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Cardiometabolic Index is
associated with heart failure: a
cross-sectional study based on
NHANES

Xiao-Ming Zhu, Yan Xu and Jie Zhang*

Department of Cardiology, Xishan People’s Hospital of Wuxi City, Wuxi, China

Introduction: Heart failure is a complex syndrome characterized by impaired

cardiac function. Despite improvements in treatment, the prevalence of heart

failure continues to rise. The Cardiometabolic Index (CMI), a novel measure

combining abdominal obesity and lipid levels, has emerged as a potential

predictor of cardiac metabolic risk.

Methods: We analyzed data from the National Health and Nutrition Examination

Survey (NHANES) involving 22,586 participants to investigate the association

between CMI and heart failure. Multivariable logistic regression models and RCS

analysis were used to explore the association between heart failure and CMI after

adjusting for potential confounders. Subgroup analyses were performed among

populations with di�erent demographic and clinical characteristics.

Results: Our results revealed a significant positive correlation between CMI

and heart failure, with odds ratios of 2.77 and 1.87 for the highest quartile

after adjusting for confounders. Subgroup analyses indicated heightened risks

among older adults and those with hypertension or diabetes. ROC curve analysis

demonstrated that CMI o�ers good diagnostic value for heart failure, surpassing

traditional measures like BMI.

Discussion: Our findings suggest that CMI is a valuable tool for assessing

the risk of heart failure, particularly in individuals with increased abdominal

obesity or abnormal lipid profiles. This highlights the importance of addressing

cardiac metabolic health in both prevention and treatment strategies for heart

failure. Future research should focus on exploring causal relationships and

refining predictive models that incorporate CMI to enhance early detection and

intervention.

KEYWORDS

heart failure, Cardiometabolic Index, NHANES, prevention strategies, lipids

Introduction

Heart failure refers to a syndrome caused by various factors leading to impaired

cardiac pumping function, where cardiac output fails to meet the basic metabolic needs

of tissues, primarily manifesting as dyspnea, limited activity, and fluid retention (1–

3). Heart failure can be categorized based on the affected area into left heart failure,

right heart failure, and congestive heart failure (4, 5). Although the incidence of heart

failure in China has stabilized or declined over the years, its prevalence continues to

rise due to aging populations, increased risk factors, and improved effectiveness and

survival rates of new therapies (6). Patients with heart failure often experience multiple

complications that, if not treated promptly, can create a vicious cycle with heart failure

(7). Treatment methods for heart failure include medication, cardiac resynchronization

therapy (CRT), and implantable cardioverter-defibrillators (ICD) (8). Over the past

few decades, there have been significant breakthroughs in heart failure treatment;
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however, traditional approaches still face many challenges (9). The

mortality rate among heart failure patients remains high, indicating

considerable room for improvement in overall treatment (10, 11).

The Cardiometabolic Index (CMI) is a novel obesity index

that comprehensively reflects abdominal obesity and lipid levels

(12). Cardiac metabolic risk factors play a crucial role in the

pathogenesis of heart diseases, forming the theoretical basis for

cardiac metabolic risk (13). Overweight or obese individuals,

particularly those with abdominal obesity, have a high risk of

metabolic abnormalities, making a systematic assessment of cardiac

metabolism essential (14). The CMI is a diabetes risk indicator

based on triglycerides, HDL-C, height, and waist circumference,

useful for evaluating cardiovascular diseases associated with

abnormal body fat distribution (12). This index can also assess

the risk of hypertension and hyperuricemia related to abnormal

body fat distribution and is associated with cardiovascular events

and ischemic stroke (15). Guo et al. conducted a large-scale

cross-sectional study based on the NHANES database in the U.S.

population. The researchers found a positive correlation between

CMI and the risk of chronic kidney disease, which may play a key

role in the prevention and treatment of this condition (16).

Alterations in energy metabolism are an important

characteristic of heart failure, and optimizing myocardial energy

metabolism is one of the key strategies for treating heart failure

(17, 18). However, the relationship between CMI and heart failure

remains unclear. Therefore, we conducted a similar cross-sectional

study based on the NHANES database to investigate the correlation

between CMI and heart failure.

Materials and methods

Study population

The NHANES database, managed by CDC, is the largest

population-based national nutrition and health survey globally.

Detailed information about the NHANES database can be found

on their website: NHANES, accessed on October 4, 2024. This

survey has been conducted biennially since 1999 to assess the health

and nutritional status of U.S. residents, selecting a representative

population. In this study, we included data from 10 consecutive

cycles of NHANES, spanning from 1999/2000 to 2017/2018.

Inclusion criteria are illustrated in Figure 1.

Calculation of CMI

Cardiac Metabolic Index (CMI), derived from anthropometric

measurements and blood samples. Blood samples were typically

collected in the survey vehicles or designated locations. Using these

measurements, the waist-to-height ratio (WHtR) and CMI were

calculated as follows:

WHtR = Waist circumference (cm)/Height (cm),

CMI = Triglycerides (mmol/L)/High-Density Lipoprotein

Cholesterol (HDL-C, mmol/L)×WHtR.

WC was measured at the midpoint between the lowest rib and

the iliac crest by experienced staff of NHANES. BMI was calculated

FIGURE 1

Flowchart of study population enrollment.

using participants’ weight and height measurements, where BMI=

weight (kg)/height (m²). Height was measured using a calibrated

digital scale, and height was recorded using a stadiometer with

participants in a standing position, without shoes. Serum lipid-

related indicators levels were measured using standard enzymatic

methods. Blood samples were collected after an overnight fast (at

least 8 h), and the measurements were performed using a certified

clinical laboratory.

Heart failure

Congestive Heart Failure (CHF) was confirmed based on the

MCQ questionnaire, which has been validated in prior studies for

the effectiveness of self-reported heart failure. Participants were

asked, “Has a doctor or other health professional ever told you that

you have HF?”

Covariates

Demographic information was obtained from the demographic

questionnaire. Participants provided information on smoking

status, alcohol consumption, and medical history through health

questionnaires. Blood samples were collected after fasting for

at least 8 h to assess biochemical markers. Based on previous

research, potential confounding factors affecting heart failure were

selected to mitigate their influence on the outcomes. Ultimately,

the following covariates were collected and adjusted for: age,

sex, education level, ethnicity, BMI, smoking, drinking, diabetes,

and hypertension.

Statistical methods

The analyses were conducted using statistical software R.

Continuous variables as means and 95% CI, while categorical

variables were reported as percentages and 95% CI. All analyses
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TABLE 1 Baseline characteristics of di�erent CMI quartile populations.

Variables CMI–Q1
(0.02–0.10)

CMI–Q2
(0.10–0.14)

CMI–Q3
(0.14–0.22)

CMI–Q4
(0.22–2.52)

P value

Age, % <0.001∗∗∗

18–40 years 47.84 (45.70, 49.99) 41.60 (39.74, 43.46) 35.40 (33.74, 37.05) 30.39 (28.77, 32.01)

40–60 years 36.22 (34.18, 38.27) 37.51 (35.70, 39.32) 39.74 (38.15, 41.34) 41.00 (39.20, 42.79)

60–80 years 15.93 (14.48, 17.38) 20.89 (19.39, 22.39) 24.86 (23.28, 26.44) 28.61 (26.90, 30.33)

Gender, % <0.001∗∗∗

Female 58.51 (56.83, 60.19) 52.14 (50.54, 53.73) 50.54 (48.91, 52.16) 42.94 (41.41, 44.46)

Male 41.49 (39.81, 43.17) 47.86 (46.27, 49.46) 49.46 (47.84, 51.09) 57.06 (55.54, 58.59)

Ethnicity, % <0.001∗∗∗

Non-Hispanic White 66.77 (64.55, 69.00) 68.52 (66.16, 70.89) 68.42 (65.91, 70.92) 72.28 (69.92, 74.63)

Non-Hispanic Black 15.34 (13.74, 16.95) 11.57 (10.22, 12.91) 8.85 (7.76, 9.94) 5.45 (4.71, 6.20)

Mexican American 5.55 (4.72, 6.37) 7.91 (6.74, 9.09) 9.72 (8.34, 11.09) 10.21 (8.79, 11.62)

Other Hispanic 4.87 (3.93, 5.82) 5.58 (4.51, 6.64) 6.42 (5.13, 7.70) 5.68 (4.51, 6.85)

Others 7.46 (6.46, 8.46) 6.42 (5.55, 7.29) 6.60 (5.72, 7.48) 6.38 (5.45, 7.32)

Education, % <0.001∗∗∗

Below high school 3.70 (3.09, 4.31) 5.32 (4.67, 5.98) 7.79 (6.94, 8.64) 7.88 (7.04, 8.71)

High school 29.72 (27.80, 31.63) 34.94 (32.97, 36.91) 37.54 (35.64, 39.45) 40.04 (37.96, 42.12)

Above high school 66.58 (64.42, 68.74) 59.74 (57.70, 61.77) 54.67 (52.53, 56.80) 52.08 (49.98, 54.19)

DM, % 4.48 (3.82, 5.13) 8.71 (7.84, 9.57) 15.94 (14.69, 17.19) 29.08 (27.38, 30.79) <0.001∗∗∗

FBG, mmol/L 5.36 (5.33, 5.39) 5.60 (5.56, 5.63) 5.90 (5.85, 5.96) 6.55 (6.46, 6.63) <0.001∗∗∗

HBA1c, % 5.32 (5.30, 5.34) 5.46 (5.43, 5.48) 5.62 (5.60, 5.65) 5.93 (5.88, 5.98) <0.001∗∗∗

Smoking, % 19.10 (17.64, 20.56) 21.25 (19.59, 22.91) 23.00 (21.49, 24.51) 22.40 (21.01, 23.79) <0.001∗∗∗

Drinking, % 89.73 (88.50, 90.95) 88.87 (87.61, 90.14) 89.23 (87.98, 90.49) 88.06 (86.70, 89.42) 0.12

BMI, % <0.001∗∗∗

Normal weight 60.03 (58.42, 61.65) 35.63 (33.73, 37.53) 18.36 (16.95, 19.76) 8.69 (7.74, 9.64)

Obesity 11.31 (10.32, 12.29) 26.56 (24.98, 28.14) 44.32 (42.45, 46.20) 60.59 (59.04, 62.13)

Over weight 28.66 (27.14, 30.17) 37.81 (36.14, 39.48) 37.32 (35.59, 39.04) 30.73 (29.23, 32.22)

Hypertension, % 22.88 (21.24, 24.53) 32.83 (31.08, 34.57) 42.68 (40.93, 44.44) 54.03 (52.05, 56.00) <0.001∗∗∗

SBP, mmHg 116.91 (116.33, 117.49) 120.48 (119.90, 121.07) 123.28 (122.63, 123.93) 125.66 (125.14, 126.18) <0.001∗∗∗

DBP, mmHg 68.85 (68.42, 69.28) 70.20 (69.76, 70.65) 71.24 (70.77, 71.72) 72.12 (71.66, 72.58) <0.001∗∗∗

CHD, % 1.34 (0.99, 1.68) 2.75 (2.17, 3.33) 3.58 (2.99, 4.16) 6.36 (5.52, 7.20) <0.001∗∗∗

Angina, % 0.85 (0.58, 1.11) 1.72 (1.26, 2.17) 2.58 (2.08, 3.07) 4.47 (3.77, 5.16) <0.001∗∗∗

Heart attack, % 1.31 (0.95, 1.66) 2.85 (2.36, 3.34) 3.68 (2.97, 4.38) 6.09 (5.34, 6.85) <0.001∗∗∗

BMI, body mass index; DM, diabetes; FBG, fasting blood glucose; HbA1c, glycated hemoglobin; HF, heart failure. ∗∗∗P < 0.001.

incorporated appropriate sample weights. This ensured that the

estimates were representative of the U.S. population. Chi-square

tests were used for categorical variables, while independent

t-tests were applied for continuous variables. To determine

the independent association between CMI and heart failure,

multivariable logistic regression analyses were conducted. We

selected weighted regression models to account for the complex

stratified sampling design of the NHANES data, which includes

oversampling of certain population subgroups and differential

probabilities of selection. By incorporating weights, we ensure that

the estimates are representative of the general population, thereby

mitigating the risk of biased results due to the sampling design.

The model was adjusted for potential confounders. To assess the

potential non-linear relationship between CMI and the risk of

heart failure, we employed restricted cubic splines (RCS) in our

logistic regression model. We included three knots at predefined

percentiles (e.g., the 10th, 50th, and 90th percentiles) of the CMI

distribution to model the relationship effectively. To evaluate the
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TABLE 2 Weighted logistic regression analysis of CMI and HF.

Cardiometabolic
Index

Non-adjusted model Model I Model II

OR [95% CI] P value OR [95% CI] P value OR [95% CI] P value

Q1 Reference - Reference - Reference -

Q2 2.03 (1.39, 2.96) <0.001∗∗∗ 1.54 (1.04, 2.28) 0.03∗ 1.25 (0.82, 1.90) 0.29

Q3 2.82 (1.95, 4.09) <0.001∗∗∗ 1.67 (1.14, 2.44) 0.01∗ 1.25 (0.84, 1.87) 0.27

Q4 5.38 (3.75, 7.72) <0.001∗∗∗ 2.77 (1.92, 3.99) <0.001∗∗∗ 1.87 (1.26, 2.76) 0.002∗∗

Model I adjusted for age, sex, and race/ethnicity. Model II adjusted for age, sex, education level, ethnicity, BMI, smoking, drinking, diabetes, hypertension. CMI, Cardiometabolic Index; HF,

heart failure; BMI, family income.
∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

diagnostic performance of the CMI in predicting HF, we performed

a ROC curve analysis. AUC was calculated to quantify the overall

predictive accuracy of CMI for heart failure.

Results

Study population

As shown in Table 1, younger individuals (18–40 years)

dominate the lowest CMI quartile (Q1) with 47.84%, which

decreases progressively across quartiles, reaching 30.39% in the

highest quartile (Q4). Conversely, the percentage of individuals

aged 60-80 increases from 15.93% in Q1 to 28.61% in Q4. Females

are more prevalent in the lower CMI quartiles (58.51% in Q1),

while the percentage of males increases across quartiles, reaching

57.06% in Q4. Higher education levels are more common in the

lower quartiles (66.58% in Q1), but as the CMI increases, fewer

individuals have education above high school (52.08% in Q4).

The prevalence of diabetes (DM), fasting blood glucose (FBG),

and glycated hemoglobin (HbA1c) all increase across quartiles.

In Q4, 29.08% have diabetes, and the average HbA1c is 5.93%.

Coronary heart disease (CHD), angina, and heart attacks are

significantly more prevalent in higher CMI quartiles. Our study

highlights higher CMI is associated with older age, male gender,

lower education, higher diabetes rates, obesity, and increased

cardiovascular risks? Moreover, the baseline characteristics of

participants with and without heart failure were shown in

Supplementary Table S1.

Association of CMI and heart failure

Weighted logistic regression results showed that as CMI

increased, the risk of heart failure significantly elevated. In the

unadjusted model, compared to the lowest quartile (Q1), the odds

ratio (OR) for the second quartile (Q2) was 2.03 (95% CI: 1.39–

2.96, P < 0.001), for the third quartile (Q3) was 2.82 (95% CI:

1.95–4.09, P < 0.001), and for the highest quartile (Q4) was 5.38

(95% CI: 3.75–7.72, P < 0.001). In Model I, adjusted for age, sex,

and race/ethnicity, the OR for Q4 remained 2.77 (95% CI: 1.92–

3.99, P < 0.001). After further adjusting for BMI, education level,

smoking, drinking, diabetes, and hypertension in Model II, the

OR for Q4 was 1.87 (95% CI: 1.26–2.76, P = 0.002). Therefore,

FIGURE 2

RCS curve of the association between CMI and heart failure.

CMI is significantly associated with the occurrence of heart failure

(Table 2). Additionally, we used RCS curve for a visual analysis

of the relationship between CMI and the risk of heart failure.

We found that as CMI levels increased, the risk of heart failure

also continuously increased, showing a linear positive correlation

between the two (Figure 2). The NHANES data has a complex

multistage sampling design, and we use weighted regressionmodels

in the primary analysis to ensure that the sample represents the

general population. Unweighted logistic regression can help further

test the robustness of the model, verify the necessity of the weighted

design, and reveal potential sampling bias. Therefore, we applied

unweighted analysis as a sensitivity analysis to verify whether the

results remain consistent without considering the weighting. In

sensitivity analysis, after adjusting for confounders, CMI was still

significantly associated with HF in Q4 (OR 1.69, 95% CI 1.28–2.26,

P< 0.001). These findings in sensitive analysis suggest consists with

Amin analysis (Table 3).
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TABLE 3 Unweighted logistic regression analysis of CMI and HF.

Cardiometabolic
Index

Non-adjusted model Model I Model II

OR [95% CI] P value OR [95% CI] P value OR [95% CI] P value

Q1 Reference - Reference - Reference -

Q2 1.88 (1.41, 2.53) <0.001∗∗∗ 1.29 (0.97, 1.73) 0.08∗ 1.11 (0.82, 1.50) 0.51

Q3 2.76 (2.11, 3.66) <0.001∗∗∗ 1.55 (1.18, 2.06) 0.002∗∗ 1.32 (1.00, 1.77) 0.05∗

Q4 4.61 (3.57, 6.02) <0.001∗∗∗ 2.25 (1.73, 2.97) <0.001∗∗∗ 1.69 (1.28, 2.26) <0.001∗∗∗

Model I adjusted for age, sex, and race/ethnicity. Model II adjusted for age, sex, education level, ethnicity, BMI, smoking, drinking, diabetes, hypertension.

CMI, Cardiometabolic Index; HF, heart failure; BMI, family income.
∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

Subgroup analysis

In addition, we conducted a detailed subgroup analysis to

explore the association between CMI and HF in populations with

different demographic characteristics. In the 40–60 and 60–80

age groups, higher quartiles of Cardiometabolic Index (Q3 and

Q4) were significantly associated with the risk of heart failure,

particularly in the 60–80 age group where the risk was highest

in Q4 (OR = 3.52, 95% CI: 2.22–5.58, p < 0.0001). Among

both females and males, higher quartiles of Cardiometabolic Index

(Q3 and Q4) were significantly associated with heart failure risk,

with an OR of 3.26 (95% CI: 1.97–5.40, p < 0.0001) for females

in Q4 and an OR of 3.35 (95% CI: 1.97–5.71, p < 0.0001) for

males in Q4. In individuals with hypertension, higher quartiles of

Cardiometabolic Index (Q2 to Q4) were all significantly associated

with the risk of heart failure, especially in Q4 (OR = 2.81, 95% CI:

1.93–4.08, p < 0.0001), while in individuals without hypertension,

only Q4 showed a significant association (OR = 3.17, 95% CI:

1.47–6.83, p = 0.003). For individuals without diabetes, higher

quartiles of Cardiometabolic Index (Q3 and Q4) were significantly

associated with heart failure risk. In individuals with diabetes, only

Q4 significantly increased the risk of heart failure (OR = 1.79,

95% CI: 1.05–3.08, p = 0.03). The association between CMI and

heart failure was positively correlated across different age groups,

hypertension, and diabetes status. Particularly, individuals who are

older or have hypertension or diabetes exhibited a significantly

higher risk in higher quartiles of Cardiometabolic Index (Figure 3).

ROC curve

To further explore the efficacy of CMI in the diagnosis

and prediction of heart failure, we plotted the ROC curves for

CMI, BMI, and WHtR. We found that the ROC curve of CMI

demonstrated good diagnostic efficacy, with an AUC of 66.4% (95%

confidence interval: 64.5% to 68.4%). The AUC for CMI was greater

than that of BMI andWHtR in terms of their diagnostic efficacy for

heart failure (Figure 4).

Discussion

A large body of research has demonstrated that cardiac

metabolic activity is crucial for heart failure (19, 20). We conducted

a large-scale cross-sectional analysis based on the NHANES

database, revealing a positive correlation between CMI and

heart failure. Clinical practitioners should pay more attention to

cardiac metabolism.

CMI is a measure used to assess cardiac metabolic function

(21), to provide amore comprehensive reflection of heart metabolic

health (22). Choi et al. firstly revealed CMI in a 2017 study as

a potential clinical indicator of lipid metabolism abnormalities,

suggesting it may hold significant value in predicting renal

outcomes (23). Wang et al. found that CMI levels are closely related

to endometriosis, with the correlation strengthening. By regularly

monitoring CMI levels, doctors may be able to identify women

at risk for endometriosis earlier (13). Furthermore, studies have

shown a significant positive correlation between CMI and the risk

of gestational diabetes mellitus, and higher CMI levels can predict

the occurrence of gestational diabetes mellitus during pregnancy

(24). The mechanisms of myocardial energy metabolism disorders

primarily include impaired energy generation and utilization (25).

Numerous studies have shown that obesity can lead to both energy

generation and utilization impairments (26, 27). The myocardium

primarily derives energy through the aerobic oxidation of various

substrates, including fatty acids and glucose (28, 29). ATP generated

during oxidative phosphorylation in myocardial cells is hydrolyzed

by the myosin head ATPase during the excitation-contraction

coupling process, providing energy for myocardial contraction (27,

30, 31). Research has found that when myocardial overload leads

to hypertrophy, structural changes occur in myocardial contractile

proteins, resulting in decreased activity of myosin head ATPase and

impaired ATP hydrolysis (32). This disruption in energy utilization

subsequently weakens myocardial contractility (33). Therefore, the

metabolic activities of the heart are closely related to heart failure.

Based on the results of present study, CMI could serve as a practical

tool for identifying individuals at high risk of heart failure (HF)

before the onset of clinical symptoms. It also has the potential to be

utilized to categorize patients based on their cardiometabolic risk,

allowing for tailored clinical management.

There is distinguishing between different types of heart failure,

such as heart failure with preserved ejection fraction (HFpEF)

and heart failure with reduced ejection fraction (HFrEF), is an

important aspect of understanding the clinical utility of the CMI.

However, due to the limitations of the available data in the

NHANES dataset, we were unable to obtain detailed information

regarding the specific type of heart failure for each individual

participant. As such, we could not analyze the impact of CMI
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FIGURE 3

ROC curves of BMI, WtHR, and CMI for predicting heart failure.

on different heart failure subtypes in this study. Heart failure

poses significant dangers, leading to reduced activity levels,

general fatigue, and even impacting daily life and work (34).

Additionally, heart failure can result in decreased cardiac pumping

function, which, in severe cases, may lead to shock or cardiac

arrest (35). The pathophysiological changes associated with heart

failure are multifaceted, primarily involving pathophysiological

changes, ventricular remodeling, activation of neuroendocrine and

sympathetic nervous systems, and hemodynamic abnormalities

(36, 37). The mechanisms underlying heart failure are complex

(38). Although different primary heart diseases lead to varying

pathophysiological mechanisms of heart failure, it is currently

believed that abnormalities in myocardial energy metabolism

and energy utilization impairment represent common pathways

contributing to heart failure (39, 40). Increasing attention is

being paid to the remodeling of myocardial energy metabolism

alongside structural and electrical remodeling of the heart caused

by heart failure (41, 42). Patients with heart failure exhibit energy

metabolism abnormalities, it can lead to ventricular remodeling,

resulting in impaired cardiac contractile and/or diastolic function

(43, 44). Improving myocardial energy metabolism can enhance

the prognosis of heart failure patients, offering new avenues for

treatment. Several studies have identified a relationship between

various factors, such as metabolic disorders, and heart failure

(45, 46). Of note, we found that the association of CMI with

HF was more pronounced among elderly population, we believe

that this was attributed to higher risk of occurrence of HF

among aging participants. With aging, there may be alterations

in neurohormonal regulation, including increased sympathetic

nervous system activity and elevated levels of natriuretic peptides,

which may exacerbate the development of heart failure in

predisposed individuals. Moreover, the age-related cardio-injury

and vascular dysfunction are also related to higher risk of HF

among elderly.

Our study has several limitations that need to be emphasized.

Firstly, the onset and progression of heart failure are often related

to many factors, making it difficult to predict disease incidence

based solely on changes in a single indicator. While we accounted

for key comorbidities, there may be other potential confounding

factors that were not included in the analysis, such as specific

inflammatory markers and genetic predispositions, due to data

availability constraints in the NHANES dataset. Secondly, cross-

sectional studies cannot be used to infer causal relationships, and

the conclusions of this study may require further confirmation

through additional prospective research. Furthermore, we cannot

ensure that there is no reporting bias in the population of the

database, nor can we accurately adjust for all confounding factors.

It is important to note that previous studies, including many

large-scale epidemiological studies, have successfully relied on self-

reported data for HF diagnosis, particularly when more objective

clinical data were not available (47, 48). The National Health and

Nutrition Examination Survey (NHANES), from which our data

were derived, is widely recognized for its rigorousmethodology and

high-quality data collection standards. The survey uses validated

questions and standardized procedures to ensure consistency and

reliability in the information gathered. Therefore, despite the self-

report nature of the HF diagnosis, we believe the NHANES data is

of high quality and contributes meaningfully to our analysis. There

are certain differences in health indicators between the American

population and the other population, so we cannot reasonably

extrapolate our findings to the other population. Moreover, we did

not establish a predictive model incorporating CMI in this study,

therefore, future research should focus more on this aspect, while

CMI demonstrates some potential in diagnosing heart failure, its

diagnostic performance may still require improvement before it

can be considered a robust standalone tool in clinical practice.

Besides, as this study is based on cross-sectional NHANES data,

the information available on heart failure severity and subtypes

is limited. The strengths of our study is its exploration of

the positive correlation between CMI and heart failure for the

first time, using a relatively large sample size. Additionally, we

employed weighted sampling analysis to further investigate among

different populations.

Conclusion

In this cross-sectional analysis based on the NHANES,

including 22,586 participants, using weighted analysis

methods, we found a positive correlation between CMI

and heart failure. Our findings suggest that CMI may

serve as an effective tool for early identification and risk
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FIGURE 4

Subgroup analysis of the association between CMI and heart failure.

stratification in heart failure, particularly in populations at

risk due to metabolic abnormalities. This contributes to the

growing body of evidence linking metabolic dysfunction to

cardiovascular outcomes, with implications for preventive

healthcare strategies. However, more prospective studies

still needed.
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