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Purpose: This study aims to assess the diagnostic accuracy of cellular analysis 
of bronchoalveolar lavage fluid (BALF) in distinguishing between pulmonary 
infectious and non-infectious diseases in patients with pulmonary shadows. 
Additionally, it will develop and validate a novel scoring system based on a 
nomogram for the purpose of differential diagnosis.

Methods: A retrospective analysis was conducted involving data from 222 
patients with pulmonary shadows, whose etiological factors were determined at 
our institution. The cohort was randomly allocated into a training set comprising 
155 patients and a validation set of 67 patients, (ratio of 7:3), the least absolute 
shrinkage and selection operator (LASSO) regression model was applied to 
optimize feature selection for the model. Multivariable logistic regression 
analysis was applied to construct a predictive model. The receiver operating 
characteristic curve (ROC) and calibration curve were utilized to assess the 
prediction accuracy of the model. Decision curve analysis (DCA) and clinical 
impact curve (CIC) were employed to evaluate the clinical applicability of the 
model. Moreover, model comparison was set to evaluate the discrimination and 
clinical usefulness between the nomogram and the risk factors.

Results: Among the relevant predictors, the percentage of neutrophils in BALF 
(BALF NP) exhibited the most substantial differentiation, as evidenced by the 
largest area under the ROC curve (AUC = 0.783, 95% CI: 0.713–0.854). A BALF 
NP threshold of ≥16% yielded a sensitivity of 72%, specificity of 70%, a positive 
likelihood ratio of 2.07, and a negative likelihood ratio of 0.38. LASSO and 
multivariate regression analyses indicated that BALF NP (p < 0.001, OR = 1.04, 
95% CI: 1.02–1.06) and procalcitonin (p  < 0.021, OR = 52.60, 95% CI: 1.83–
1510.06) serve as independent predictors of pulmonary infection. The AUCs for 
the training and validation sets were determined to be 0.853 (95% CI: 0.806–
0.918) and 0.801 (95% CI: 0.697–0.904), respectively, with calibration curves 
demonstrating strong concordance. The DCA and CIC analyses indicated that 
the nomogram model possesses commendable clinical applicability. In models 
comparison, ROC analyses revealed that the nomogram exhibited superior 
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discriminatory accuracy compared to alternative models, with DCA further 
identifying the nomogram as offering the highest net benefits across a broad 
spectrum of threshold probabilities.

Conclusion: BALF NP ≥16% serves as an effective discriminator between 
pulmonary infectious and non-infectious diseases in patients with pulmonary 
shadows. We have developed a nomogram model incorporating BALF NP and 
procalcitonin (PCT), which has proven to be a valuable tool for predicting the 
risk of pulmonary infections. This model holds significant potential to assist 
clinicians in making informed treatment decisions.

KEYWORDS

bronchoalveolar lavage fluid, cellular analysis, nomogram, pulmonary infectious 
diseases, pulmonary non-infectious disease

Introduction

Pulmonary shadows are a common concern in respiratory 
medicine, with complex etiologies. Infectious pulmonary diseases 
caused by bacteria, fungi, viruses, and tuberculosis, as well as 
non-infectious diseases such as pulmonary edema, lung cancer, 
connective tissue diseases, and hematological infiltrations, can all 
present with pulmonary shadows (1). These conditions often share 
similar clinical symptoms, signs, and imaging of chest, making 
differential diagnosis challenging (2), with a clinical misdiagnosis rate 
of approximately 12% (3). Inadequate diagnosis may lead to delays in 
the treatment of acute conditions such as congestive heart failure and 
can result in unnecessary antibiotic use, contributing to antibiotic 
resistance (4, 5). Therefore, it is crucial to identify infectious and 
non-infectious pulmonary shadows early, rapidly, and accurately.

Blood leukocyte counts and classifications, C-reactive protein 
(CRP), and PCT are commonly used clinical indicators that can help 
differentiate between infectious and non-infectious pulmonary diseases 
to a certain extent (6, 7). However, there is currently no ideal biomarker 
that can accurately identify the infectious and non-infectious pulmonary 
diseases. Reynolds and Newball (8) introduced bronchoalveolar lavage 
(BAL) as a new diagnostic tool for respiratory diseases. With 
advancements in detection techniques, it has become evident that BALF 
can provide information on cytology, enzyme levels, and cytokines (9, 
10). While BALF cannot serve as the gold standard for diagnosing 
pulmonary diseases, it can narrow the differential diagnosis and 
improve diagnostic accuracy. Moreover, BAL is safe, highly operable, 
well-tolerated by patients, and associated with a low complication rate. 
Consequently, BALF has become an important method for clinically 
diagnosing pulmonary infections. In healthy populations, the cellular 
composition of BALF is characterized by macrophages >85%, 
lymphocytes 10–15% and neutrophils ≤3%. Changes in the proportions 
of these cellular components hold clinical significance; for example, a 
neutrophil percentage exceeding 50% indicates acute lung injury, 
aspiration pneumonia, or purulent infections (11, 12). Although this 
value possesses good specificity, its sensitivity appears to be relatively 
low, making it inadequate for some infectious diseases with smaller 
involvement or milder severity. Furthermore, there is a relative lack of 
studies comparing the cellular analysis of BALF between infectious and 
non-infectious pulmonary diseases.

Consequently, the objective of this research is to perform a 
retrospective examination of the variations in the ratios of neutrophils and 
lymphocytes present in BALF from patients exhibiting pulmonary 

shadows attributable to both infectious and non-infectious causes. Our 
goal is to evaluate the diagnostic precision of cellular analysis of BALF in 
differentiating pulmonary infections. Furthermore, we have developed a 
nomogram prediction model through an extensive univariate and 
multivariate analysis of risk factors linked to the development of 
pulmonary infections. This model is designed to furnish clinicians with a 
swift and intuitive instrument for estimating the likelihood of pulmonary 
infection based on standard laboratory parameters, thereby aiding 
healthcare professionals in making informed treatment decisions.

Materials and methods

Patients

We retrospectively analyzed clinical data from patients with 
pulmonary shadows diagnosed in the Department of Respiratory and 
Critical Care Medicine at Beijing Tiantan Hospital, affiliated with Capital 
Medical University, between January 2022 and June 2023. The inclusion 
criteria were as follows: (1) confirmed to have pulmonary shadows by 
chest CT; (2) patients must have undergone bronchoalveolar lavage and 
been assessed for cellular analysis; (3) the etiology of the pulmonary 
shadow must be  determined. The exclusion criteria included: (1) 
unknown etiology of the pulmonary shadow; (2) presence of two or more 
pathogenic infections; (3) incomplete clinical case data.

Classification and counting method of 
BALF

BALF was collected following the standardized protocol 
recommended by the American Thoracic Society (12), with all samples 
processed immediately upon receipt in the laboratory. Initially, the 
macroscopic characteristics of the lavage fluid, including its color, 
transparency, and total volume, were recorded, with specific attention 
to the presence of mucus or debris. The lavage fluid was then filtered 
using sterile gauze or treated with 0.1% dithiothreitol (DTT) to dissolve 
mucus components. The filtered BALF was subsequently centrifuged at 
4°C for 10 min, with the supernatant reserved for the analysis of soluble 
components. The resulting cell pellet was resuspended in 3–5 mL of 
0.09% sodium chloride solution. Total cell count was determined using 
a hemocytometer. If the cell count exceeded the desired limit, the 
suspension was diluted with 0.9% sodium chloride solution to a final 
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concentration of 5 × 106 cells/mL. A 50 μL aliquot of the resuspended 
cell suspension was cytospin onto a glass slide. After air-drying at room 
temperature, hematoxylin-eosin (HE) staining was performed. The 
slide was first examined at low-power magnification (≤40×) under an 
optical microscope, and subsequently, at least 400 cells were classified 
and counted under high-power magnification (≥40×).

Data collection

Clinical data from patients were gathered, encompassing (1) 
baseline information, including sex, age, prior cardiovascular and 
cerebrovascular conditions, diabetes, symptoms, and signs; (2) chest 
imaging conducted before and after treatment; (3) laboratory 
assessments: peripheral blood leukocyte counts and classifications, 
CRP, PCT, serological tests, antigen tests, secretion smears, cultures 
(sputum, BALF), pathology, metagenomic next-generation sequencing 
(mNGS) and additional results; (4) treatment strategy.

Diagnosis of pulmonary shadow etiology

The determination of pulmonary shadow etiology was conducted 
by two infection-related professors in the department, relying on the 
patient’s clinical presentations, supplementary examinations including 
laboratory tests, chest CT, microbiological analyses, treatment 
strategies, and follow-up outcomes.

Statistical analyses

Continuous variables with non-normal distributions were 
expressed as medians (interquartile range), and the Mann–Whitney 

U test was used to compare the pulmonary infection group with the 
non-pulmonary infection group. Categorical variables were presented 
as counts and percentages. The chi-squared (χ2) test and Fisher’s exact 
test were used for comparisons between groups. (LASSO) regression 
model was applied to optimize feature selection for the model. Then, 
we performed multivariable logistic regression analysis by the features 
selected in the LASSO regression model to identify statistically 
significant predictors. Based on the multivariate analysis, independent 
risk factors were determined, and a nomogram prediction model was 
established. ROC and C-index calibration curves were used to evaluate 
the model’s differentiation and prediction accuracy. The clinical utility 
of the model was assessed using DCA and CIC. Statistical analysis and 
graphics were performed using Rv.4.3.3 software.

Results

Comparison of baseline characteristics 
between two groups

This study included 298 patients diagnosed with pulmonary 
shadows. Based on the inclusion and exclusion criteria, a total of 222 
patients were selected and subsequently randomized into a training 
set consisting of 155 patients and a validation set comprising 67 
patients, adhering to a 7:3 distribution ratio. Within the training 
group, 104 patients received a diagnosis of pulmonary infections, 
whereas 47 patients in the validation group were similarly diagnosed 
(Figure 1).

Analysis of baseline characteristics, including age, gender, and 
comorbidity, revealed no statistically significant differences between 
the pulmonary infection and non-pulmonary infection groups in both 
the training and validation cohorts (p > 0.05). Conversely, pulmonary 
infection patients exhibited significantly higher levels of leukocyte 

FIGURE 1

Enrollment illustration of patients with pulmonary shadow. BAL, bronchoalveolar lavage.
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counts, neutrophil counts, CRP, PCT compared to non-pulmonary 
infection patients, with statistically significant differences observed 
(p < 0.05, Table 1).

Distribution of causes of pulmonary 
infectious diseases and non-infectious 
pulmonary diseases

A total of 151 patients were diagnosed with pulmonary infections. 
These included 86 cases of bacterial infections, 16 cases of fungal 
infections, 26 cases of branching infections, 8 cases of viral infections, 
and 15 cases of infections with atypical pathogens. In total, 183 strains 
of pathogens were identified. Among the identified pathogens, 97 were 
bacteria, accounting for 53% of the total. These included 57 gram-
negative bacteria (31.1%) and 40 gram-positive bacteria (21.8%). 
Additionally, there were 29 fungi (15.8%), 20 Mycobacterium 
tuberculosis (10.9%), 16 viruses (8.7%), and 15 atypical pathogens 
(8.2%). Among these, 6 strains were identified as nontuberculous 
mycobacteria, representing 3.2% of the total (Table 2) there were 71 
cases of non-pulmonary infections. These included 25 cases of lung 
tumors (35.2%), 15 cases of interstitial lung disease (21.1%), and 10 
cases of lung sarcoidosis (14.0%).

Analysis of results of cellular analysis of 
BALF

The pulmonary infection group had a significantly higher 
percentage of neutrophils in the alveolar lavage fluid compared to the 
non-pulmonary infection group (p < 0.001). Conversely, the 
percentage of lymphocytes was significantly lower in the pulmonary 
infection group (p = 0.019, Table 3).

LASSO and multivariate analysis of risk 
factors associated with pulmonary 
infection

To assess multicollinearity among the predictors, the variance 
inflation factor (VIF) was calculated for each variable. The results 
indicated that both blood leukocyte count and blood neutrophil count 
had VIF values exceeding 10 (specifically 68.16 and 71.64, respectively), 
suggesting a significant degree of multicollinearity between these 
variables. Consequently, blood leukocyte count was excluded, and only 
blood neutrophil count was retained for further analysis. The VIF 
values for the percentage of neutrophils in BALF (VIF = 1.60), 
percentage of lymphocytes in BALF (VIF = 1.49), blood lymphocyte 

TABLE 1 Baseline characteristics of the patients in the training and validation.

Variables Training set Validation set

Infectious 
pulmonary 
(n = 104)

Non-infectious 
pulmonary 

(n = 51)

p Infectious 
pulmonary 

(n = 47)

Non-infectious 
pulmonary 

(n = 20)

p

Age, years 63.50 (50.00, 70.25) 59.00 (54.00, 69.00) 0.082 65.00 (55.50, 74.50) 62.00 (53.75, 68.00) 0.391

Male, n (%) 55 (52.88) 26 (50.98) 0.824 29 (61.70) 9 (45.00) 0.207

Comorbidity (%)

Cerebrovascular disease, n 

(%)

10 (9.62) 9 (17.65) 0.152 7 (14.89) 0 (0.00) 0.165

Cardiovascular disease, n 

(%)

43 (41.35) 13 (25.49) 0.054 13 (27.66) 7 (35.00) 0.548

Chronic lung diseases, n 

(%)

19 (18.27) 7 (13.73) 0.477 9 (19.15) 3 (15.00) 0.952

Diabetes, n (%) 26 (25.00) 9 (17.65) 0.304 11 (23.40) 1 (5.00) 0.147

Malignant solid tumor, n 

(%)

6 (5.77) 3 (5.88) 1 1 (2.13) 2 (10.00) 0.210

Immunosuppressive state, n 

(%)

11 (10.58) 5 (9.80) 0.882 1 (2.13) 1 (5.00) 0.511

Laboratory findings

White blood cell count 

(×109/L)

7.89 (6.00, 12.95) 6.94 (5.75, 7.99) 0.009 8.51 (6.00, 11.25) 6.66 (5.55, 7.84) 0.008

Blood lymphocyte count 

(×109/L)

1.40 (1.03, 1.93) 1.70 (1.32, 2.34) 0.010 1.40 (0.97, 1.67) 1.47 (0.97, 1.89) 0.348

Blood neutrophil count 

(×109/L)

5.82 (3.77, 10.95) 4.03 (3.65, 4.89) 0.001 6.68 (4.28, 9.16) 4.37 (3.12, 5.13) 0.002

CRP (mg/L) 24.66 (5.93, 108.47) 3.86 (1.33, 14.97) 0.001 33.96 (3.77, 119.94) 6.43 (3.00, 26.06) 0.032

PCT (ng/mL) 0.02 (0.01, 0.07) 0.10 (0.02, 0.65) 0.001 0.04 (0.02, 0.08) 0.24 (0.03, 0.66) 0.002

CRP, C-reactive protein; PCT, procalcitonin. Values are given as the median (IQR). Statistical significance is indicated using bold typeface.
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count (VIF = 3.45), CRP (VIF = 1.95), and PCT (VIF = 3.45) were all 
below 5, indicating no significant multicollinearity.

Predictor selection was then performed using LASSO 
regression analysis with tenfold cross-validation. Initially, a 
coefficient path plot for the six predictors was generated 

(Figure  2A) to illustrate the changing trends in regression 
coefficients as the penalty parameter (λ) varied. Subsequently, the 
optimal λ value was determined based on the minimum deviance 
criterion (left dotted line) and the 1-SE criterion (right dotted line) 
(Figure  2B). In the present study, predictors were selected 

TABLE 2 Distribution of pathogens identified in patients with infectious pulmonary disease.

Group Pathogens N (%)a

Bacteria (n = 97) G− bacteria 57 (31.1%)

Pseudomonas aeruginosa 15 (8.1%)

Klebsiella pneumoniae 14 (7.6%)

Burkholderia cepacia 12 (6.5%)

Haemophilus influenzae 7 (3.8%)

Mycobacterium avium 6 (3.2%)

Moraxella catarrata 3 (1.6%)

G+ bacteria 40 (21.8%)

Streptococcus pneumoniae 15 (8.1%)

Staphylococcus aureus 9 (4.9%)

Enterococcus faecalis 6 (3.2%)

Streptococcus agalactiae 5 (2.7%)

Enterococcus faecium 4 (2.1%)

Streptococcus pyogenes 1 (0.5%)

Fungi (n = 29) Candida 8 (4.3%)

Pneumocystis jirovecii 7 (3.8%)

Aspergillus 6 (3.2%)

Cryptococcus 4 (2.1%)

Nocardia 3 (1.6%)

Mucor 1 (0.5%)

Tuberculosis (n = 20) Mycobacterium tuberculosis 20 (10.9%)

Viruses (n = 16) SARS-CoV-2 6 (3.2%)

Influenza B virus 3 (1.6%)

Influenza A virus 3 (1.6%)

Cytomegalovirus 2 (1.1%)

Herpes simplex virus 2 (1.1%)

Atypical pathogens (n = 15) Chlamydia pneumoniae 7 (3.8%)

Psittacosis chlamydia 5 (2.7%)

Legionella 3 (1.6%)

NTM (n = 6) Nocardia 4 (2.1%)

Actinomyces 2 (1.1%)

aNumber of patients, with the percentage in parentheses.

TABLE 3 Characteristics of BALF cellular analysis in non-infectious pulmonary disease and infectious pulmonary disease.

Infectious pulmonary (n = 151) Non-infectious pulmonary 
(n = 71)

p

Macrophages, (%) 17.00 (5.00, 41.50) 34.00 (23.50, 54.00) <0.001

Neutrophil, (%) 50.00 (9.00, 87.00) 10.00 (3.00, 23.00) <0.001

Lymphocyte, (%) 10.00 (3.00, 22.50) 20.00 (6.50, 38.50) 0.019

BALF, bronchoalveolar lavage fluid. Values are given as the median (IQR). Statistical significance is indicated using bold typeface.
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according to the 1-SE criterion, identifying significant factors 
associated with pulmonary infections, including the percentage of 
neutrophils in BALF, blood neutrophil count, blood lymphocyte 
count, and PCT. These variables exhibited non-zero regression 
coefficients in the LASSO model, indicating their independent 
contribution to predicting pulmonary infections. The selected 
variables were then incorporated into a multivariate regression 
analysis for further validation of their predictive efficacy.

In the multivariate regression analysis, the variables identified 
by LASSO were included in the model. The results showed that the 
BALF NP (OR = 1.04, 95% CI: 1.02–1.06, p  < 0.001) and PCT 
(OR = 52.60, 95% CI: 1.83–1510.06, p < 0.05) were independent 
predictors of pulmonary infections (Table  4). Using these two 
indicators, we  established a predictive model for diagnosing 
pulmonary infection (Figure 3). In the Nomogram model, each 
factor is assigned a score displayed at the top. The total score is 
calculated by summing the scores of each factor. Based on this total 
score, a predicted risk value can be  found on the last line, 
representing the probability that a patient will be diagnosed with 
lung infection.

Establishment and evaluation of 
nomogram model

The nomogram showed favorable discrimination with an 
AUC of 0.853 (95% CI: 0.806 to 0.918) in the training set 
(Figure  4A). The calibration curve demonstrates a good 
agreement between the model predictions and the actual 
observations in the training set (Figure  5A). Besides, the 
Hosmer–Lemeshow test yielded a nonsignificant p = 0.739, 
indicating good calibration power. The DCA results of the 
nomogram in the training set are presented in Figure 6A. Using 
this model for anti-infective treatment decisions yields greater 
benefits when the threshold probability is ≥40%. the CIC results 
of the nomogram are presented in Figure 7A. When the model 
threshold probability was ≥0.6, the model’s predictions closely 
align with the actual number of pulmonary infections.

The nomogram also demonstrated strong discrimination in 
the validation set, with an AUC of 0.791 (95% CI: 0.697–0.904) 
(Figure  4B). The calibration curve demonstrated a good 
agreement between the model predictions and the actual 

FIGURE 2

Predictors selection using the LASSO regression analysis with tenfold cross-validation. (A) Coefficient path plot for the six predictors in LASSO 
regression. (B) Tuning parameter (lambda) selection of deviance in the LASSO regression based on the minimum criteria (left dotted line) and the 1-SE 
criteria (right dotted line). In the present study predictor’s selection was according to the 1-SE criteria. SE, standard error.

TABLE 4 Univariate and multivariate logistic regression analysis for risk factors of infectious pulmonary disease.

Variables Multivariate analysis p

OR (95% CI)

BALF Neutrophils (%) 1.04 (1.02–1.06) <0.001

Blood Neutrophil count (×109/L) 1.00 (0.82–1.23) 0.968

Blood Lymphocyte count (×109/L) 0.70 (0.34–1.44) 0.335

PCT (ng/mL) 52.60 (1.83–1510.06) 0.021

PCT, procalcitonin; BALF, bronchoalveolar lavage fluid. Values are given as the median (IQR). Statistical significance is indicated using bold typeface.
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observations in the validation set (Figure 5B). In addition, the 
p = 0.376 of the Hosmer–Lemeshow indicates good calibration 
capability. DCA and CIC results of the Nomogram in the 
verification set were consistent with those of the training set 
(Figures 6B, 7B).

Comparison between models

BALF NP exhibited the highest area under the ROC curve 
(AUC = 0.783, 95% CI: 0.713–0.854), followed by CRP (AUC = 0.733, 
95% CI: 0.652–0.815), PCT (AUC = 0.692, 95% CI: 0.611–0.773), the 
peripheral blood neutrophil count had an AUC of 0.673 (95% CI: 
0.5899–0.757), the peripheral blood white blood cell count had an 

AUC of 0.644 (95% CI: 0.5577–0.731), and the peripheral blood 
lymphocyte count had an AUC of 0.620 (95% CI: 0.520–0.719). The 
BALF L% had an AUC of 0.783 (95% CI: 0.515–0.707). Among the 
individual predictive factors, BALF N% demonstrated the best 
discriminatory ability, achieving the highest ROC curve area 
(AUC = 0.783, 95% CI: 0.713–0.854). Specifically, when the BALF NP 
was ≥16%, the sensitivity was 72%, the specificity was 70%, the 
positive likelihood ratio was 2.07, and the negative likelihood ratio 
was 0.38 (Figures 8A,B).

In the comparison of models, the Nomogram prediction model 
outperformed other individual predictive models, as well as the 
combination of peripheral blood leukocyte classification, CRP, and 
PCT, in predicting the risk of developing pulmonary infections across 
the entire range of risk thresholds (Figures 9A,B).

FIGURE 3

Nomogram model for predicting the occurrence of infectious pulmonary disease in pulmonary shadow patients. BALF NP, the percentage of 
neutrophils in BALF.

FIGURE 4

Discrimination and calibration of the nomogram model for predicting the occurrence of infectious pulmonary disease in pulmonary shadow patients. 
Receiver operator characteristic curve of the nomogram in the training set (A) and validation set (B).
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FIGURE 5

Discrimination and calibration of the nomogram model for predicting the occurrence of infectious pulmonary disease in pulmonary shadow patients. 
Calibration curve of the nomogram in the training set (A) and validation set (B). In these calibration curves, the y-axis denotes the actual observed 
probabilities of pulmonary infections, while the x-axis reflects the probabilities predicted by the nomogram. These curves serve to demonstrate the 
alignment between the predicted probabilities and the actual observed outcomes. The diagonal black dashed line signifies an ideal model’s perfect 
prediction, whereas the blue solid line indicates the predictive efficacy of the nomogram. A closer alignment of the solid line to the dashed line 
suggests superior predictive accuracy. AUC, area under the curve; CI, confidence interval.

FIGURE 6

Decision curve analyses depicting the clinical net benefit of the nomogram model for predicting the occurrence of pulmonary infection in pulmonary 
shadow patients. The decision curve analysis is depicted for both the training set (A) and the validation set (B). The x-axis represents the high-risk 
threshold, while the y-axis denotes the net benefit, which is computed over a spectrum of threshold probabilities. The inclined glossy solid gray line 
symbolizes the scenario in which all patients are presumed to have been diagnosed with a pulmonary infection. Conversely, the horizontal solid black 
line reflects the scenario where none of the patients are diagnosed with a pulmonary infection. The decision curve analysis revealed that when the 
threshold probabilities surpassed 40%, employing the model to guide treatment decisions yielded a greater net benefit compared to treating either all 
patients or none, as observed in the training and validation set of this study.
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Discussion

This study assessed the diagnostic accuracy of cellular analysis of 
BALF in distinguishing between pulmonary infectious and 
non-infectious diseases in patients with pulmonary shadows. The 

BALF NP was found to be  the most accurate indicator for 
distinguishing between infectious pulmonary diseases and 
non-infectious pulmonary diseases compared to blood leukocyte 
counts and classifications, CRP, and PCT. Both infectious and 
non-infectious pulmonary diseases can lead to an elevated percentage 

FIGURE 7

Clinical impact curve (CIC) of nomogram model in the training set (A) and validation set (B). The red curve, representing the number of individuals 
classified as high-risk by the model at each threshold probability, indicates the total count of high-risk individuals. The blue curve, which denotes the 
number of true positives at each threshold probability, reflects the actual high-risk individuals who experienced the outcome. When the model 
threshold probability was ≥0.6, the model’s predictions closely align with the actual number of pulmonary infections. The CIC visually demonstrates 
that the nomogram provides substantial clinical net benefit and substantiates the clinical utility of the nomogram model.

FIGURE 8

Models comparison in the whole study. Receiver operator characteristic curve of the all models (A,B) model 1: nomo, model 2: WBC + N + CRP + PCT; 
N: blood neutrophil count, L: blood lymphocyte count. BALF NP, the percentage of neutrophils in BALF.
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of neutrophils in BALF. BALF NP ≥16% indicates a diagnosis of 
pulmonary infection with high sensitivity and specificity. The 
nomogram model, which uses BALF NP and PCT demonstrates good 
accuracy and practical applicability for diagnosing 
pulmonary infection.

Clinicians face challenges in identifying pulmonary infectious and 
non-infectious diseases in patients with pulmonary shadows. In 
clinical practice, the blood white blood cell count and its classification 
are commonly used to differentiate between infected and non-infected 
patients. Stolz et al. (13) analyzed the blood white blood cell count of 
107 patients with immune deficiency and found that peripheral white 
blood cell count, peripheral blood neutrophil count and lymphocyte 
count could not accurately distinguish the pulmonary infectious and 
non-infectious diseases in patients with pulmonary shadows. Our 
study also supported this conclusion. CRP is also a commonly used 
indicator in the clinical diagnosis of pulmonary infection; however, 
non-infectious diseases, such as allergies and autoimmune disorders, 
can influence CRP levels (14, 15). In this study, we found that CRP was 
significantly elevated in patients with non-infectious diseases such as 
hypersensitivity pneumonia and connective tissue disease-associated 
interstitial lung disease. Consequently, the British Medical Journal 
highlights that the C-reactive protein assay does not have adequate 
sensitivity and specificity to differentiate between infiltrates on chest 
X-rays and the bacterial causes of lower respiratory tract infections 
(16). In the current study, the above indicators were poor for 
distinguishing between pulmonary infectious and non-infectious 
diseases. This may be related to the empirical use of antibiotics before 
admission. PCT is currently an important indicator for clinical 
judgment of bacterial infection, and its effectiveness in diagnosis, 
severity assessment, and antibiotic use for lower respiratory tract 
bacterial infections has been confirmed by numerous studies (17–19). 
However, patients with partial lung abnormalities usually present with 
local spots or nodules, and some severe infections may lead to multiple 
organ dysfunction, resulting in false negative or false positive results 
(6, 20). In this study, the area under the curve (AUC) value for 

procalcitonin (PCT) was only 0.692 (95% CI: 0.611–0.773). However, 
when PCT was combined with other indicators, such as the cellular 
analysis of BALF, the accuracy in diagnosing pulmonary infections 
improved significantly, resulting in an AUC value of approximately 
0.853. In addition, different detection methods will also affect the 
results of PCT (21, 22). Therefore, at present, there is still a lack of 
specific and sensitive indicators to distinguish between the infectious 
and non-infectious pulmonary diseases.

BALF is collected from the deep bronchi, and the background 
biological content is significantly lower than that found in sputum. 
BALF is recommended by guidelines for microbiological 
examinations such as culture and mNGS (23). There is still limited 
research regarding the ability of cellular analysis to differentiate 
between the infectious and non-infectious pulmonary diseases. The 
results of this study indicate that the percentage of neutrophils 
serves as the best predictor for the diagnostic accuracy of 
pulmonary infections. An increase in neutrophil count in BALF is 
significantly associated with pulmonary infections, which is 
consistent with previous studies (24, 25). This association may 
be attributed to infection induced elevations of neutrophils in the 
alveolar interstitial space; since BALF is typically obtained from the 
sites of pulmonary lesions, it has a stronger capacity to respond to 
localized infections and inflammation (26). Additionally, antibiotic 
treatment has a minimal impact on neutrophil counts in BALF (27). 
Therefore, when the BALF NP is elevated, it is more indicative of a 
pulmonary infection. However, there is currently no standardized 
diagnostic threshold for BALF NP. Walter et al. (28) conducted an 
analysis of BALF cytological classification in 1,006 mechanically 
ventilated patients and found that a neutrophil percentage below 
50% has a negative predictive value greater than 90% for bacterial 
pneumonia, which is significantly higher than the optimal threshold 
identified in this study. Pan et al. (24) assessed the role of BALF in 
differentiating pulmonary infection caused by different pathogens 
and recommended an optimal threshold of 6.7% for neutrophil 
percentage in BALF. However, these studies primarily focused on 

FIGURE 9

The decision curve analysis of the all models (A,B).
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distinguishing between bacterial infections and non-infections, 
without addressing other infectious etiologies such as fungi or 
tuberculosis. Moreover, infections caused by different pathogens—
whether bacterial, fungal, or viral—may elicit varying degrees of 
neutrophil elevation (25). Bacterial infections tend to show more 
pronounced neutrophilia, while tuberculosis infections may 
primarily feature either neutrophilia or lymphocytosis (29). This 
study mainly investigates the distinction between infections caused 
by different pathogens and non-infections, which is the rationale 
behind the proposed neutrophil cutoff value of 16% in BALF.

This study utilized both LASSO and multivariate regression 
analyses to identify BALF NP and PCT as independent predictors of 
pulmonary infection. A diagnostic model for pulmonary infection was 
constructed using these two indicators. ROC curve analysis revealed 
AUC values of 0.853 and 0.801 for the training and validation cohorts, 
respectively, demonstrating superior predictive performance. The 
calibration curve indicated a good agreement between predicted 
outcomes and actual observations, suggesting that the model possesses 
high predictive efficiency. DCA and CIC confirmed the model’s strong 
clinical validity. The nomogram provided a visual representation of 
the regression results, simplifying the interpretation of complex data 
compared to traditional statistical models. By illustrating the 
relationship between scores and outcomes, it enables clinicians to 
swiftly assess the risk of pulmonary infection in patients. Additionally, 
the diagnostic efficacy of this model outperformed the currently 
employed clinical markers for infection, such as peripheral blood 
leukocyte classification, CRP and PCT, as well as comprehensive 
analyses combining these three indicators.

However, there are some limitations to this study. First, it 
included only a laboratory features and cellular analysis of BALF. In 
clinical practice, clinical symptoms, signs, and imaging play crucial 
roles in diagnosis, and future studies should incorporate patient 
symptoms and imaging characteristics to enhance model accuracy. 
Second, as a single-center, retrospective study, the inclusion of 
some infectious lesions such as fungal infections and tuberculosis, 
as well as non-infectious conditions like acute interstitial 
pneumonia and specific pulmonary fibrosis, which can also elevate 
neutrophil counts in BALF, was limited. This may lead to potential 
biases in the results. Future research needs to be  prospective, 
multicenter, and involve larger sample sizes to further validate 
the findings.

Conclusion

In summary, BALF NP ≥16% effectively distinguishes between 
infectious pulmonary diseases and non-infectious pulmonary 
diseases. The predictive model based on BALF NP and PCT 
demonstrates excellent diagnostic performance for pulmonary 

infections and can assist clinicians in making informed 
clinical decisions.
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