol 
requires further in-depth research using larger clinical samples.

3.5 Choline

Choline is an essential phospholipid for the human body. It is 
mainly absorbed through the diet and synthesized by the liver. It plays 
an important role in hepatic lipid transport (64). Choline deficiency 
inhibits the synthesis and secretion of very low-density lipoproteins, 
resulting in triglyceride accumulation and hepatic steatosis (65, 66). 
Choline can be metabolized by intestinal flora, such as Proteus penneri, 
E. coli, and Proteus mirabilis, which cleave the carbon-nitrogen bond 
and convert choline into trimethylamine (TMA). TMA is then 
oxidized by liver monooxygenase to form trimethylamine N-oxide 
(TMAO), which reduces phosphatidylcholine levels in the blood, 
reduces the host’s choline bioavailability, and exposes the host to 
inflammatory and toxic metabolites. This process mimics a choline-
deficient state and leads to metabolic disorders (67). According to a 
previous report (68), TMAO serum levels are elevated in patients with 
MASLD. TMAO regulates glucose metabolism and induces insulin 
resistance by increasing serum levels of the chemokine C–C motif 
ligand 2, causing adipose tissue inflammation and abnormal blood 
sugar levels. Furthermore, a clinical study (69) has revealed that 
higher serum TMAO levels positively correlate with MASLD severity.
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After ingesting foods containing choline, microorganisms in the 
intestine, including gram-positive and gram-negative bacteria, 
synthesize TMA. Therefore, TMA production is affected by individual’s 
microbiota composition. Less than 1% of the microbes in the intestines 
carry the genes necessary for TMA production (70); however, even very 
low-density of these microorganisms are sufficient to produce TMA 
(71). Increased TMA and TMAO levels are correlated with higher 
activity of bacterial members of the phyla Firmicutes and Proteobacteria. 
Additionally, increased levels of TMA and TMAO are linked to 
increased Firmicutes/Bacteroidetes ratios (72). A human experiment 
controlling choline intake showed that the composition of the gut 
microbiota changes with alterations in dietary choline levels, among 
which γ-Proteobacteria and Erysipelothrix are related to the changes in 
liver fat during choline consumption (73). A choline-deficient diet is 
connected with MASH and may lead to obesity (74), and mouse 
experiments have revealed that changes in the composition of the 
bacterial community may be associated with choline depletion and an 
increase in toxic methylamine (75). Enterobacter aerogenes is another 
bacterial strain that effectively reduces plasma and cecal TMAO levels 
by altering the ratio of commensal to pathogenic bacteria in in choline 
diet-fed mice (76). Research on the intestinal microbiome may improve 
our understanding of nutritional metabolism and the impact of diet on 
health. Nutrition-based personalized approaches that target changes in 
gut microbial structure and function can help better understand the 
interaction between intestinal flora and metabolic diseases.

4 Potential preventive and therapeutic 
effects of intestinal flora on MASLD

As no specific method has been established for treating MASLD, 
lifestyle intervention is the most basic method, especially diet and 
exercise (77). Probiotics, prebiotics, synbiotics, postbiotics, FMT, next-
generation probiotics (NGPs), and water consumption can modulate 
the intestinal microbiome and its effect on the gut-liver axis in patients 
with MASLD. Extensive research has been conducted in animal 
models and clinical trials, achieving effective results and good 
prospects. These approaches are expected to become new methods for 
preventing and treating MASLD.

4.1 Probiotics

Live microorganisms that provide health benefits to the host 
are probiotics (78). They can act on different target organs by 
generating antimicrobial peptides, decreasing intestinal 
permeability, and inhibiting the translocation of bacterial products 
(79). They affect intestinal mucosal immune function in patients 
or models with fatty liver disease. There are many types of 
probiotics that are frequently used in the medical field, among 
which Lactobacillus and Bifidobacterium are the most commonly 
used. Lactobacilli and bifidobacteria are associated with 
β-glucuronidase inhibition (80), and bifidobacteria prevent 
pro-inflammatory cytokine secretion and intestinal barrier 
dysfunction (81).

Animal studies have revealed that supplementation with probiotic 
preparations can improve intestinal epithelial permeability, maintain 
tight junction proteins, reduce inflammation, and reduce liver 

triglyceride concentrations (82). Lactobacilli can activate the AMPK 
pathway to phosphorylate acetyl-CoA carboxylase (ACC), block the 
sterol regulatory element binding protein 1 (SREBP-1)/fatty acid 
synthase (FAS) signaling pathway, and inhibit fat metabolism. It can 
also positively affect liver damage mediated by c-Jun N-terminal 
kinase and NF-κB (82, 83). Lactobacillus sakei MJM60958 significantly 
reduces the expression of genes and proteins involved in fat 
accumulation, such as ACC, SREBP-1, and FAS, and increases the 
expression of proteins related to lipid oxidation, such as carnitine 
palmitoyltransferase 1a and PPARα (84). Lactobacillus plantarum 
ZJUIDS14 can increase the expression of fatty acid transporter 2, fatty 
acid transporter 5, and SREBP-1C and promote fatty acids biosynthesis 
and triglyceride accumulation (85). Bifidobacterium L66-5, FS31-12, 
M13-4, and L75-4 have been shown to decrease the serum and liver 
triglyceride levels; however, only Bifidobacterium FS31-12 and L66-5 
substantially reduced their levels in the liver.

In a clinical study, Alisi et al. (86) discovered that supplementing 
with VSL #3 (containing Lactobacillus paracasei, Bifidobacterium 
longum, Bifidobacterium breve, and Lactobacillus acidophilus), 
bifidobacteria, and Streptococcus salivarius for 4 months improved 
liver function and increased GLP/active GLP levels in obese children 
with MASLD. It should be noted that the post-2016 VSL#3 probiotic 
formulation differs from the De Simone Formulation, which was 
commercially available under the trademark VSL#3® only until 2016 
(87). Sepideh et al. (88) reported that supplementation with multi-
strain probiotics can contribute to improvement of insulin sensitivity 
and liver inflammation in MASLD. Additionally, combining probiotics 
and drugs, such as statins and metformin, can improve liver 
inflammation and lower cholesterol levels better than using them 
alone (89). These studies suggest that probiotics alone or combined 
with other drugs have potential for clinical application in MASLD 
treatment. Consumption of Bacillus bulgaricus and S. thermophilus 
decreases the abundance of Firmicutes, Clostridium, and 
Erysipelotoxalis genera, whereas it increases the relative abundance of 
Selenomonas (90). However, in a clinical study conducted in Malaysia, 
patients with MASLD were supplemented with multi-strain probiotics 
(BCMC strain) for 6 months. The use of probiotics did not have a 
major impact on patients with MASLD.

However, at the microenvironmental level, probiotics appear to 
stabilize mucosal immune function, improve intestinal mucosal 
morphology, and protect patients from increased gut permeability 
(91). Different probiotic products and dosages have different effects 
on intestinal microbial composition. Differences in local intestinal 
microbiota also affected the results of the study. Therefore, a larger 
sample size is required for similar studies.

4.2 Prebiotics

Prebiotics are edible food ingredients composed of polysaccharides 
and oligosaccharides that help grow beneficial bacteria and regulate 
changes in the intestinal microbial communities. Lactulose, inulin 
derivatives, fibers, and lactooligosaccharides are the currently available 
prebiotics (92). Prebiotics (inulin and fructooligosaccharides) are 
considered safe in the United States and most European countries 
(93). A review has investigated the efficacy of prebiotics in MASLD 
treatment (94). Dietary oligofructose stimulates the reproduction of 
good bacteria (Bifidobacterium genus) and stimulates fatty acid 
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oxidation through PPARα to reduce liver triglyceride accumulation. 
It also reduces cholesterol accumulation by hindering SREBP-2-
dependent cholesterol biosynthetic pathways (95). Gellan gum, an 
anionic polysaccharide with prebiotic activity, is used as additives in 
foods. Thus, gellan gum may support liver health by regulating 
intestinal homeostasis (96). Additionally, pectin modulates the 
intestinal microbiota and protects the liver against metabolic damage 
induced by alcohol and fatty diets (97). In a clinical study, patients 
with MASLD who were treated with prebiotics exhibited significant 
reductions in hepatic steatosis and MASLD activity scores and 
increased bifidobacterial counts compared with the placebo group 
(98). In a study on adult MASLD, participants received either 20 g of 
inulin control or inulin propionate daily for 42 days. The study 
revealed a significant increase in intracellular lipids in liver cells in the 
inulin control group, whereas no significant changes were observed in 
the inulin propionate group, indicating that although supplementation 
with inulin propionate did not reduce liver fat, it significantly 
mitigated the liver fat increase caused by inulin supplementation (99). 
Prebiotic intake benefits the health of humans by modulating the gut 
microbiota and is safe and well tolerated. However, some researchers 
have reported concerns regarding prebiotic supplements, as high 
doses of these compounds (i.e., 30 g/day) may cause negative 
gastrointestinal reactions, mainly flatulence (100).

Animal studies have demonstrated that prebiotic supplementation 
can reduce fatty acid synthesis pathways, thereby reducing hepatic 
triglyceride accumulation, possibly because of decreased gene 
expression of enzymes that regulate lipogenesis (ACC and FAS) (101). 
As a prebiotic, L-arabinose alters gut microbiota diversity, thereby 
improving body fat percentage, blood lipid levels, fasting blood 
glucose, and liver damage in animals with metabolic syndrome 
models (102, 103). Combination treatment with 
isomaltooligosaccharides and lycopene prevented excessive weight 
gain, enhanced fat mobilization from adipose tissue, improved insulin 
resistance, and reduced metabolic endotoxemia in mice with 
HFD-induced MASLD, suggesting that the combined use of 
antioxidants and prebiotics is more beneficial in MASLD treatment. 
Moreover, in obese Zucker rats, a diet rich in oligofructose and 
raspberry polyphenol extract has adequate health-promoting potential 
to regulate oxidative stress and inflammation associated with MASLD 
development. Prebiotics can selectively stimulate the proliferation and 
activity of intestinal microorganisms and may be  an alternative 
direction for human health in the future, but overall, compared with 
probiotics, research on the application of prebiotics for MASLD is 
limited (104).

In addition, Hericium erinaceus is a fungus with prebiotic activity. 
In recent years, multiple studies have indicated that H. erinaceus may 
be  a potential manipulator of gut microbiota, providing essential 
nutrients and regulating the ecological balance of human gut 
microbiota (105, 106). A pilot study showed that supplementing 
H. erinaceus for 7 days increased alpha diversity within the gut 
microbiota, upregulated the relative abundance of some SCFA bacteria 
(Kineothrix alysoides, Gemmiger formicilis, Fusicatenibacter 
saccharivoras, Eubacterium rectale, and Faecalibacterium prausnitzii), 
and downregulated some pathogenic bacteria (S. thermophilus, 
Bacteroides caccae, and Romboutsia timonensis) (107). During the 
digestion and fermentation process under simulated gastrointestinal 
conditions in vitro, bioactive water-soluble polysaccharide and 
alkaline soluble polysaccharide from H. erinaceus were found to 

increase the relative abundance of dominant butyric acid-producing 
genera, regulate microbial-community structure, increase gas 
production and SCFA production in the fermentation broth, and 
lower the pH value of the fermentation broth (108). As a 
supplementary food, H. erinaceus can regulate the composition of gut 
microbiota and have beneficial effects on health. However, regarding 
the currently limited research on H. erinaceus intervention in MASLD, 
further clinical and experimental studies are still needed.

4.3 Synbiotics

Synbiotics are combinations of prebiotics and probiotics (80, 109) 
that selectively stimulate the growth of certain beneficial bacteria and 
initiate their metabolism, resulting in positive effects (110). Many 
studies have reported the benefits of synbiotics in treating MASLD, 
such as improved liver steatosis levels, reduced liver inflammation, 
and improved alanine aminotransferase (ALT) parameters (111, 112). 
In a randomized placebo-controlled trial of 50 patients, researchers 
used a synbiotic composed of multiple Lactobacillus and 
Bifidobacterium strains and observed greater reductions in liver 
cirrhosis (111).

Some researchers have combined synbiotics with drugs to treat 
MASLD and achieved good results. Synbiotics have a synergistic effect 
with the Chinese herbal medicine Sonchus brachyotus DC extract, and 
the combination of the extract and synbiotics proved substantially 
more effective in treating MASLD than either component alone (113). 
Combining proanthocyanidins with probiotics to develop synbiotics 
can slow down the progression of steatosis to MASH by reducing liver 
oxidative stress, liver damage, and inflammation caused by gut floral 
dysbiosis. Proanthocyanidin synbiotics are more effective at reducing 
the possibility of MASLD than proanthocyanidins or probiotics alone 
(99). Synbiotics also improve blood glucose and insulin levels (114).

Several researchers have conducted retrospective analyses of the 
use of synbiotics to treat MASLD. A 2013 meta-analysis demonstrated 
the positive effects of probiotics in lowering ALT and total cholesterol 
levels (115). A recent meta-analysis involving in 782 patients with 
MASLD revealed that supplementation with probiotics and synbiotics 
was beneficial for liver steatosis, blood lipids, and liver fibrosis; 
however, supplementation was unable to improve body mass index, 
fasting blood glucose, and waist circumference (116). Another 
systematic review study obtained similar results, revealing that 
supplementation with synbiotics could reduce body weight, fasting 
blood glucose, insulin, total cholesterol, triglycerides, high-sensitivity 
C-reactive protein, ALT, aspartate aminotransferase levels, and 
low-density lipoprotein cholesterol in patients with MASLD. However, 
compared with the placebo group, synbiotics showed no beneficial 
effects on waist circumference, body mass index, homeostasis model 
assessment of insulin resistance, and high-density lipoprotein 
cholesterol levels (117). Furthermore, a recent study in the UK 
involving 104 patients observed no significant difference in liver 
steatosis between synbiotic preparations and placebo; taking a 
synbiotic combination for 1 year changed the fecal microbiome; 
however, it did not decrease the liver fat content or liver fibrosis 
markers (118).

Synbiotics exert a synergistic effect between probiotics and 
prebiotics, providing the host with greater advantages. This synergistic 
effect selectively enhances the growth and activation of 
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health-promoting bacteria in the intestine and cultivates a more 
favorable microbial environment, thereby improving immunity and 
relieving symptoms including bloating and abdominal pain caused by 
lactose intolerance. It is expected to become an important method for 
preventing and treating metabolism-related diseases.

4.4 Postbiotics

Compared with traditional functional foods, such as probiotics 
and prebiotics, postbiotics have the advantages of including a single 
ingredient and having high physiological activity, long shelf life, and 
easy absorption properties. So far, data on human postbiotic research 
has only involved butyrate salts. Butyric acid is a key metabolite 
produced by the microbiome in the large intestine through the 
breakdown of indigestible carbohydrates. Butyrate can positively 
regulate the expression of claudin-1, ZO-1, and occludin in Cdx2-IEC 
and Caco-2 cells, leading to increased transepithelial resistance and 
enhanced the mucus layer involved in the formation of the intestinal 
barrier (119, 120). A double-blind clinical trial showed that a dietary 
supplement based on butyrate (calcium butyrate 500 mg/tablet) can 
improve some MASLD-related parameters affected by hepatic steatosis 
and metabolic syndrome (121). In animal experimental research, 
butyrate enhances liver GLP-1 sensitivity by increasing GLP-1 receptor 
expression, thereby alleviating liver steatosis (122).

In addition to butyrate derived from gut microbiota, other 
postbiotics derived from traditional probiotics represented by 
Lactobacillus and next-generation probiotics (NGPs) represented by 
Akkermansia have been studied. The oral administration of postbiotics 
prepared from L. paracasei effectively prevent MASLD in mice (123). 
Bacterial sequencing showed that postbiotics regulated the gut 
microbiota, increased the relative abundance of Akkermansia, and 
decreased the relative abundance of Lachnospiraceae, 
Ruminiclostridium, and Bilophila. The postbiotics derived from the 
mucinous protein of Akkermansia play a crucial role in regulating 
metabolic functions to prevent obesity (124). Thus, postbiotics can 
alleviate diseases and protect host health. However, the mechanism by 
which postbiotics prevent MASLD needs further investigation.

4.5 FMT

FMT is a new method for restoring and reconstructing the 
balance and diversity of intestinal microecology. It is used to transplant 
functional intestinal flora from healthy human donor stool into the 
intestines of patients. Various animal-based studies have revealed that 
FMT can competently improve the symptoms of MASLD by changing 
the intestinal flora imbalance (125–127). FMT reduced the 
inflammation of liver in HFD-induced mouse MASH model by 
improving intrahepatic fat accumulation and serum pro-inflammatory 
cytokine levels. Le Roy et al. (128) discovered that FMT in different 
mouse models caused germ-free mice to exhibit different lipogenesis 
and steatosis phenotypes.

The use of FMT in treating patients with MASLD is gaining 
attention. FMT can reduce excess fat storage in the liver by improving 
the intestinal flora imbalance, thus alleviating fatty liver disease. Some 
patients with chronic diarrhea and constipation symptoms were 
relieved through FMT, and the effect of FMT on gut microbiome 

reconstruction in lean patients with MASLD was better than that in 
obese patients with MASLD (129, 130). FMT from a healthy donor 
may affect levels of genes engaged in liver inflammation and lipid 
metabolism (131). FMT replenishes the balance of the intestinal 
microbial environment and rebuilds bacterial colonization, thereby 
restoring microbial richness and preventing excessive influx of 
bacterial products into the liver. Restoration of the intestinal barrier 
function can ameliorate lipid metabolism, reduce insulin resistance, 
and inhibit inflammatory responses, thereby alleviating MASLD (130, 
132). FMT is safe for long-term use. However, there are reports of 
adverse events including death in patients undergoing FMT. A 
systematic review of FMT showed that the proportion of adverse 
events was similar between immunocompromised and 
immunocompromised patients (133). Four patients were reported to 
have gram-negative bacteremia after undergoing FMT. Furthermore, 
a clinical study described two patients in whom extended-spectrum 
beta-lactamase-producing E. coli bacteremia occurred after having 
undergone FMT (134). Genomic sequencing indicated that both cases 
were related to the same fecal donor. Therefore, it is necessary to 
strengthen donor screening and limit microbial transmission that may 
lead to adverse infection events. In the future, FMT should 
be personalized for different patients and situations based on different 
hosts and diseases.

4.6 NGPs

NGPs include living microorganisms that are beneficial to the 
health of the host (135). Akkermansia and Christensenella minuta are 
among the most widely used and researched NGPs. Akkermansia 
muciniphila is involved in intestinal mucosa regeneration and 
intestinal-barrier integrity regulation, which alters the composition of 
the gut microbiota, reduces the intestinal infiltration of inflammatory 
mediators and harmful substances, and thus alleviates liver damage 
(136). In human studies, evidence shows that A. muciniphila 
abundance is negatively related to the risk factors of MASLD, such as 
being overweight, obesity, and untreated type 2 diabetes (137). 
A. muciniphila also regulates inflammation by modulating TLR2-
activated gamma delta T17 cells and may affect the transition of 
macrophages from a pro-inflammatory state to an anti-inflammatory 
state (138). These changes help reduce inflammation and prevent the 
progression of MASH. Furthermore, Christensenella minuta has 
potential therapeutic effects in MASLD (139), and its abundance in 
obese individuals was lower than that in lean individuals (140).

A study based on the effects of traditional probiotics and NGPs on 
MASLD/MASH showed that traditional probiotics mainly reduce 
liver fat deposition and inflammation by improving gut microbiota 
composition and enhancing intestinal barrier function (141). In 
contrast, NGPs exhibit more significant therapeutic potential. NGPs 
are not limited to regulating gut microbiota, liver oxidative stress, and 
inflammatory response (142, 143). They can also produce bioactive 
compounds such as SCFAs (144) and regulate bile acid metabolism, 
which in turn activates nuclear receptors and signaling pathways in 
the liver (such as FXR and TGR5), indirectly regulates signaling 
pathways related to oxidative stress in liver cells, and helps improve 
liver inflammation (145). In recent years, NGPs have shown great 
therapeutic potential in the treatment of MASLD/MASH (146). With 
the advancement of technology and the emergence of microbiome 
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research, the use of NGPs is a new potential strategy for managing 
MASLD/MASH.

4.7 Water consumption

Natural mineral water is rich in minerals and elements, such as 
calcium, carbonate metabolites, sodium chlorite, sulfates, and iron, 
making it a valuable means of consuming essential elements in the diet 
(147). The use of natural mineral water for therapeutic purposes has 
been proposed as a useful supplement for managing various 
gastrointestinal and hepatobiliary diseases (148). Research has 
confirmed that bicarbonate contributes to the intestinal barrier 
structure, and the use of bicarbonate-rich water has a positive impact 
on intestinal histopathology (149). Sulfate saline administration can also 
promote the production of hydrogen sulfide by sulfate reducing bacteria 
(such as E. coli) in the intestinal lumen (150). In a prospective 
longitudinal intervention study, bicarbonate-sulfate-calcium-
magnesium water was shown to have a positive effect on indirect 
markers of gut-liver axis activation and alterations in gut microbiota in 
patients with MASLD (151). A histopathological study investigated the 
effects of calcium-sulphate-bicarbonate water treatment on MASLD; 
mineral water treatment was associated with improved intestinal 
mucosal histopathology and increased positive levels of closing proteins, 
indicating that the LPS and TLR4 pathways mediated gut liver axis and 
regulated inflammatory damage (152). As a microbiota-modifying 
strategy in patients with MASLD, mineral water has regulatory activity 
on the gut-liver axis and potential beneficial effects.

5 Discussion

Changes in gut microbiota affect the development and 
progression of MASLD. Clinical trials and animal models provide 
ample evidence elucidating the role of gut microbiota in MASLD 
pathogenesis. Abnormal alterations in gut microbiota structure 
and metabolic products, as well as changes in intestinal mucosal 
permeability, increase the likelihood of intestinal pathogens 
entering the liver through the hepatointestinal axis. This leads to 
metabolic disorders and further exacerbates liver cell damage 
caused by inflammatory reactions. Although specific changes in 
gut microbiota observed in many studies are not unique to 
MASLD, it is evident that gut microbiota holds potential as a target 
for clinical treatment of MASLD. Maintaining a balanced gut 
microbiota can help alleviate liver inflammation and delay the 
development of MASLD. Future research should focus on exploring 
the relationship between gut microbiota composition changes and 
MASLD, identifying microbial species associated with MASLD, 
clarifying the characteristics of the gut microbiota in patients with 
MASLD, and elucidating the mechanisms by which gut microbiota 
abnormalities can affect MASLD. This will pave the way for the 
development of specific drugs and effective treatment methods 
for MASLD.

Studies on intestinal flora have been conducted for decades, and 
those in recent years have greatly enriched our understanding of 
intestinal flora, especially the relationship between gut microbiota 
and liver diseases. Although many studies have revealed that gut 

microbiota can affect the incidence of MASLD through the gut-liver 
axis, the mechanism by which intestinal flora imbalance affects 
MASLD remains unclear. The composition of gut microbiota in 
patients with MASLD shows changes; however, these changes have 
not been fully characterized. The connection between intestinal 
flora and the pathogenesis of MASLD needs further study. 
Moreover, the relationship between the gut and the liver is 
bidirectional, and changes in the composition of gut microbiota 
may not necessarily be the cause of changes observed in the liver. 
Furthermore, liver disease itself can affect the composition of gut 
microbiota; therefore, results of research on the association between 
gut microbiota and liver disease should be interpreted with caution. 
Besides, gut microbiota can vary depending on the demographics 
and disease stage of MASLD, challenging conclusive claims 
regarding the richness and certain bacterial species in the gut 
microbiota of those with MASLD. It is necessary to accurately 
characterize the extensive microbial changes based on the 
pathological characteristics of each stage of MASLD and to conduct 
sufficient large-scale intervention studies in target patients with 
reproducibility to reveal the correlations between microbial 
community intervention and MASLD management.

In terms of prevention and treatment, targeted intestinal flora, 
such as probiotics, prebiotics, synbiotics, postbiotics, FMT, NGPs, 
and water consumption, have achieved positive therapeutic effects in 
animal studies, and related clinical studies have gradually received 
attention. However, some problems must be resolved before these can 
be used as routine treatment options. Because of the risk of disease 
transmission between donors and recipients, standardization of 
donor screening, patient acceptance, adverse outcomes, and 
uncertain effects on recipient immunity, an FMT registry should 
be  established to collect long-term data, follow-up results, and 
adverse event monitoring. Furthermore, many studies have focused 
on animal experiments, and clinical trials are lacking. Intestinal flora 
differs among regions, diets, and patients. The clinical efficacy of gut 
microbiota-targeted therapy for MASLD must be demonstrated in 
randomized controlled trials to prove the feasibility of probiotics, 
prebiotics, synbiotics, postbiotics, FMT, NGPs, and water 
consumption therapy.

Additionally, as a novel potential therapy, postbiotics have 
advantages, such as including a single ingredient and having high 
physiological activity and long shelf life, compared with traditional 
functional foods. Furthermore, the use of post-biological agents 
carries less risk and is more suitable for geographical areas where 
reliable cold chain or high temperatures pose storage challenges for 
live microorganisms. Therefore, they have more potential applications. 
Many clinical trials have demonstrated the positive effects of 
inanimate microorganisms on hosts; however, there remains a notable 
gap in clinical research on microbial metabolites and cellular 
components. In the future, research should focus on animal models 
or clinical trials, more studies should be conducted to understand the 
host’s mechanism of action, and the safe dosage range for use should 
be determined to enhance safety assessment.

In summary, owing to their strong biological activity, 
microorganisms have a wide range of potential applications in the 
development of functional foods and drugs. However, more research 
is needed to determine their true efficacy. Further exploration of the 
prevention and treatment of liver diseases such as MASLD by 
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regulating the intestinal flora is expected to become an area of focus 
for future research.
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