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Background: Osteosarcoma and chondrosarcoma are common malignant 
bone tumors, and accurate differentiation between these two tumors is crucial 
for treatment strategies and prognosis assessment. However, traditional 
radiological methods face diagnostic challenges due to the similarity in imaging 
between the two.

Methods: Clinical CT images and pathological data of 76 patients confirmed by 
pathology from January 2018 to January 2024 were retrospectively collected 
from Guizhou Medical University Affiliated Hospital and Guizhou Medical 
University Second Affiliated Hospital. A total of 788 radiomic features, including 
shape, texture, and first-order statistics, were extracted in this study. Six machine 
learning models, including Random Forest (RF), Extra Trees (ET), AdaBoost, 
Gradient Boosting Tree (GB), Linear Discriminant Analysis (LDA), and XGBoost 
(XGB), were trained and validated. Additionally, the importance of features and 
the interpretability of the models were evaluated through SHAP value analysis.

Results: The RF model performed best in distinguishing between these two 
tumor types, with an AUC value close to perfect at 1.00. The ET and AdaBoost 
models also demonstrated high performance, with AUC values of 0.98 and 0.93, 
respectively. SHAP value analysis revealed significant influences of wavelet-
transformed GLCM and First Order features on model predictions, further 
enhancing diagnostic interpretability.

Conclusion: This study confirms the effectiveness of combining machine 
learning with radiomic features in improving the accuracy and interpretability 
of osteosarcoma and chondrosarcoma diagnosis. The excellent performance 
of the RF model is particularly suitable for complex imaging data processing, 
providing valuable insights for the future.
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1 Introduction

Osteosarcoma, a malignant tumor originating from 
mesenchymal stem cells, has an annual incidence rate ranging from 
1 to 4 cases per million people and can occur at any age, with a 
higher prevalence in children and adolescents (1). These tumors 
primarily affect long bones such as the distal femur, proximal tibia, 
and proximal humerus (2). Although the exact etiology of 
osteosarcoma remains unclear, factors such as abnormal bone tissue 
proliferation and exposure to radiation may be associated with its 
development (3). Treatment typically includes neoadjuvant 
chemotherapy, surgery, and high-dose chemotherapy (4). Despite 
5-year survival rates ranging from 37.5 to 77.6% for patients with 
localized osteosarcoma after systemic therapy (5–9), approximately 
20–30% of patients experience metastasis, primarily to the lungs and 
bones. For metastatic or recurrent osteosarcoma, adjuvant 
chemotherapy has not significantly improved survival rates (10). In 
contrast, treatment outcomes for chondrosarcoma, another common 
malignant bone tumor, are generally more favorable. Both 
osteosarcoma and chondrosarcoma typically develop within bone 
tissue, and their lesions often share similarities in  location, 
morphology, and texture during bone formation. This makes 
accurate diagnosis and differentiation particularly challenging. 
Precise diagnosis is critical, as misdiagnosis can result in patients 
missing the optimal treatment window or undergoing 
unnecessary treatments.

Although percutaneous biopsy remains the gold standard for 
osteosarcoma diagnosis, it is an invasive procedure that may lead to 
complications such as bleeding, infection, or tumor dissemination (11, 
12). In recent years, with the rapid development of medical imaging 
technology, computed tomography (CT) has become an important 
tool for diagnosing osteosarcoma and chondrosarcoma. CT 
technology, with its high-resolution imaging capability, can provide 
detailed information about tumor size, morphology, location, and 
whether it invades surrounding tissues, which is crucial for early 
detection and staging of the disease. Furthermore, CT scans can reveal 
subtle changes in bone structure and soft tissue conditions, which are 
essential for accurately assessing tumor invasiveness and potential 
metastasis. However, the high variability of these tumor types and 
their similarity to other lesions make traditional manual imaging 
diagnostics not only time-consuming but also heavily reliant on the 
experience and expertise of radiologists. This adds to the complexity 
of diagnosis and can sometimes result in misdiagnosis or missed 
cases. Thus, there is an urgent need for the development of automated, 
accurate, and efficient imaging-based diagnostic tools.

The rise of machine learning techniques has transformed the 
processing and analysis of medical images, making precise prediction 
of pathological types possible. Particularly in the field of radiomics, 
this technology, through high-throughput data feature extraction 
algorithms, can convert complex medical images into high-
dimensional, usable quantitative image features. These features are 
then used to build machine learning models that can not only 
differentiate between benign and malignant tumors but also predict 
the prognosis of tumor patients (13–15). For example, by analyzing 
features such as texture, shape, and density in CT images, machine 
learning models can accurately identify osteosarcoma and 
chondrosarcoma and even predict their developmental trends and 
potential treatment responses. This enables doctors to make more 

accurate clinical decisions in a shorter amount of time, which is 
crucial for enhancing patient treatment outcomes.

This study, based on retrospective CT data from two medical 
centers, aims to develop an innovative machine learning and 
radiomics-based model for distinguishing between osteosarcoma and 
chondrosarcoma. By integrating tumor imaging data with pathological 
diagnostic results, this study applied six advanced machine learning 
algorithms to process and analyze data, thereby extracting imaging 
features that can clearly differentiate between the two tumors. The 
collected CT images were preprocessed, including standardization and 
enhancement, to improve the quality and efficiency of model training. 
Subsequently, high-throughput data feature extraction techniques 
were used to extract multidimensional quantitative features from CT 
images, such as texture, shape, and density. After training and 
validation, this study ultimately developed a machine learning model 
capable of accurately distinguishing between osteosarcoma and 
chondrosarcoma, offering promise as a novel clinical auxiliary 
diagnostic tool. The workflow of this study is shown in Figure 1.

2 Methods

2.1 Patient enrollment

This study adhered to the Helsinki Declaration and obtained 
approval from the Ethics Committees of Guizhou Medical University 
Affiliated Hospital (Approval No.:) and Guizhou Medical University 
Second Affiliated Hospital (Approval No.:). Retrospectively, CT images 
of patients diagnosed with osteosarcoma by osteosarcoma resection 
surgery were collected from the two centers, Guizhou Medical 
University Affiliated Hospital and Guizhou Medical University Second 
Affiliated Hospital, from January 2018 to January 2023. A total of 76 
patients were included, comprising 36 males and 40 females. 
According to pathological classification criteria, they were divided into 
the chondrosarcoma group (n = 31) and the osteosarcoma group 
(n = 45). Inclusion criteria were as follows: (1) Patients diagnosed with 
sarcoma and undergoing resection surgery; (2) Patients undergoing 
preoperative CT scanning; (3) Patients with complete clinical data. 
Exclusion criteria were as follows: (1) Obvious artifacts on CT images; 
(2) Patients with tumors in addition to sarcoma; (3) Patients who had 
not received treatment before CT scanning.

2.2 Imaging examination

In this study, CT images of all patients were acquired from the 
same CT scanner, model GE Revolution CT 256. To ensure image 
quality and consistency, all scans were performed under uniform 
technical conditions. Patients were positioned in a supine position 
during CT scanning to minimize motion artifacts and ensure image 
clarity and accuracy.

The specific scan range covered the joints where the sarcoma was 
located and its adjacent joints above and below to comprehensively 
evaluate the local extension of the tumor and possible joint 
involvement. The specific parameters for the scans were set as follows: 
tube voltage was set to 120 kV to optimize image contrast and reduce 
radiation dose; tube current was adjusted between 250 and 400 mA 
based on patient size to ensure image quality; slice thickness and slice 
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spacing were both set to 5 mm to improve spatial resolution of the 
images, making subtle bone destruction and soft tissue structure 
changes more clearly visible; the image matrix was set to 512 × 512 to 
ensure sufficient image detail; detector collimation was 64 mm × 
0.625 mm, ensuring efficient data acquisition and shorter scan times.

The CT scanning procedure began with obtaining plain images of 
the patient’s abdomen to preliminarily evaluate the anatomical 
structures in the abdominal region and exclude other potential 
complications. Subsequently, detailed scans of the sarcoma area were 
performed to accurately assess the size, morphology, and relationship 
with surrounding structures of the tumor.

2.3 Data preprocessing

To ensure that machine learning models could effectively learn 
and accurately predict osteosarcoma and chondrosarcoma, strict 
preprocessing of the collected CT image data was conducted. The 
main objectives of data preprocessing were to improve data quality, 
reduce the influence of noise, and create a uniform format suitable for 
subsequent analysis and model training.

All image data underwent initial cleaning to remove any artifacts 
or images from non-tumor areas generated during scanning. 
Specificity, we performed preliminary cleaning on all CT images to 
remove artifacts or images of non-tumor areas caused by the scanning 
process. In order to ensure data quality, we removed any images with 
motion artifacts or unclear annotations to ensure that all images used 
for subsequent analysis are of high quality and accurately labeled.

Subsequently, image standardization was performed to eliminate 
the influence of different scanning parameters on image intensity. 
We standardized the grayscale values of all CT images to eliminate the 
effects of different scanning parameters and equipment on image 

intensity. This standardization process is completed by scaling the 
grayscale values of the image to a range of 0 to 255. Specifically, we use 
the minimum and maximum grayscale values of each image for linear 
scaling to ensure that the grayscale values between different images 
are in the same range, which is convenient for subsequent feature 
extraction and model training. This step was crucial for the model to 
fairly compare and process images from different scans.

To further enhance the visibility of tumor features in the images, 
various image enhancement techniques were applied. This included 
contrast enhancement, sharpening, and noise reduction algorithms, 
which helped highlight details in the tumor area, facilitating the model 
to more accurately learn and identify tumor-related image features.

To ensure accurate extraction of radiomic features and accuracy of 
subsequent analysis, all CT images involved in this study underwent 
manual Region of Interest (ROI) annotation. ROI annotation was 
performed using 3D Slicer software. During the ROI annotation 
process, two radiologists with over 10 years of experience jointly 
delineated each image to ensure the accuracy and consistency of the 
annotations. The main objective of annotation was to precisely define 
the regions showing tumor features, including the main body of the 
tumor and possible invasion margins. Subsequently, to further improve 
the accuracy of the annotations, all annotated images underwent review 
and adjustment by another physician before final analysis. This process 
ensured the representativeness and relevance of the extracted features.

2.4 Radiomic feature extraction and 
selection

2.4.1 Feature extraction
In this study, to extract reliable radiomic features from CT images 

of osteosarcoma and chondrosarcoma, we utilized the pyradiomics 

FIGURE 1

The workflow of this study includes: (1) collecting CT images and performing manual ROI annotation to define tumor regions; (2) extracting radiomic 
features such as shape, texture, and first-order statistics; (3) using LASSO regression for feature selection; (4) training machine learning models on 
selected features to differentiate osteosarcoma from chondrosarcoma; and (5) evaluating model performance with metrics like AUC to select the best 
model for clinical interpretation.
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library, which is a widely used feature extraction tool for medical 
imaging data. We used pyradiomics to extract features from each 
preprocessed CT image, covering various aspects such as shape, 
texture, and signal intensity. Specifically, these features included first-
order statistics, shape-based features, Gray Level Co-occurrence 
Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level 
Dependence Matrix (GLDM), and Gray Level Size Zone Matrix 
(GLSZM) parameters. Pyradiomics applies mathematical operations 
to generate different feature sets. For example, first-order statistics are 
computed directly from the voxel intensity values within the ROI, 
providing basic information about the distribution of intensities (e.g., 
mean, standard deviation, and entropy). Shape features are extracted 
by analyzing the three-dimensional structure of the tumor, focusing 
on parameters such as volume, surface area, and sphericity. To capture 
more complex patterns, pyradiomics then generates texture features 
using advanced matrices like the Gray Level Co-occurrence Matrix 
(GLCM) and Gray Level Run Length Matrix (GLRLM), which 
quantify spatial relationships between pixel intensities, offering deeper 
insight into the tumor’s internal structure.

2.4.2 Feature selection
Feature selection was conducted in several steps. Firstly, the 

stability of features was assessed using the Intraclass Correlation 
Coefficient (ICC). Only features with an ICC value greater than 0.75 
were considered to have sufficient test–retest stability and were 
suitable for subsequent analysis. Next, all high-ICC features were 
standardized using Z-score normalization to eliminate biases due to 
scale and magnitude. Following standardization, features significantly 
correlated with disease status were selected using t-tests, where those 
features showing a p-value less than 0.05 were considered significantly 
different between osteosarcoma and chondrosarcoma samples. Finally, 
Lasso regression model was applied for further feature selection. Lasso 
regression adds an L1 regularization term to shrink some coefficients 
to zero, effectively selecting the most important features and reducing 
model complexity. This helps prevent overfitting and improves 
prediction accuracy. We  used cross-validation to optimize the 
regularization parameter (λ), which determines the strength of the 
penalty. By evaluating different λ values, we  selected the one that 
minimized prediction error while retaining the most relevant features, 
enhancing both model performance and interpretability. This set of 
features was used for subsequent machine learning algorithm training 
to construct an efficient and accurate osteosarcoma prediction model.

2.5 Construction of machine learning 
models

To accurately differentiate between osteosarcoma and 
chondrosarcoma, this study employed six mainstream machine 
learning models, namely XGBoost (XGB), Random Forest (RF), Extra 
Trees (ET), Gradient Boosting (GB), AdaBoost, and Linear 
Discriminant Analysis (LDA). Each model was optimized and 
validated under a series of predefined parameters.

2.5.1 XGBoost
XGB is an optimized distributed gradient boosting library based 

on gradient boosting algorithm. In this study, key parameters for XGB 
were set as follows: “max_depth = 5”, limiting the maximum depth of 

trees to control overfitting; “learning_rate = 0.1,” controlling the 
contribution of each tree; “n_estimators = 100,” defining the total 
number of trees to be constructed; “subsample = 0.8”, used for random 
sampling of training instances; “colsample_bytree = 0.8,” used for 
random sampling of features.

2.5.2 Random forest
RF is an ensemble learning method with good handling capability 

for high-dimensional data. Parameters for the RF model include: 
“n_estimators = 100,” indicating the number of trees in the forest; 
“max_features = ‘sqrt’,” considering the number of features to look for 
when finding the best split; “min_samples_split = 2,” requiring at least 
two samples in a node for splitting; “min_samples_leaf = 1,” requiring 
at least one sample in a leaf node.

2.5.3 Extra trees
The ET classifier is similar to RF but more random in its splitting 

strategy at each node. Model parameters for ET are set as: “n_
estimators = 100,” “max_features = ‘auto’,” automatically selecting the 
number of features; “min_samples_split = 2,” and 
“min_samples_leaf = 1.”

2.5.4 Gradient boosting
GB is a method of precisely adjusting the model by progressively 

adding models to reduce bias. Parameters for the GB model are set as: 
“n_estimators = 100,” “learning_rate = 0.1,” “max_depth = 3,” 
controlling the depth of each tree; “subsample = 0.8,” and 
“max_features = ‘sqrt’.”

2.5.5 AdaBoost
AdaBoost is a technique for boosting models by adjusting the 

weights of misclassified instances by the previous model. Parameters 
for AdaBoost are set as: “n_estimators = 50,” “learning_rate = 1.0.”

2.5.6 Linear discriminant analysis
LDA is a technique for pattern classification and is well-suited for 

handling highly collinear data. Due to its fewer parameters, LDA was 
used as a baseline model.

2.6 Statistics and analysis

In this study, we  evaluated and compared different machine 
learning models with the aim of accurately distinguishing between 
osteosarcoma and chondrosarcoma. The experimental data were 
divided into training and testing sets in an 8:2 ratio, where the training 
set was used for model construction and parameter optimization, and 
the testing set was used for final model performance evaluation. All 
experiments were conducted on a high-performance computer 
equipped with Windows 10 operating system, Intel Core i9 processor, 
and NVIDIA GeForce RTX 3080 graphics card. Additionally, this 
study was developed using Python 3.7 programming language, 
primarily relying on data science and machine learning libraries such 
as Scikit-learn, XGBoost, Pandas, and Numpy. For statistical analysis, 
this study utilized evaluation metrics including accuracy (Acc), recall 
(Recall), precision (Prec), F1 score, and AUC value, and detailed 
analysis of model performance was conducted through 
confusion matrices.
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3 Results

3.1 Baseline characteristics of patients

The clinical baseline characteristics of patients from the Guizhou 
Medical University Affiliated Hospital and the Guizhou Medical 
University Second Affiliated Hospital are summarized in Table 1. At 
the Guizhou Medical University Affiliated Hospital, the average age of 
osteosarcoma patients (N = 39) was 22.87 ± 14.663 years, which was 
significantly younger compared to chondrosarcoma patients (N = 27), 
whose average age was 47.67 ± 13.890 years (p-value < 0.01). At the 
Guizhou Medical University Second Affiliated Hospital, the average 
age of osteosarcoma patients (N = 6) was 23.83 ± 11.822 years, while 
the average age of chondrosarcoma patients (N = 4) was 
42.25 ± 13.841 years (p-value = 0.068), showing a similar trend but 
without reaching statistical significance. Regarding gender 
distribution, at the Guizhou Medical University Affiliated Hospital, 
48.7% of the osteosarcoma patients and 44.4% of the chondrosarcoma 
patients were male (p-value = 0.732). At the Guizhou Medical 
University Second Affiliated Hospital, 50% of the osteosarcoma 
patients and 50% of the chondrosarcoma patients were male (p-
value = 1.000), indicating no significant difference in gender 
distribution between the two groups at both hospitals.

3.2 Feature extraction and selection results 
of radiomics

In this study, a total of 788 radiomic features were extracted, 
including 100 features obtained from original transformations and 
688 features extracted through wavelet transformation. In the 
original transformations, extracted contents comprised 14 shape 
features, 18 first-order statistical features, 22 gray-level 
co-occurrence matrix (GLCM) features, 16 gray-level run-length 
matrix (GLRLM) features, 16 gray-level size zone matrix (GLSZM) 
features, and 14 gray-level dependence matrix (GLDM) features. In 
the wavelet transformation, 144 first-order statistical features, 176 
GLCM features, 128 GLRLM features, 128 GLSZM features, and 112 
GLDM features were extracted through different wavelet 
decompositions (Wavelet-LLH, Wavelet-LHL, Wavelet-LHH, 
Wavelet-HLL, Wavelet-HLH, Wavelet-HHL, Wavelet-HHH, and 
Wavelet-LLL).

The results of feature selection using Lasso regression indicated 
that some features significantly contributed to the predictive 
performance of the model. Lasso regression effectively selected 
features with significant impact on classification by introducing L1 
penalty, achieving sparse selection of features. From Figures 2a–c, 

detailed analysis and interpretation of the results of Lasso feature 
selection can be  observed. Figure  2a illustrates how the Lasso 
coefficients of each feature change with increasing regularization 
parameter λ. It can be  observed that at smaller λ values, most 
feature coefficients are relatively large, gradually decreasing toward 
zero as λ increases. This indicates that under lower penalty 
strength, most features contribute to the model to some extent, 
whereas under strong regularization, only a few key features are 
retained. Figure  2b shows the relationship between bias and 
regularization strength. It can be  seen that as λ decreases, bias 
decreases, suggesting better data fitting performance at smaller λ 
values (i.e., lower regularization strength). In Figure 2c, an uneven 
distribution of feature importance is observed, particularly with 
wavelet transformation features occupying a significant position in 
feature importance. For instance, “wavelet.LLH_glcm_Idn,” 
“wavelet.HLH_firstorder_Skewness,” and “wavelet.LHH_glcm_
Idm” exhibit high importance, indicating their high predictive 
ability in distinguishing between osteosarcoma 
and chondrosarcoma.

3.3 Results of machine learning-based 
predictive models

The results of the osteosarcoma prediction model are illustrated 
in Figure 3. Figure 3a analysis demonstrates that various machine 
learning models exhibit varying degrees of diagnostic efficacy in 
distinguishing between osteosarcoma and chondrosarcoma. The 
RF model demonstrates the highest discriminatory ability, with an 
AUC value reaching a perfect 1.00, indicating its ability to 
accurately differentiate between case types under all test 
conditions. The ET model also demonstrates near-perfect 
performance, with an AUC of 0.98, suggesting its effective 
discrimination between the two tumors in most scenarios. 
AdaBoost and GB models also exhibit strong predictive 
capabilities, with AUC values of 0.93, indicating high reliability 
and diagnostic accuracy. Relatively, although slightly weaker, the 
LDA and XGBoost models still demonstrate good diagnostic 
capabilities, with AUC values of 0.89 and 0.88, respectively, 
providing valuable classification decision support within an 
acceptable range.

The classification report in Figure  3b further reveals the 
advantages of the RF model in specific classification tasks. In 
distinguishing between the two classes of cases, the model achieves 
precision and recall rates of 0.93 each, with an F1 score of 0.93, 
demonstrating high consistency and reliability in handling such 
medical imaging data. This high level of performance is attributed to 

TABLE 1 Clinical baseline characteristics statistics.

Guizhou Medical University Affiliated Hospital 
(N  =  66)

Guizhou Medical University Second Affiliated 
Hospital (N  =  10)

Osteosarcoma 
(N  =  39)

Chondrosarcoma 
(N  =  27)

p-value Osteosarcoma 
(N  =  6)

Chondrosarcoma 
(N  =  4)

p-value

Age, years 22.87 ± 14.663 47.67 ± 13.890 <0.01 23.83 ± 11.822 42.25 ± 13.841 0.068

Men, n (%) 19 (48.7) 12 (44.4) 0.732 3 (50) 2 (50) 1.000
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the RF model’s ability to balance well between processing high-
dimensional data and achieving good performance across 
different categories.

3.4 Interpretability analysis of radiomic 
features

The importance ranking of radiomic features is depicted in 
Figure 4. Through a detailed analysis of SHAP values, we can establish 
connections between abstract radiomic features and specific 

characteristics of osteosarcoma, providing more specific insights for 
clinical diagnosis. In the SHAP value analysis, we observe that certain 
wavelet transformation features, such as “wavelet-LHL_gldm_
DependenceLowGrayLevelEmphasis” and “wavelet-HLH_glcm_
JointAverage,” significantly influence the model’s predictive output. 
“DependenceLowGrayLevelEmphasis” describes the pixel 
dependency of low gray-level regions in the image. In the context of 
osteosarcoma imaging, this may indicate the boundary between 
low-density areas of tumor tissue and surrounding tissues, which 
could represent necrotic areas of the tumor or tissue with less vascular 
support, common features of malignant tumors. The strong 

FIGURE 2

Visual display of radiomic features filtered by LASSO algorithm. Among them (a) represents the changing trend of the Lasso coefficient of each feature 
as the regularization parameter λ increases; (b) the model deviation under different regularization parameters λ; (c) represents the importance ranking 
of features filtered by LASSO.

FIGURE 3

Results of osteosarcoma prediction model based on machine learning model. Among them (a) represents the comparison of ROC curves of six 
machine learning algorithms; (b) represents the matrix display of various evaluation indicators of the selected RF algorithm.
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performance of this feature may aid in distinguishing highly 
heterogeneous malignant tumors from more uniform benign or less 
malignant tumors.

On the other hand, “JointAverage,” as a first-order statistical feature, 
provides information about the average pixel intensity of the entire image 
region or tumor area. In the context of tumors, this may reflect the 
general characteristics of tumor texture. For instance, higher 
“JointAverage” values may correspond to denser tumor tissue, which is 
more common in certain types of high-density tumors such as 
osteosarcoma. Additionally, GLCM and First Order features like 
“HighGrayLevelEmphasis” reveal the importance of high gray-level 
values, possibly indicating harder tumor regions, typical in osteosarcoma, 
reflecting the presence of calcified or ossified areas within the tumor.

4 Discussion

In recent years, the application of Computer-Aided Diagnosis 
(CAD) technology in medical imaging has rapidly advanced, leading 
to continuous improvement in accuracy (16). More hospitals are 
introducing CAD-related applications, enhancing work efficiency, 
reducing the workload of physicians, and alleviating work intensity. 
Developing radiomic-assisted models for the diagnosis of 
osteosarcoma and chondrosarcoma, based on medical imaging, can 
alleviate the workload of radiologists. It enables timely and effective 
screening of tumor types in primary hospitals, providing patients with 
the most timely and accurate diagnostic opinions, thereby avoiding 
missing the optimal diagnosis timing or unnecessary treatment plans 

FIGURE 4

Arrangement of feature importance that affects the model (SHAP analysis, taking the best-performing model as an example).
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(17–20). In this study, we  aimed to explore and validate the 
effectiveness of using machine learning models combined with 
radiomic features to accurately distinguish between osteosarcoma and 
chondrosarcoma. By extracting high-dimensional radiomic features 
from CT images, this study comprehensively trained and evaluated six 
advanced machine learning algorithms. The results showed that the 
RF model performed the best among all tested models, with an AUC 
value reaching a perfect 1.00, indicating extremely high classification 
accuracy and reliability. Furthermore, SHAP value analysis provided 
insights into the decisive role of specific radiomic features in these 
models, enhancing the interpretability and clinical application 
potential of the models.

In this study, the performance of the RF algorithm surpassed that 
of other machine learning models. Several factors contribute to this 
superiority. Firstly, RF is an ensemble learning technique that 
enhances prediction accuracy and stability by building multiple 
decision trees and averaging or majority voting their results. This 
approach is particularly effective in handling high-dimensional data, 
as it can reduce the risk of overfitting while maintaining sensitivity to 
hidden patterns in the data. For the task of distinguishing between 
osteosarcoma and chondrosarcoma, the high dimensionality and 
complexity of radiomic features demand algorithms that can 
effectively manage a large number of input variables and extract key 
information from them. RF ensures model robustness by introducing 
randomness in feature selection during the construction of each 
decision tree, preventing overreliance on certain features and 
enhancing the model’s generalization ability. Additionally, the RF 
algorithm internally assesses feature importance, enabling the model 
to automatically identify radiomic features most influential for 
classification. Moreover, the RF model demonstrates robustness in 
handling imbalanced datasets, a common challenge in clinical data 
where one class may outnumber the other. This robustness is critical 
for accurately classifying osteosarcoma and chondrosarcoma, given 
their clinical data often exhibit imbalances between the two types.

Based on SHAP analysis, we  uncovered associations between 
radiomic features and imaging characteristics of osteosarcoma, 
enhancing clinical interpretability and summarizing the crucial role 
of radiomic features in discriminating between osteosarcoma and 
chondrosarcoma. We found that features such as GLCM and first-
order statistical features from wavelet transformations are essential for 
identifying tumor microstructure and macroscopic characteristics. 
These features reflect the complex texture and density distribution 
within the tumor, with “DependenceLowGrayLevelEmphasis” 
revealing the pixel dependency of low gray-level regions, possibly 
associated with necrotic areas of the tumor, and “JointAverage” 
providing information about the overall grayscale level of the tumor, 
aiding in assessing overall density and calcification. Such information 
is challenging to derive from traditional imaging techniques, 
demonstrating the value of radiomics in modern healthcare. Through 
this technology, physicians can better understand the malignancy and 
biological characteristics of tumors, making more accurate clinical 
decisions and treatment plans.

This study, by combining advanced radiomic features and 
machine learning techniques, enhances the diagnostic accuracy of 
osteosarcoma and chondrosarcoma, which is significant in clinical 
practice. Particularly for tumors like osteosarcoma, with high 
heterogeneity and complex local manifestations, traditional imaging 
methods provide useful information but have limitations, especially 

in detecting early and subtle lesions (21). By leveraging machine 
learning techniques to analyze radiomic data, this study reveals subtle 
texture and morphological changes critical for distinguishing tumor 
types, which may not be evident to the naked eye. Early diagnosis and 
accurate tumor typing are crucial for improving treatment planning 
and prognosis for osteosarcoma patients. Accurate imaging analysis 
can help physicians decide whether to perform a biopsy, select the type 
of surgery, and determine the need for adjuvant chemotherapy or 
radiotherapy. For instance, accurate identification of highly malignant 
osteosarcoma through radiomic features allows patients to receive 
more aggressive treatment early, thereby improving survival rates (22).

Compared with existing studies, this study has certain 
characteristics in methods and applications (23). For example, Zheng 
et al. (15) used fusion imaging omics features to predict the response 
to neoadjuvant chemotherapy for osteosarcoma, while Luo et al. (24) 
predicted synchronous lung metastasis of osteosarcoma through 
multi-parameter MRI imaging omics analysis. These studies mainly 
focus on the prediction of specific treatment responses or metastasis 
risks, while this study focuses on the type distinction between 
osteosarcoma and chondrosarcoma, providing an innovative imaging 
omics method for the preliminary classification of osteosarcoma 
malignant tumors. The highlight of this study is that multiple machine 
learning models were used for comparison, and the interpretability of 
the model was enhanced through SHAP analysis, thereby ensuring 
that the model has high performance and interpretability for clinical 
application. In addition, the data of this study came from two 
independent centers. Although the sample size was limited, the 
robustness of the model was improved through rigorous cross-
validation and feature selection.

Although this study has achieved some success, it also has 
limitations. Firstly, the study relies on retrospective CT data from two 
centers, which may limit the generalizability and extrapolation of the 
findings. The total number of patients included in this study was also 
limited, which may affect the generalizability of the model results. 
Future research needs to validate these findings on a broader dataset 
to ensure the stability and reliability of the models across different 
populations and devices. Secondly, this study primarily focuses on the 
performance of machine learning models and pays less attention to 
other clinical features of patients, which may affect tumor imaging 
characteristics and treatment response. Incorporating these clinical 
variables into the model may further improve diagnostic accuracy and 
relevance. Additionally, while SHAP values provide interpretability of 
model decisions, explaining how these radiomic features correlate 
with specific biological characteristics of tumors remains a challenge. 
Further biomedical research is needed to explore the exact relationship 
between these radiomic markers and tumor behavior. Future work 
should focus on expanding the sample size of the study, incorporating 
more clinical variables, and optimizing the practicality and efficiency 
of the algorithms, so that these advanced machine learning techniques 
can better predict osteosarcoma and chondrosarcoma.

5 Conclusion

This study aimed to explore the use of machine learning combined 
with radiomic features to improve the differentiation accuracy of 
osteosarcoma and chondrosarcoma. By extracting high-dimensional 
radiomic features from CT images and applying six machine learning 
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models for training and evaluation, the results showed that the RF 
model performed the best among all tested models, while other 
models also demonstrated high diagnostic accuracy. Additionally, 
SHAP value analysis enhanced the interpretability, providing 
clinicians with the most critical radiomic features for tumor type 
diagnosis. Overall, this study confirms the effectiveness of combining 
machine learning and radiomic features in the classification of 
osteosarcoma and chondrosarcoma, demonstrating the potential of 
this approach in improving diagnostic accuracy and interpretability.
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