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Background: TLR9 is typically found within cells and plays a crucial role in 
identifying pathogenic and self-DNA in chronic inflammation and immune 
complexes. Recent discoveries indicate its presence on the surface of human red 
blood cells, where it engages in immune regulation by binding to free mtDNA. 
The purpose of this study is to explore the role of TLR9 as a pattern recognition 
receptor combined with mtDNA in the monitoring of infectious diseases.

Methods: TLR9 presence on the surface of red blood cells was assessed using 
flow cytometry in both healthy individuals and patients with bacterial infections. 
Subsequently, DNA bound to the red blood cell surface was extracted separately 
from both groups. The absolute quantification of mtDNA copy numbers within 
the extracted DNA was conducted using qPCR technology, followed by 
statistical analysis. Additionally, the correlation between mtDNA copy numbers 
bound to red blood cell surfaces in bacterial infection patients with varying CRP 
concentrations was examined using univariate linear regression.

Result: In healthy individuals, TLR9 expression on red blood cell surfaces 
averaged 8.81%. However, the average expression of TLR9 on red blood cell 
surfaces in patients with bacterial infection was 5.45%, which was lower than 
that in healthy people (p < 0.001). Notably, both healthy individuals and infected 
patients exhibited mtDNA binding to red blood cell surfaces, with patients 
demonstrating a higher mtDNA copy number compared to healthy controls 
(p < 0.001). Moreover, within the infected group, the copy numbers of mtDNA 
bound by red blood cells positively correlated with patient CRP concentrations 
(R2 = 0.715, p < 0.001), indicative of an association between mtDNA copy 
numbers bound to red blood cell surfaces and infection severity.

Conclusion: The elevation of erythrocyte-bound mtDNA during infection, 
coupled with its correlation with infection severity, suggests that monitoring 
the copy numbers of mtDNA bound to red blood cells via TLR9 could serve as a 
novel indicator for infection surveillance.
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1 Introduction

Traditionally, red blood cells have been viewed solely as carriers 
of respiratory gases due to their lack of nuclei and organelles. However, 
their sheer abundance and ability to traverse organs and tissues have 
long hinted at a more complex role. Despite their simplicity, red blood 
cells facilitate crucial signal transmission between different tissues, 
organs, and immune components (1). In recent years, the immune 
function of red blood cells has become a hot spot in the field. Both 
mature red blood cells and nucleated red blood cells have been 
reported to have their own immune potential, which can participate 
in the regulation of innate and adaptive immune systems (2–5). The 
evidence that these red blood cells participate in immune regulation 
has opened up a new field of immunology.

Mitochondrial DNA (mtDNA), as a damage-associated molecular 
pattern, has the potential to incite inflammatory reactions and 
contribute to organ damage. Serving as a critical activator of 
inflammation and the innate immune system, it represents an 
endogenous molecule capable of triggering toll-like receptor 9 (TLR9) 
activation (6, 7). When cells are stressed or damaged, mtDNA is 
excreted from mitochondria and enters the surrounding environment 
of cells. The combination between mtDNA and TLR9 can trigger 
inflammation and autoimmune diseases (8).

Toll-like receptors (TLRs) are a family of evolutionarily conserved 
pattern recognition receptors (PRRs) capable of eliciting the secretion 
of inflammatory cytokines and stimulating the generation of antigen-
specific immune responses within the body (9–11). Hemmi et al. (12) 
found that TLR9 that can recognize and bind bacterial DNA. TLR9 is 
typically situated within cells and serves a crucial function in 
discerning pathogenicity and self-DNA in chronic inflammation and 
immune complexes. DNA containing CpG motifs (unmethylated 
cytosine-guanine nucleotide sequences) can be identified, including 
DNA fragments harboring CpG sequences found in bacteria, viruses, 
and fungi, or DNA fragments containing CpG sequences themselves, 
such as mtDNA (6, 13). For a significant duration, TLR9 was presumed 
to be  exclusively expressed in certain immune cells, such as 
plasmacytoid dendritic cells (pDCs), monocytes, macrophages, 
activated T cells, and memory B cells (14). However, a few studies have 
suggested the expression of TLR9  in red blood cells. Recent 
investigations not only confirmed the presence of TLR9  in 
erythrocytes but also identified its expression on the erythrocyte 
membrane. Furthermore, these studies also found that red blood cells 
combined with different amounts of mtDNA through TLR9 play 
different immunomodulatory roles, which can promote the 
maintenance of homeostasis and activate innate immunity (15, 16). 
This provides preliminary evidence for red blood cells to participate 
in immune regulation through TLR9 binding to mtDNA. In this study, 
we  want to further explore whether the copy number of mtDNA 
bound by red blood cells through TLR9 can become a new indicator 
of infection monitoring.

2 Methods

2.1 Research object

64 EDTA-K2 anticoagulant whole blood samples were randomly 
collected from infected patients at Deyang People’s Hospital 

between June and October 2023 (aged 18–95,40 males and 24 
females). Inclusion criteria comprised bacterial infection, with 
laboratory examination indicating plasma C-reactive protein (CRP) 
levels exceeding two standard deviations of normal (CRP 
concentration ranges from 24.16 mg/L to 228.90 mg/L, with an 
average of 96.71 mg/L). This study was approved by the Ethics 
Committee of Deyang People’s Hospital (approval number: 
2022–04-066-K01).

100 anticoagulated whole blood samples were randomly collected 
from unpaid blood donors at the Deyang Central Blood Station.

2.2 Separation of red blood cells

The anticoagulated whole blood samples were diluted with PBS at 
a 1:1 ratio. Subsequently, anticoagulant-treated Ficoll-Paque liquid 
(Cytiva, USA), equal in volume to the diluted blood, was slowly added 
to the surface. The mixture was then centrifuged at room temperature 
for 35 min at 400 g with a slow acceleration and deceleration. 
Following centrifugation, the sample was fractionated into four layers. 
The top three layers were meticulously aspirated and discarded using 
a pipette, while the bottom layer, consisting of red blood cells, was 
retained. Using anti-CD235a (erythrocyte surface specific antigen) 
antibody and anti-CD45 (leukocyte specific antibody) antibody, the 
separated red blood cells were detected by flow cytometry, and the 
purity of the extracted red blood cells was determined to eliminate 
leukocyte pollution.

2.3 TLR9 detection

Following fractionation, 100 μL of red blood cell suspension 
diluted with PBS (containing not less than 105 red blood cells) was 
added. Subsequently, 1 μL of biotin Anti-TLR9 antibody (Abcam, UK) 
was added, and the mixture was incubated in the dark on ice for 
30 min. Afterward, 1 mL of stain buffer was added to wash the cells. 
Upon discarding the supernatant, 1 μL of FITC-conjugated affinipure 
goat anti-mouse IgG antibody (Proteintech, USA) was added, and the 
mixture was further incubated for 30 min in the dark on ice. Following 
this incubation period, another 1 mL of stain buffer was added to 
wash the cells. Subsequently, the supernatant was discarded, and the 
cells were resuspended in 300–400 μL of stain buffer for flow 
cytometry analysis.

2.4 Co-culture

1 mL of plasma from patients with the same ABO and Rh blood 
types was co-cultured with 100ul of healthy red blood cells (no less 
than 109 red blood cells) at 4°C for 24 h, during which strict aseptic 
operation was carried out. After that, detected the expression of TLR9 
on the surface of red blood cells before and after culture.

2.5 DNA extraction

At room temperature, DNA was extracted from 108 red blood cells 
by DNA extraction kit (Qiagen, Germany) and stored at −20°C.
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2.6 qPCR detection

Prepare a 96-well plate and sequentially add 10 μL of MIX, 2 μL 
of DNA sample, 7.2 μL of ultrapure water, 0.4 μL of forward primer, 
and 0.4 μL of reverse primer to each well, the primer sequences are 
shown in Table 1. After adding the components, gently mix the plate 
and seal it with a plate sealing film. Centrifuge the plate to precipitate 
the liquid. Subsequently, perform real-time fluorescence quantitative 
PCR detection using a computer and amplify according to the 
procedures outlined in Table 2.

2.7 Statistical method

The data were analyzed using SPSS version 27.0 software, 
employing univariate logistic analysis. T-test analysis was conducted 
using GraphPad Prism 9 software, with statistical significance set at 
p < 0.05.

3 Results

3.1 TLR9 is expressed on the surface of red 
blood cells

When assessing TLR9 expression on the surface of red blood cells 
from 100 healthy individuals using flow cytometry with a specific 
membrane epitope antibody (16), we observed TLR9 expression on 
all samples (Figure 1). The average expression level was determined to 
be 8.81% (Figure 2). These findings confirm the presence of TLR9 not 
only within red blood cells but also on their surface.

3.2 Differential expression of TLR9 on the 
surface of red blood cells between healthy 
people and patients with bacterial infection

Upon analyzing TLR9 expression in 64 patients with bacterial 
infection, we observed the average expression of TLR9 on the surface 
of patients’ red blood cells was 5.45% (Figure 3), which was less than 
that of healthy people (p < 0.001) (Figure 4). These results confirm a 
notable difference in TLR9 expression on the surface of red blood cells 
between patients with bacterial infection and healthy individuals.

3.3 During bacterial infection, red blood 
cells bind to mtDNA through TLR9

It has been established that TLR9 is expressed on the surface of 
red blood cells, suggesting the presence of potential mtDNA binding 
sites on these cells[13，16]. Hence, we aimed to investigate whether red 
blood cells can bind mtDNA during infection. Quantitative PCR was 

employed to assess the red blood cells of 100 healthy individuals and 
64 patients with bacterial infection. The results showed that the 
average copy number of mtDNA bound to the surface of healthy 
people’s erythrocytes was 3,548 ± 2.08/ul, and that of patients’ 
erythrocytes was 19,952 ± 1.9/ul. The results revealed a significant 
increase in the copy number of mtDNA bound to red blood cells in 
patients compared to the healthy control group (p < 0.001) 
(Figure 5A).

We speculated whether the disparity in TLR9 expression on the 
surface of red blood cells between healthy individuals and patients 
with bacterial infection could be attributed to increased mtDNA 
binding, potentially obstructing the detection sites of TLR9. To 
explore this hypothesis, we co-cultured plasma from patients with 
bacterial infection with healthy red blood cells for 24 h and 
subsequently assessed the expression of TLR9 on the red blood cell 
surface. Remarkably, compared to healthy red blood cells before 
co-cultured, the expression of TLR9 on co-cultured red blood cells 
decreased significantly (p  < 0.01) (Figure  5B). These findings 
support our hypothesis that mtDNA may obscure the detection sites 
of TLR9, leading to reduced TLR9 expression on the surface of red 
blood cells in patients with bacterial infection compared to 
healthy individuals.

3.4 The copy number of mtDNA bound to 
erythrocytes increased with the increase of 
disease severity

C-reactive protein (CRP) serves as an inflammatory marker, 
characterized by a rapid increase in plasma concentration during 
infection or tissue damage. In this study, CRP concentration was 
utilized to gauge the severity of infection. Univariate regression 
analysis was conducted to assess the relationship between the copy 
number of mtDNA in red blood cells and CRP concentration in 64 
patients with bacterial infection. The analysis revealed a positive 
correlation between the copy number of mtDNA bound to red 
blood cells and CRP concentration (R2 = 0.715; p < 0.001) 
(Figure 6).

4 Discussion

Red blood cells have been regarded as lacking immune 
functions despite being the most abundant cells in the blood. 
However, their sheer abundance and ability to traverse the nooks 
and crannies of organs and tissues enable them to facilitate signal 
transmission between different tissues, organs, and immune 
components (1). With advancements in research, red blood cells 
have emerged as more than mere oxygen and carbon dioxide 
carriers, they are increasingly recognized another important 
function of red blood cells in mammals, that is, immune regulation 
function, and red blood cells can perform their immune function 

TABLE 1 qPCR primer.

Gene Forword primer 5′–3′ Reverse primer 5′–3′

Human mtDNA ACGACCTCGATGTTGGATC GCTCTGCCATCTTAACAAACC
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in many ways (17). Numerous domestic and international studies 
have validated the presence of numerous immune-related 
molecules on red blood cells, underscoring their role in complex 
natural immunity processes such as antigen recognition, adhesion, 
killing, and clearance of circulating immune complexes (CICs) 
(18). In addition, red blood cells also participate in immune 
response through other channels. For example, Sennikov et al. (19) 

found that nucleated red blood cells in human bone marrow are 
capable of producing a variety of cytokines, including interleukin 
(IL)-1β, IL-2, IL-4, IL-6, interferon (IFN)-γ, among others, actively 
engaging in immune regulation. In patients infected with COVID-
19, ROS originating from red blood cells have been implicated in 
the exacerbation of endothelial dysfunction, potentially leading to 
multiple organ failure and microvascular thrombosis (20). 
Erythrocyte Duffy antigen, chemokine receptor (DARC), can bind 

TABLE 2 qPCR reaction system.

Procedure Temperature/°C Time/S Cyclic number

Predeformation 94 30 1

Deformed 94 5 40

Anneal 60 15 40

Extend 72 10 40

Dissolution curve
65 5 1

95 50 1

FIGURE 1

The expression of TLR9 on the surface of healthy human erythrocytes was detected by flow cytometry and the negative control was made.

FIGURE 2

Histogram of expression of TLR9 on erythrocyte surface of 100 
healthy people.

FIGURE 3

Histogram of expression of TLR9 on erythrocyte surface of 64 
patients.
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chemokines and play an important role in anti-tumor and 
inflammatory immunity (21); Red blood cells mediate plasmodium 
and SARS-CoV-2, norovirus, dengue fever and other viruses 
through glycoprotein on the surface (22–25); Erythrocyte surface 
complement receptor 1 (CR1) is also involved in the immune 
regulation of patients with mycoplasma and COVID-19 (26, 27). 
However, it is still unclear what role red blood cells play in 
monitoring infectious diseases.

TLRs recognize specific microbial structures. TLR9 is 
stimulated by unmethylated cytosine guanine nucleotide 
sequences (CpGs) in DNA fragments of bacteria, viruses and 
fungi, as well as synthetic oligonucleotides or their own 
mitochondrial DNA (10, 13). For a considerable period, TLR9 has 
conventionally been viewed as a pattern recognition receptor 
predominantly expressed on the cell membrane and limited to 
specific immune cell populations (11). A study by Meghan (15) 

and others in 2018 found that TLR9 was also expressed in red 
blood cells, which broke the traditional cognition of TLR9 
expression. In 2021, Lam et al. (16) found that TLR9 was expressed 
not only in red blood cells, but also on the surface of red blood 
cells by flow cytometry and confocal microscope. In this study, red 
blood cells of healthy people and patients with bacterial infection 
were detected by using specific membrane epitope antibodies. It 
was found that a small amount of TLR9 was generally expressed 
on the surface of red blood cells of healthy people, with an average 
expression of 8.81%. However, the average expression of TLR9 on 
red blood cell surfaces in patients with bacterial infection was 
5.45%, which was lower than that in healthy people (p < 0.001). 
This is contrary to the research results of Lam et al. (16), who 
found that the surface TLR9 of red blood cells in septicemia 
patients was increased compared with that of healthy donors. 
We  consider that there may be  the following reasons: A. The 
severity of the disease is different: Lam et al. (16) studied critically 
ill patients with sepsis. Sepsis is a very serious inflammatory 
disease with systemic inflammation and immune response. They 
consider that excessive mtDNA will affect red blood cells, which 
may lead to the increase of detectable TLR9 epitopes on their 
surface. However, our research team is targeted at patients with 
common infection, and the severity of the disease is far less than 
that of severe sepsis, so the amount of mtDNA bound to TLR9 is 
small, which is not enough to affect red blood cells and TLR9 on 
their surfaces. From our research results, or because the 
combination of mtDNA and TLR9 masked the detection epitope 
of TLR9, the detectable TLR9 on the surface of patients’ red blood 
cells decreased. Therefore, the different disease severity of the 
subjects may be  one of the reasons for the different results. 
B. Inconsistent number of subjects: 15 healthy people and 19 
septicemia patients were included in the study of Lam et al. (16). 
Our study included 100 healthy people and 64 infected patients. 
The difference in the number of research objects may also be a 
reason for the difference in statistical results.

As a damage-associated molecular pattern, mtDNA can trigger 
inflammatory reactions and organ damage, serving as a crucial 
activator of inflammation and the innate immune system, and can 
be recognized by TLR9 (6, 7). Meghan et al. (15) found that under 
normal physiological conditions, most of mtDNA exists on red blood 
cells instead of plasma, and red blood cells bind to mtDNA containing 
CpG sequence in a concentration-dependent manner. And their 
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(A) MtDNA copy number. Copy number of mtDNA bound to red 
blood cells in 64 patients and 100 healthy people. (B) Expression 
level of TLR9. The expression amount of TLR9 on the surface of 
healthy human erythrocytes and the expression amount of TLR9 on 
the surface of healthy human erythrocytes after 24 h of co-culture 
with the plasma of patients with bacterial infection, n = 8. 
**p < 0.01; ****p < 0.001.
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The univariate regression analysis between the copy number of 
mtDNA bound to erythrocytes and CRP concentration in patients 
with bacterial infection, n = 64.
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research also found that TLR9 positive cells obtained more CpG-DNA 
than TLR9 negative cells. In this study, quantitative PCR analysis was 
conducted on samples from 100 healthy individuals and 64 patients 
with bacterial infection, the results indicated a significant increase in 
the number of mtDNA copies bound to red blood cells in patients 
compared to the healthy control group (p  < 0.001). This finding 
provides insight into the potential explanation for the observed lower 
expression of TLR9 on the surface of red blood cells in patients with 
bacterial infection compared to healthy individuals: perhaps due to the 
increased binding of mtDNA to the surface of red blood cells in 
infected patients, which may obscure the detection sites of TLR9, 
resulting in reduced TLR9 expression on the surface of red blood cells 
in patients with bacterial infection. We detected the expression of 
TLR9 on the surface of red blood cells after co-culturing the plasma of 
patients with bacterial infection with healthy red blood cells for 24 h. 
It was found that the expression of TLR9 on the surface of red blood 
cells after co-cultured was significantly lower than that of healthy red 
blood cells before co-cultured. This may confirm our guess that a large 
amount of mtDNA in infected patients binds to TLR9, which obscures 
the detection site of TLR9. We just put forward a guess and verified it, 
or there are many other reasons that lead to less TLR9 expression on 
the surface of patients’ red blood cells than healthy people.

Lam et al. (16) have confirmed that TLR9 combined with mtDNA 
can indeed trigger innate immunity during infection. However, 
whether red blood cells can monitor diseases via TLR9 and mtDNA 
during bacterial infection remains unclear. Our study has confirmed 
an increase in the copy number of mtDNA bound to red blood cells 
during infection, though its relationship with infection severity 
requires further investigation. CRP an inflammatory marker, exhibits 
a sharp increase in plasma levels during infection or tissue damage. In 
this study, CRP concentration serves as an indicator of infection 
severity. Through univariate regression analysis of CRP concentration 
and the copy number of mtDNA bound to red blood cells in 64 
bacterial infection patients, we  observed a positive correlation. 
Specifically, the copy number of mtDNA copies bound to red blood 
cells via TLR9 positively correlated with patients’ CRP concentration 
(R2 = 0.715; p < 0.001).

However, there are some limitations in this study: (a) Red blood 
cells were not co-cultured with the plasma of healthy donors for 
comparison, so as to rule out the possibility that other molecules (such 
as protein) interfere with the binding of antibodies to TLR9. (b) No 
linear regression was performed with healthy donors to rule out bias. 
These are all related to further in-depth study in the future.

In a word, this study confirmed that TLR9 is expressed on the 
surface of red blood cells, serving as a critical immunosensor capable 
of binding to free mtDNA within cells. Furthermore, the copy munber 
of mtDNA bound by red blood cells via surface TLR9 increased 
during bacterial infection, correlating positively with the severity of 
the infection. Hence, detecting the copy number of mtDNA bound by 
red blood cells through TLR9 may emerge as a novel indicator for 
monitoring infection within the body.
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