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Retinal disease recognition using Optical Coherence Tomography (OCT) images

plays a pivotal role in the early diagnosis and treatment of conditions.

However, the previous attempts relied on extracting single-scale features

often refined by stacked layered attentions. This paper presents a novel deep

learning-based Multiscale Feature Enhancement via a Dual Attention Network

specifically designed for retinal disease recognition inOCT images. Our approach

leverages the E�cientNetB7 backbone to extract multiscale features from OCT

images, ensuring a comprehensive representation of global and local retinal

structures. To further refine feature extraction, we propose a Pyramidal Attention

mechanism that integrates Multi-Head Self-Attention (MHSA) with Dense Atrous

Spatial Pyramid Pooling (DASPP), e�ectively capturing long-range dependencies

and contextual information at multiple scales. Additionally, E�cient Channel

Attention (ECA) and Spatial Refinement modules are introduced to enhance

channel-wise and spatial feature representations, enabling precise localization of

retinal abnormalities. A comprehensive ablation study confirms the progressive

impact of integrated blocks and attention mechanisms that enhance overall

performance. Our findings underscore the potential of advanced attention

mechanisms and multiscale processing, highlighting the e�ectiveness of the

network. Extensive experiments on two benchmark datasets demonstrate the

superiority of the proposed network over existing state-of-the-art methods.

KEYWORDS

retinal recognition,OCT imaging, attentionmechanism, deep learning,medical imaging,

multi-level features

1 Introduction

The healthcare landscape has undergone a remarkable transformation in recent years,

driven by groundbreaking technological advancements that complement and amplify

human medical expertise. This evolution is particularly evident in diagnostics and patient

care, where computational methods have become increasingly pivotal. Among these
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innovations, machine learning (ML) techniques, especially those

under deep learning (DL), have demonstrated an exceptional

ability to analyze complex medical data with a level of precision

and speed that was previously unattainable. These sophisticated

algorithms excel at identifying intricate patterns within vast

datasets, offering new insights that can significantly enhance

diagnostic accuracy and treatment efficacy. The impact of

these technological strides is particularly pronounced in medical

imaging, where the interpretation of nuanced visual information

is paramount for early and accurate diagnosis. In the domain

of ophthalmology, where the preservation of vision is of utmost

importance, these advancements have ushered in a new era of

diagnostic capabilities, promising to revolutionize how eye diseases

are detected, monitored, and treated.

The human eye is a complex and sensitive organ that allows

us to see and interact with our surroundings in various ways.

The significance of vision extends far beyond mere sight; it is

inextricably linked to the quality of human life. When visual

impairment occurs, its repercussions can be far-reaching, affecting

not only an individual’s ability to navigate their surroundings but

also their sense of autonomy and capacity to engage in daily

activities. According to the World Health Organization, at least 2.2

billion people have a near or distant vision impairment, with at least

1 billion of these cases being preventable or yet to be addressed

(1). These statistics emphasize the pressing requirement for greater

accessibility to eye care services and therapies leading to assisted

living (2). The growing need for prompt action in eye care and

the inclusion of advanced computer technologies for evaluating

OCT visuals indicates an important step forward in diagnosis. OCT

is a non-invasive imaging technique that has long been essential

to diagnosing and treating various eye disorders. It provides

high-resolution, cross-sectional visualizations of retinal structures.

Interpreting these complex images sometimes presents difficulties

even for experienced practitioners since minor anomalies may

be readily missed. The use of advanced algorithms for image

processing onOCTdata confronts this challenge, thereby providing

the ability to identify subtle alterations suggestive of early-stage

ocular disorders that may remain undetected.

Spectral-domain OCT (SD-OCT) presents important clues for

ocular disorders. Significant developments in computer-assisted

imaging in SD-OCT were made, particularly by incorporating

AI and DL methodologies. These improvements have enhanced

ophthalmologists’ capacity tomake swift and appropriate diagnoses

about the evolution of macular degeneration. Recent research

has shown the effectiveness of AI-driven techniques in OCT

image analysis. For instance, Diaz et al. (3) developed an entirely

automated method for recognizing and segmenting the foveal

avascular zone in OCT-A images. The method showed a significant

association of 0.93 with expert manual measures when validated

on 213 images of healthy and diabetic subjects. It exhibited

excellent results with Jaccard indices of 0.82 for healthy and 0.83

for diabetic images. The study Stanojević et al. (4) investigated

several CNN architectures for classifying retinal diseases. Their

Inception-based algorithm attained optimal performance, with

a success rate of 95.528% after hyperparameter adjustment. To

tackle noise problems and resolution constraints in OCT image

classification, Opoku et al. (5) introduced a CLAHE-CapsNet

model. The model attained an overall accuracy of 97.7% and a

precision of 99.3% using the UCSD dataset, which comprises 84,495

images distributed across four categories. A dual guidance DL

framework for diagnosing Age-related Macular Degeneration was

developed, including a CM-CNN for categorization and a CAM-

UNET for segmentation. Their model achieved an accuracy of

96.93% and a Dice coefficient of 77.51% for segmentation when

evaluated on the UCSD dataset. The study Hassan et al. (6)

advanced the field by introducing the EOCT approach to retinal

OCT image classification, which integrates a modified ResNet-

50 with random forest methods. The model exhibited exceptional

performance, with 97.47% accuracy and 98.36% sensitivity,

surpassing standard pre-trained models. The study Udayaraju et al.

(7) proposed a Hybrid Multilayered Classification (HMLC) system

that combines CNN and VGG-19 models for classifying four

retinal disorders. The HMLC leveraged advanced features from

both models, demonstrating high classification accuracy across

various performance metrics. These studies collectively highlight

the growing potential of DL techniques in OCT image analysis for

retinal disease recognition, showcasing improvements in accuracy,

efficiency, and clinical applicability.

1.1 Limitations of the existing studies

Despite the significant advancements in OCT image analysis

for retinal disease recognition, several limitations persist in existing

approaches. Many current models rely on single-scale feature

extraction, potentially missing crucial information at different

levels of abstraction (8). The lack of effective attention mechanisms

tailored specifically for OCT images hinders the ability to focus on

the most relevant features across various scales. Additionally, most

architectures must adequately address the challenge of capturing

highly representative contextual information, which is crucial

for accurate disease classification. Integrating advanced attention

mechanisms and spatial processing techniques is often limited or

absent in many existing models. Furthermore, the complexity of

retinal structures and the subtle nature of disease-related changes

in OCT images necessitate more advanced feature extraction and

optimal decoding approaches. These limitations underscore the

need for a more comprehensive and adaptive approach to OCT

image analysis that can effectively leverage multiscale features and

incorporate advanced attention mechanisms. Additionally, such an

approach must balance local and global information processing to

improve retinal disease recognition.

1.2 Contributions

In this work, we propose a novel DL network for retinal

disease recognition using OCT images. Our approach addresses the

limitations of existing methods by incorporating advanced feature

extraction techniques, attentionmechanisms for feasible layers, and

multi-scale processing. The key contributions of our work are as

follows:

• We obtained multi-level features from an EfficientNetB7

backbone to gather information across many levels of
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abstraction rather than relying on single-scale features.

This strategy enables a more comprehensive representation,

allowing the network to identify complex and multi-structure

patterns essential for retinal diseases.

• We introduced a novel Pyramidal Attention mechanism that

integrates Multi-Head Self-Attention (MHSA) and Dilated

Atrous Spatial Pyramid Pooling (DASPP) modules. This

approach allows our network to jointly capture long-range

relationships and multi-scale contexts to improve its capacity

to focus on the most important features across various scales.

• Our network utilizes three mature feature maps using dilated

convolutions (DConv) at diverse dilation rates, enabling

the network to focus on context across several receptive

fields. This multi-tiered architecture allows our network

to proficiently assess localized features and overarching

structures, which is essential for precise disease identification.

• We included advanced components, including Efficient

Channel Attention (ECA) and Spatial Refinement modules,

to improve our network’s performance. The ECA module

enhances the channel-wise representation of features by

adaptively analyzing the significance of each channel without

requiring dimensionality reduction, hence preserving essential

information. Additionally, the Spatial Refinement module

enhances spatial details by refining mapping features. This

deliberate integration of channel and spatial attention

processes allows the network to more efficiently simulate

complex feature interactions, leading to enhanced accuracy.

The remaining sections of the study are organized as below:

Section 2 presents the review of the research work on a similar

topic. Section 3 explained the detailed methodology and each

component of the proposed network. Section 4 shows the empirical

findings and ablation study. Moreover, the comparative analysis

with other methods is explained in more detail. Section 5

technically discusses the aspects of the proposed network and the

reasons for superior performances. Finally, Section 6 concludes the

paper with future research directions.

2 Related literature

The emergence of ML, specifically DL, has completely

transformed the many fields of disease diagnosis and monitoring

(9, 10), leading to sustainable developments (11). Similarly,

visual intelligence has transformed the field of retinal disease

recognition using image processing (12). Recently, the research

community has focused on OCT image categorization, which

can be classified into two primary domains: classical ML and

DL. As shown in Table 1, a yearly literature review of related

studies on OCT analysis reveals the utilization of different

approaches. For instance, the study by Oliveira et al. (13) proposed

an extension of work on drusen detection, incorporating new

features such as distance between limiting boundaries and wavelet

coefficients, along with multi-label classification. Their method

improved upon previous results, achieving higher AUC and

Dice coefficient scores. It demonstrated the ability to identify

individual drusen within clusters, potentially allowing for more

detailed AMD staging based on drusen size. Another study by

Habib et al. (14) proposed three automated methods for drusen

segmentation based on U-Net convolutional neural networks.

Their best-performing approach involved training the CNN to

segment Bruch’s membrane and RPE, followed by a post-processing

step combining shortest path finding and polynomial fitting

to detect drusen. When validated on a large dataset of over

50,000 annotated images, the method demonstrated superior

accuracy compared to existing state-of-the-art methods. The study

by Asgari et al. (15) proposed a novel multi-decoder network

architecture for automated drusen segmentation in OCT scans.

Their approach treated Dusen segmentation as a multitasking

problem, using separate decoders for each target class (OBRPE

and BM) and an additional decoder for the area between

layers, with inter-decoder connections for improved regularization.

The method demonstrated superior performance compared to

baselines in both layer and drusen segmentation tasks when

validated on diverse AMD and control OCT datasets. Wang

et al. (16) proposed a novel multi-scale transformer global

attention network (MsTGANet) for drusen segmentation in retinal

OCT images, incorporating multi-scale transformer non-local

modules and multi-semantic global attention, along with a semi-

supervised version (Semi-MsTGANet) to leverage unlabeled data,

demonstrating superior performance compared to state-of-the-art

CNN-based methods.

More recent DL and attention approaches include (26, 27),

which introduced the Informative Attention Convolutional Neural

Network (IA-net) for automatic CNV segmentation in OCT

images. This network features an attention enhancement block

and novel informative loss to improve small CNV detection and

overall segmentation accuracy, outperforming traditional methods

in experimental evaluations. Zhang et al. (28) proposed a multi-

scale parallel branch CNN (MPB-CNN) for CNV segmentation

in SD-OCT images, featuring atrous convolution, intra- and

inter-branch connections, and gradient-constrained loss, achieving

reliable segmentation results with mean dice value of 0.757 and

overlap ratio of 60.8% in cross-validation experiments. Meng et

al. (29) introduced a multi-scale information fusion network (MF-

Net) for CNV segmentation in retinal OCT images, incorporating

a multi-scale adaptive-aware deformation module and semantics-

details aggregation module, along with a semi-supervised version

(SemiMF-Net), demonstrating superior performance compared

to state-of-the-art algorithms in comprehensive experiments.

Wang et al. (30) proposed a two-stream CNN for multi-modal

AMD categorization using fundus and OCT images, introducing

Loose Pair training and extending class activation mapping

for visual interpretation, demonstrating improved performance

over traditional methods in real-world clinical data experiments.

Kermany et al. (31) applied a transfer learning algorithm

using InceptionV3 pre-trained on ImageNet for diagnosing

retinal OCT images, addressing the critical need for automated

analysis in conditions like AMD and diabetic macular edema,

which are leading causes of blindness and require frequent

OCT-guided anti-VEGF therapy. Similarly, the authors in (32,

33) introduced a novel dimensionality reduction algorithm

for Cholangiocarcinoma hyperspectral images and convolution

transformer for hyperspectral image classification.
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TABLE 1 Yearly literature review of the related studies under the umbrella of OCT analysis.

References Dataset Images used Method Accuracy % Year

Rasti et al. (17) OCT 108,312 Multi-scale ensemble CNN

model

98.8 2017

Lu et al. (18) OCT (Manually labeled) 25,134 ResNet 101 Layered 95.9 2018

Díaz et al. (3) OCT Limited dataset Image processing techniques

for automatic segmentation

and extraction

93 2019

Khan et al. (9) OCTX 84,484 Deep ensemble network 98.53 2020

Aloraini et al. (19) OCT Entire dataset Deep recurrent residual

inception network

98.8 2020

Kim and Tran (20) OCT 108,309 ResNet152 98.8 2020

Rahimzadeh and

Mohammadi (21)

OCT and OCTID 3,213 and entire dataset Deep ensemble CNN 96.4 and 98.70 2021

Subramanian et al.

(22)

OCT C8 24,000 VGG16, VGG19,

Densenet201, and

InceptionV3

97 2022

Stanojević et al. (4) OCT V2 V2-dataset Deep CNN based on

Inception architecture

95.55 2023

Hassan et al. (6) OCT Entire dataset Random forest models with

ResNet 50

96.93 2023

Diao et al. (23) OCT Entire dataset Mask guided CNN 96.93 2023

Opoku et al. (5) OCT 84,495 Capsule network with

Adaptive histogram

equalization

97.7 2023

Udayaraju et al. (7) OCT 5,000 for train/test Hybridmultilayered

classification CNN-VGG19.

97.7 2023

Naik et al. (24) OCT 108,312 InceptionV3 and Xception

with self attention

96.6 2024

Yang et al. (25) OCT Subset of dataset Ensemble model based on

CNN, EfficientNet_v2, and

ResNet

97.89 2024

The study by Fang et al. (34) introduced a lesion-aware

CNN for retinal OCT image classification, incorporating a

lesion detection network to generate attention maps, guiding

the classification network to focus on lesion-related regions,

demonstrating improved efficiency and effectiveness on two clinical

OCT datasets. Khan et al. (9) presented a technique for detecting

and classifying OCT images into three distinct categories: DME,

CNV, and DRUSEN, as well as normal Retina. The OCTx model

is an improved version of an ensemble model designed specifically

for diagnosing eye illnesses using OCT data. Nevertheless, the

existing suggested model underwent training and testing using a

particular dataset, which may diminish its ability to classify data

in real-world scenarios accurately. Farman et al. (35) proposed a

novel multiscale CNN architecture for AMD diagnosis, featuring

seven convolutional layers and multiscale convolution, achieving

high accuracy across multiple datasets (99.73% on Mendeley,

98.08% on OCTID, 96.66% on Duke, 97.95% on SD-OCT

Noor) and demonstrating potential for real-time implementation

in rapid eye screening. Sotoudeh-Paima et al. (36) proposed

a multi-scale CNN based on a feature pyramid network for

AMD diagnosis, incorporating feature fusion across convolutional

blocks to capture inter-scale variations, demonstrating superior

performance over existing frameworks and improved accuracy

through gradual learning on large OCT datasets, with potential

for clinical use as a screening tool. Ma et al. (37) introduced a

hybrid ConvNet-Transformer network (HCTNet) for retinal OCT

image classification, combining residual dense blocks for low-level

feature extraction with parallel Transformer and ConvNet branches

for global and local context, achieving superior accuracy (91.56%

and 86.18% on two public datasets) compared to pure ViT and

ConvNet-based methods.

Most recently, Rahil et al. (38) presented a technique for

identifying and separating three distinct retinal conditions, namely

cysts. The author used a deep ensemble-based design with

a modified version of the UNET architecture. Additionally, a

predictor block was implemented for the ensemble technique to

consolidate the outcomes of all three models. Although their model

achieved a classification accuracy of 79%, it may be enhanced

and optimized by using an ensemble method. Mehta et al. (23)

proposed a dual guidance DL framework for AMD diagnosis,

featuring a complementary mask-guided CNN (CM-CNN) for

classification and a class activation map guided UNet (CAM-UNet)

for segmentation, achieving 96.93% classification accuracy and

77.51% Dice coefficient for segmentation on the UCSD dataset,
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outperforming existing single-task and multi-task networks. The

study by Khalil et al. (8) presented inception backbone guided

modified dual attention network. However, existing approaches in

the literature predominantly emphasize single-scale features, often

lacking the necessary refinement to capture complex, multi-scale

information effectively.

3 Methodology

This section introduces the proposed network for retinal

disease recognition using OCT images. Our method distinguishes

itself by addressing the challenges of effective feature extraction

and representation through a comprehensive approach. The

architecture incorporates Multiscale Feature Extraction, Multi-

Headed Self Attention, Enhanced Spatial Attention, Dilated

Convolution Block, and Efficient Channel Attention. These

components are unique to our proposed network, as illustrated

in Figure 1 work in synergy to provide a robust and efficient

framework for recognizing retinal diseases. The following

subsections delve into each component and its role in improving

the overall performance of the proposed network.

3.1 Multiscale feature extraction

The proposed network employs EfficientNet-B7 as the

backbone for multiscale feature extraction. The network allows

for the extraction of features at six different scales, providing

different scale features. Retinal structures and pathologies can

manifest at various levels of detail, and this multiscale approach

captures fine-grained textures and edges at lower levels, as well

as complex structural patterns and global context at higher levels.

This adaptability is essential for addressing the unique challenges

of OCT images, including speckle noise, varying tissue reflectivity,

and complex layer structures. By extracting a comprehensive set

of features from multiple scales, our model ensures a thorough

representation of the OCT image, which is essential for detecting

subtle retinal abnormalities that might be visible only at specific

scales or require context from multiple scales for accurate

interpretation. The multiscale feature extraction from EfficientNet-

B7 offers several key benefits for OCT image analysis. It balances

accuracy and efficiency, which is crucial when processing large

volumes of high-resolution images. The diverse feature set obtained

enhances the sensitivity and specificity of the network, allowing

for the detection of small, localized abnormalities and broader

structural changes in the retina. This approach provides robustness

against variabilities in OCT images due to factors like imaging

equipment, patient movement, or ocular opacities. Furthermore, it

facilitates fine-grained recognition, enabling the network to discern

subtle differences crucial for the classification of retinal diseases. By

establishing a strong foundation for advanced OCT image analysis,

our multiscale feature extraction significantly enhances the ability

of the network to capture complex patterns effectively.

Let I denote the input OCT image. The multiscale feature

extraction process can be formulated as follows:

Fi = φi(I), i ∈ 1, 2, ..., 6 (1)

where Fi represents the feature map extracted at scale i, and φi(·)

denotes the function that maps the input image to the i-th scale

feature space through the corresponding layers of EfficientNet-B7.

The set of multiscale features F is then defined as:

F = F1, F2, ..., F6 (2)

Each Fi captures different levels of abstraction:

• F1, F2: Low-level features (e.g., edges, textures)

• F3, F4: Mid-level features (e.g., layer boundaries, small

structures)

• F5, F6: High-level features (e.g., global retinal structure, large

pathologies)

Thismultiscale representationF forms the basis for subsequent

processing in our proposed network, enabling comprehensive

analysis of retinal structures and pathologies across various scales

of abstraction in OCT images.

3.2 Pyramidal attention with MHSA and
DASPP modules

The Pyramidal Attention mechanism in our proposed network

refines features at multiple granularity levels to enhance local

and global feature representation. This mechanism operates on

three feature maps generated by the EfficientNetB7 backbone,

refining them progressively through a combination of MHSA and

DASPP modules. By doing so, the network captures multiscale

contextual information and long-range dependencies, which are

critical for detecting subtle retinal abnormalities in OCT images.

The Pyramidal Attention mechanism processes the three feature

maps as follows:

• First feature map: This is the least mature feature map,

containingmore fine-grained and local information.We apply

three DASPP modules parallel to one MHSA module to

enhance this map. The three DASPPs capture contextual

information at varying dilation rates, allowing the network

to gather multiscale features from different receptive fields.

MHSA further refines the features by enabling the network to

focus on relevant regions across the map, ensuring that local

details and broader patterns are preserved.

• Second feature map: As this feature map is more mature than

the first one, it is processed through two DASPP modules

and the MHSA module. The two DASPP modules capture

features at different scales, while the MHSA focuses on the

most important regions. This combination ensures that the

intermediate features are refined and contextual information

from various scales is strengthened.

• Third feature map: The third feature map is the most mature

and contains the highest level of abstraction. We passed these

features from one DASPP and a single MHSA module to

avoid over-processing these features. The single DASPP helps

capture any remaining multiscale features, while the MHSA

ensures the attention mechanism enhances critical areas of

the feature map. This minimal refinement prevents the loss

Frontiers inMedicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2024.1499393
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Alenezi et al. 10.3389/fmed.2024.1499393

FIGURE 1

Visual overview of the features flow and the modules integrated into the proposed network.

of global structural information while enhancing the most

relevant feature regions.

3.2.1 Dense Atrous Spatial Pyramid Pooling
DASPPs are the specialized variant of the Atrous Spatial

Pyramid Pooling (ASPP) module, which is essential in our

multiscale feature extraction (39). DASPP utilizes multiple 3 3

dilated convolutions with varying dilation rates to extract features

from different receptive fields. This allows the network to gather

contextual information from both fine and coarse details within

the OCT images. In contrast to traditional ASPP, DASPP enhances

the extracted features by fusing the input with the output through

residual connections, which preserves important low-level features

while introducing additional multiscale context.

3.2.2 Multi-head self-attention
MHSA is applied at each level of feature refinement to capture

long-range dependencies and to allow the network to focus on the

most informative regions of the image. By attending to multiple

areas in parallel, MHSA helps prioritize crucial retinal structures,

such as lesions or tissue abnormalities, that may be subtly dispersed

across the image. This attention mechanism is particularly useful

for OCT images, where disease manifestations vary significantly in

scale and location.

3.2.3 Pyramidal refinement process
Combining DASPP and MHSA in a pyramidal structure

ensures that feature refinement is conducted progressively. The

DASPP and MHSA modules extract and integrate information

from multiple scales at each stage. By applying different numbers

of DASPP modules based on the maturity of the feature maps,

our network efficiently processes both local details and global

structures, resulting in a well-balanced representation critical for

accurate disease classification. The overall refinement structure of

the Pyramidal Attention block is illustrated in the following matrix:







DASPP DASPP DASPP MHSA

DASPP DASPP MHSA

DASPP MHSA







This structure ensures that each feature map is refined

appropriately, enhancing the network’s ability to detect small,

localized features and larger, global patterns within the OCT

images.

3.3 Enhanced spatial attention

After the pyramidal attention mechanism processes the multi-

scale features from the backbone network, the resulting feature

maps are upsampled to recover the spatial resolution of the

original input. Following the upsampling, these features are passed

to the spatial attention module for additional enhancement.

The customized spatial attention module selectively emphasizes

spatially significant regions in the feature maps. The second

diagram shows that the input feature map Xα , with dimensions

h×w×Ch, is first subjected to max pooling operations to condense

the most salient spatial information. The pooled features are then

passed through two fully connected (FC) layers, interleaved with

a non-linear activation function, to learn complex relationships

between the spatial elements. At the end of this process, the sigmoid

activation function generates the spatial attention map, which

assigns weights to each spatial location based on its importance.

These weights are subsequently used to modulate the input feature

map Xα , resulting in a weighted output X′
ca. This refined feature
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map X′
ca carries spatially enhanced information, making it more

discriminative for retinal disease classification in OCT images.

3.4 Dilated convolution block

In our proposed network, the fourth, fifth, and sixth feature

maps extracted from the backbone network are processed using

separate dilated convolution (DConv) blocks to capture context at

multiple scales. Each of these dilated convolution blocks is designed

with a 3 × 3 kernel size but operates with different dilation rates

to expand the receptive field without losing spatial resolution. This

multi-scale design enables the network to extract features that vary

in granularity, which is crucial for effectively identifying fine and

coarse retinal structures. The fourth feature map is passed through

aDConv block with a dilation rate of 3. This rate allows the network

to capture local features with amoderately expanded receptive field,

preserving the details of smaller structures. The fifth feature map is

processed through a DConv block with a dilation rate of 5. Finally,

the sixth feature map is passed through a DConv block with a

dilation rate of 7. This larger dilation rate enables the network to

capture a broader context, which is essential for recognizing large-

scale structures or more global patterns. The network effectively

captures multi-scale features by applying different dilation rates to

the fourth, fifth, and sixth feature maps. These features are then

further refined and concatenated with the outputs of the pyramidal

attention and spatial attention modules. This approach allows the

network to combine fine-grained local details with larger contextual

information, improving retinal disease recognition.

3.5 E�cient channel attention

Subsequent to the processing of feature maps by the Dilated

Convolution Blocks, these are upsampled and concatenated

to generate a cohesive multi-scale feature representation. This

concatenation effectively combines the information extracted at

various dilation rates, capturing fine-grained details and larger-

scale contextual information. We apply an ECA mechanism as

shown in Figure 2 to enhance the most informative features while

reducing computational overhead. The ECA module selectively

emphasizes important channels by adaptively recalibrating the

channel-wise dependencies, which helps the network focus on

the most relevant features. In our network, we reduce the

kernel size to 3, decreasing the computational complexity

and ensuring that the attention mechanism remains efficient

and lightweight. The ECA process begins by applying global

average pooling to the concatenated feature maps, which

generates a channel-wise descriptor. This descriptor is passed

through fully connected layers and non-linear activation to

produce channel attention weights. These weights are applied

to the original concatenated feature maps via element-wise

multiplication, effectively enhancing the important channels while

suppressing less informative ones. By integrating the ECA module

after the concatenated features, we ensure that the network

efficiently focuses on the most important features, significantly

improving both the computational efficiency and the feature

representation for the subsequent layers. This enhancement is

particularly critical in OCT image analysis, where identifying

subtle yet crucial structures is essential for accurate retinal

disease classification.

4 Experimental results

This section highlights the empirical setup, followed by

the features of the utilized datasets, empirical validation of

the framework, and the assorted factors. Subsequently, ablation

experiments are conducted to thoroughly assess the effectiveness

and efficiency of the modified and combined distinct attention

systems. Finally, comparisons are conducted with prominent SOTA

methodologies.

4.1 Experimental setup

Our experiments were conducted on a high-performance

computing system to ensure efficient model training and

evaluation. The hardware configuration consisted of an Intel (R)

Core (TM) i9-10900X CPU with ten cores, complemented by 192

GB of system RAM. We employed an NVIDIA GeForce RTX

4090 GPU for accelerated DL computations, which offers 24 GB

of VRAM. The software environment was based on Windows 10,

with PyTorch serving as the primary DL framework. We utilized

several essential Python libraries to support our research, including

Scikit-learn for ML utilities, NumPy for numerical computations,

Seaborn and Matplotlib for data visualization, tqdm for progress

tracking, Pandas for data manipulation, and Pillow for image

processing. Through extensive experimentation, we optimized

various hyperparameters to achieve the best performance. The

final configuration included 100 epochs and an input image

resolution of 224 × 224 × 3. We chose a batch size of 8

to balance performance and memory constraints. We used the

SGD optimizer with a momentum of 0.9, a learning rate of

0.0001, and a weight decay of 0.0005 for optimization. These

parameters were selected based on empirical testing and insights

from relevant literature in the field. The chosen setup provided an

optimal trade-off between model performance and computational

efficiency, allowing us to train and evaluate our models on the given

datasets effectively.

4.2 Dataset

This study used two prominent optical coherence tomography

(OCT) datasets to train and evaluate our network. Table 2

provides an overview of these datasets, detailing the number

of classes and train/test splits. Images from the datasets are

shown in Figure 3. The dataset presented by Kermany et al. (31)

is a comprehensive OCT image collection that has successfully

established the collection as a standard benchmark in the domain.

The dataset includes 109,312 training images grouped into four

unique categories. This comprehensive collection is a solid

basis for training models, with diverse OCT scans depicting

various retinal diseases. Furthermore, the OCT image dataset
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FIGURE 2

Visual overview of the features flow inside the e�cient channel attention (ECA).

FIGURE 3

Sample of images from two datasets. (A), shows sample from OCT (31) and (B) shows sample of images from OCTID (40).

(OCTID) (40) is a specialized dataset encompassing a wider

array of retinal conditions. The dataset has 458 training visuals

and 115 testing images categorized into five types. Although

smaller than the Kermany dataset, OCTID provides variability

in the represented circumstances, facilitating more complex

classification tasks.

4.3 Evaluation metrices

We executed a broad range of tests to evaluate the

classification performance of our suggested network thoroughly.

The experiments included juxtaposing our network with several

state-of-the-art methodologies using well-established metrics for

evaluation. Our evaluation focused on three principal performance

indicators: accuracy, sensitivity, and specificity. These indicators

were selected to provide an extensive viewpoint of our network’s

ability. These measures facilitate a detailed understanding of

the performance in numerous classification areas. Accuracy is

a comprehensive metric for right predictions, while sensitivity

and specificity elucidate the model’s ability to identify positive

and negative instances accurately. We computed these indicators

using demonstrated mathematical formulas to ensure accuracy

and comparability. These equations convert the raw classification

results into measurable performance metrics, facilitating an

objective comparison between our proposed model and the SOTA

methodologies.

Accuracy =
Num of correct

Total
(3)

Precision =
TP

TP + FP
(4)

Recall/Sensitivity =
TP

TP + FN
(5)

4.4 Ablation study

Several network settings are examined for the comprehensive

ablation study using the Kermany dataset to show module gradual

and effective integration. We Started with the initial models

and progressed to more sophisticated designs with attention

mechanisms and feature refinement modules. The findings of the

ablation investigation are shown in Table 3, and each module is

discussed in the below subsections.

4.4.1 Baseline networks (E�Net-B6 and
E�Net-B7)

The analysis begins with EfficientNet-B6 as the backbone,

achieving an accuracy of 93.20%, with precision, recall, and F1
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TABLE 2 Descriptions of the datasets include the number of classes, total images, and train/test splits adopted for our analysis.

Dataset Classes Total images Training images Testing images

OCT (31) 4 109,312 87,450 (80%) 21,862 (20%)

OCTID (40) 5 573 458 115

TABLE 3 Abalation study of the intermediate features with the integration of di�erent modules and progressive features fusion.

Network design Accuracy (%) Precision (%) Recall (%) F1 (%)

EffNet-B6 93.20 92.73 93.30 92.15

EffNet-B7 94.02 93.88 94.98 94.42

EffNet-B7 + PAttV1 95.55 94.28 94.65 95.78

EffNet-B7 + PAttV2 95.98 95.62 94.92 94.88

EffNet-B7 + PAttV2 + DConv 96.18 95.81 96.18 96.02

EffNet-B7 + PAttV2 + SA + DConv 97.02 96.72 97.20 96.75

EffNet-B7 + PAttV2 + SA + DConv + ECA 98.10 97.91 98.02 98.20

Proposed network 98.74 98.51 97.34 98.30

scores in the 92-93% range. This strong baseline indicates that

EfficientNet-B6 can perform well in extracting complex features.

However, the results showed room for further improvement in

capturing more complex features. When upgrading to EfficientNet-

B7, the results significantly improve, with the accuracy increasing

to 94.02%. This improvement is consistent across all metrics,

reflecting that a more advanced backbone architecture provides

better feature extraction capabilities, directly contributing to overall

performance. However, the extracted features from EfficientNet-

B7 need more refinement and attention using advanced attention

mechanisms, which are crucial for better recognition performance.

4.4.2 E�ect of pyramid attention and dilated
convolution

Introducing Pyramid Attention Version 1 (PAttV1), which

incorporates multiscale attention using each DASPP and MHSA,

significantly enhances the performance. The accuracy jumps

to 95.55%, and the F1 score reaches 95.78%, demonstrating

that pyramid attention effectively captures multiscale features,

improving both precision and recall. PAttV1’s ability to integrate

information from various scales, particularly using different

pyramid attention structures for the first three layers of

EfficientNet-B7, allows the network to handle the inherent

complexity of retinal patterns. Further improvement is seen with

the introduction of Pyramid Attention Version 2 (PAttV2), which

refines the attention mechanisms by increasing the number of

DASPPs in the pyramid attention blocks (Final Pyramid block).

The accuracy rises to 95.98%, and precision reaches 95.62%. This

illustrates that PAttV2’s deeper and more sophisticated attention

structure allows the network to capture more nuanced spatial

features, resulting in better detection outcomes. The addition of

dilated convolution (DConv) blocks, which target deeper features

from EfficientNet-B7’s later layers (4, 5, and 6), further enhances

performance. The accuracy improves to 96.18%, showcasing the

importance of incorporating multiscale context through dilation

rates of 3, 5, and 7. This setup allows the network to extract

features across varying scales, leading to more comprehensive

spatial awareness and improved detection.

4.4.3 Impact of spatial attention and e�cient
channel attention

When SA is added alongside PAttV2 and DConv, the

performances are substantially boosted, with accuracy increasing

to 97.02% and the F1 score reaching 96.75%. Including spatial

attention enhances the ability to focus on the most relevant

regions of the feature maps, refining the spatial dependencies. By

incorporating ECA on top of PAttV2, SA, and DConv, the accuracy

reaches 98.10%. ECA reduces the computational cost by decreasing

the kernel size, allowing for efficient refinement of channel-

wise attention. This step is crucial as it balances computational

efficiency with improved feature representation, enabling the

network to capture essential information while reducing redundant

features. Finally, the proposed network, which integrates all

these components-EfficientNet-B7, PAttV2, SA, DConv, and ECA

with convolution layer achieves the highest performance in the

study, with an accuracy of 98.74%, precision of 98.51%, recall

of 97.34%, and an F1 score of 98.30%. This demonstrates that

the combined effect of multiscale attention, spatial and channel

attention mechanisms, and dilated convolution blocks leads to a

highly robust and accurate network.

4.5 Impact of the attention heads

Figure 4 demonstrates the impact of varying the number

of attention heads in the MHSA mechanism on the overall
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FIGURE 4

The impact of the attention heads in the MHSA module on the

overall performance of the proposed network.

accuracy for Kermany and OCTID datasets. The accuracy trend

follows a non-linear pattern as attention heads increase to

10. For both datasets, the accuracy increases steadily with

the number of attention heads up to 6 heads, reaching peak

performance around this point. The Kermany dataset attains

a maximum accuracy of roughly 98.5%, whereas the OCTID

dataset gets around 97.5% accuracy with six attention heads.

This pattern indicates that growing the number of attention

heads early enhances the capacity to discern more complex

features, resulting in improved performance. However, after

the top (6 attention heads), both datasets show a modest

performance decrease. The Kermany dataset exhibits a decline in

accuracy, reaching about 96% with ten attention heads, but the

OCTID dataset similarly falls below 96% at the same confluence.

This reduction can be attributed to probable overfitting and

excessive complexity resulting from an abundance of attention

heads, which led the network to neglect the most critical

properties. The study indicates that six attention heads provide

the ideal equilibrium between performance and complexity for

both datasets.

4.6 Comparative analysis with SOTA
methods

The comparative examination of numerous SOTA approaches

in analysis demonstrates a consistent improvement in performance

in recent years, as shown in Table 4. For instance, Rahimzadeh

and Mohammadi (21) improved performance with a deep

ensemble CNN reaching 96.4%, which was further matched by

Subramanian et al. (22) using models like VGG16, VGG19,

Densenet201, and InceptionV3, attaining 97% accuracy. More

recent works, such as (4) deep CNN based on Inception

architecture, achieved 95.55%, while Hassan et al. (6), and Diao

et al. (23) obtained similar accuracies of 96.93% using random

forest models with ResNet 50 andmask-guided CNNs, respectively.

The Capsule network with Adaptive Histogram Equalization by

Opoku et al. (5) and the Hybrid multilayered CNN-VGG19

TABLE 4 Comparative analysis with the performances of the SOTA

models on Kermany dataset.

Method References Accuracy % Year

Deep ensemble

CNN

(21) 96.4 2021

VGG16, VGG19,

Densenet201,

InceptionV3

(22) 97 2022

Deep CNN based

on Inception

architecture

(4) 95.55 2023

Random forest

models with ResNet

50

(6) 97.47 2023

Mask guided CNN (23) 96.93 2023

Capsule network

with Adaptive

histogram

equalization

(5) 97.7 2023

Hybrid

multilayered

classification

CNN-VGG19

(7) 97.7 2023

InceptionV3 and

Xception with

self-attention

(24) 96.6 2024

Multi-scale

features with

attentions

The proposed

(Ours)

98.74 2024

FIGURE 5

Model performance metrics on the Kermany dataset across 100

training epochs.

model by Udayaraju et al. (7) both achieved 97.7% accuracy,

showcasing the potential of hybrid architectures. Naik et al.

(24) explored self-attention mechanisms with InceptionV3 and

Xception, reaching 96.6%, though they still needed to surpass

the top-performing models. In contrast, the proposed network

outperformed all prior models with a remarkable accuracy of

98.74% on the Kermany dataset. This highlights the effectiveness

of multi-scale feature extraction and attention mechanisms

in capturing critical patterns within OCT images, leading to

superior performance.
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FIGURE 6

Model performance metrics on the OCTID dataset over 100 training epochs.

5 Discussion

The proposed Multiscale Feature Enhancement via an

Attention-over-Attention network addresses key challenges in

retinal disease recognition from OCT images by leveraging

advanced attention mechanisms and multiscale feature

extraction techniques. Integrating the proposed network with an

EfficientNetB7 backbone enables the extraction of comprehensive

multiscale features that provide a detailed representation of

fine-grained and global retinal structures, which are critical

for accurate classification. Incorporating a Pyramidal attention

mechanism, combining MHSA with DASPP, enhances the

capacity of the network to capture long-range dependencies

and contextual information at multiple scales, overcoming the

limitations of existing methods that often rely on single-scale

processing. This unique combination allows the network to focus

on the most relevant features, ensuring precise localization of

retinal abnormalities that traditional approaches might overlook.

Furthermore, our design of parallel processing paths with

varying dilation rates allows for concurrently analyzing multiple

receptive fields, significantly improving the network’s ability to

distinguish between local details and global contextual cues,

which is crucial for effective retinal disease recognition. The

performance of our network was rigorously evaluated on two

benchmark datasets: the Kermany dataset and the OCTID dataset,

as shown in Figures 5, 6. In Figure 5, the performance metrics,

including accuracy and loss, demonstrate consistent improvement

over 100 training epochs, highlighting the ability to learn and

generalize from the data effectively. Similarly, in Figure 6, the

performance metrics on the OCTID dataset indicate robust

learning dynamics, with steady convergence and high classification

accuracy achieved across the training epochs. These results

underscore the adaptability of our network to different datasets

and its effectiveness in capturing complex retinal structures and

abnormalities. The integration of ECA and Spatial Refinement

modules further strengthens the network’s performance by

enhancing channel-wise and spatial feature representations,

reflected in the superior metrics achieved across both datasets.

Ablation studies confirm the critical roles of each component,

validating our design choices and highlighting the advantages

of advanced attention mechanisms and multiscale processing.

These results demonstrate the potential of our approach to

revolutionize OCT image analysis and provide ophthalmologists

with more precise diagnostic tools for early detection and

treatment planning.

6 Conclusion

In this study, we presented a novel deep learning Multiscale

Feature Enhancement via Attention-over-Attention network for

the recognition of retinal diseases using OCT images. Our approach

addresses the existing limitations of continusely relyig on single

scale features. The proposed network leveraged multiscale feature

extraction, advanced attentionmechanisms, and parallel processing

paths to enhance the detection of subtle retinal abnormalities.

The integration of the EfficientNetB7 backbone enables the

network to extract multi-level features. These features are then

refined by the feasible integration of attention mechanisms, which

include the Pyramidal Attention mechanism, dilated convolution

block, Efficient Channel Attention (ECA), and Spatial Refinement

modules. These modules collectively contribute to the superior

performance of the proposed network over extensive experiments.

The proposed network achieved state-of-the-art accuracy and

enhanced the interpretability and reliability of OCT image analysis,

making it a promising tool. Future research may focus on further

refining the attention mechanisms, exploring additional datasets

for complex features, and adapting the model for real-time clinical
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deployment to support ophthalmologists in early and precise

diagnosis of retinal diseases.
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