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Background: Chat Generative Pretrained Transformer (ChatGPT) is a type of

large language model (LLM) developed by OpenAI, known for its extensive

knowledge base and interactive capabilities. These attributes make it a valuable

tool in the medical field, particularly for tasks such as answering medical

questions, drafting clinical notes, and optimizing the generation of radiology

reports. However, keeping accuracy in medical contexts is the biggest challenge

to employing GPT-4 in a clinical setting. This study aims to investigate the

accuracy of GPT-4, which can process both text and image inputs, in generating

diagnoses from pathological images.

Methods: This study analyzed 44 histopathological images from 16 organs and

100 colorectal biopsy photomicrographs. The initial evaluation was conducted

using the standard GPT-4 model in January 2024, with a subsequent re-

evaluation performed in July 2024. The diagnostic accuracy of GPT-4 was

assessed by comparing its outputs to a reference standard using statistical

measures. Additionally, four pathologists independently reviewed the same

images to compare their diagnoses with the model’s outputs. Both scanned

and photographed images were tested to evaluate GPT-4’s generalization ability

across different image types.

Results: GPT-4 achieved an overall accuracy of 0.64 in identifying tumor

imaging and tissue origins. For colon polyp classification, accuracy varied

from 0.57 to 0.75 in different subtypes. The model achieved 0.88

accuracy in distinguishing low-grade from high-grade dysplasia and 0.75 in

distinguishing high-grade dysplasia from adenocarcinoma, with a high sensitivity

in detecting adenocarcinoma. Consistency between initial and follow-up

evaluations showed slight to moderate agreement, with Kappa values ranging

from 0.204 to 0.375.

Conclusion: GPT-4 demonstrates the ability to diagnose pathological images,

showing improved performance over earlier versions. Its diagnostic accuracy in

cancer is comparable to that of pathology residents. These findings suggest that

GPT-4 holds promise as a supportive tool in pathology diagnostics, offering the

potential to assist pathologists in routine diagnostic workflows.
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1 Introduction

Artificial Intelligence (AI), particularly large language
models (LLMs) such as ChatGPT developed by OpenAI
(1), has demonstrated its potential to change the healthcare
landscape (2). These advanced technologies not only enhance
medical education through interactive learning experiences
but also revolutionize diagnostic processes by suggesting
accurate diagnoses (3). A significant advancement of GPT-4
is capable of interpreting text and image inputs and generating
textual outputs (4). Although it is less adept than humans
in many real-world scenarios, GPT-4 achieves human-
level performance across various professional and academic
benchmarks and even outperforms human physicians in
medical challenge tasks (5). The evidence of their impact on
pathology is highlighted by the recent data from a PubMed
search conducted on August 21, 2024. This search, focusing on
the terms "ChatGPT" and "pathology" returned 175 published
manuscripts, showcasing the rapidly growing interest and
application of LLMs within the field of pathology. Several
studies and reviews have explored the integration of ChatGPT in
diagnostic human pathology.

ChatGPT facilitates the effective utilization and integration
of knowledge that surpasses human limits and boundaries.
A recent study shows that ChatGPT can generate case report
templates in medical education and refining these reports under
the supervision of professional educators holds considerable
practical significance (6). Upon receiving a medical image,
GPT-4 can initially analyze the visual features of the image,
including the shape, size, structure, and morphology. Subsequently,
it can leverage its machine learning algorithms to identify
patterns in the image and give a conclusion (7). GPT has
the potential to be a valuable resource in pathology education
and collaborate with pathologists during diagnosis (8, 9). The
performances of GPT-4 show a similar level of the pathologist,
even outperforming a trained pathologist in online question-
and-answer exchanges (10). Compared to Google Bard, a LLM
produced by Google, GPT-4 outperformed in terms of accuracy
when it came to grading non-alcoholic fatty liver disease based
on histology images (11). Compared to pathology residents,
the diagnostic performance of GPT-4 is consistent but slightly
inferior based on pathology image (12). Overall, GPT-4 has
the potential to significantly enhance patient care by providing
clinicians with advanced decision support and real-time insights,
improving diagnostic accuracy and treatment planning. However,
its implementation also raises concerns about data privacy,
as handling sensitive patient information requires stringent
safeguards to prevent breaches.

Currently, there is a global shortage of experienced
pathologists. Excessive workload frequently leads to misdiagnoses
in clinical practice. The diagnostic capabilities also vary
significantly across medical institutions. The utilization of
deep learning models in pathology diagnosis is expanding,
significantly enhancing accuracy and efficiency by analyzing whole
slide images (WSIs) and potentially relieving the workload of
pathologists (13, 14). However, these models are usually designed
for specific tasks and require high data quality (15). Through
sophisticated data augmentation techniques and transfer learning,

LLM can better handle the variability in data and generalize
good results across different staining techniques and image
qualities (16). Learning how to use LLM for diagnostics in medical
practice and comprehending the working mechanics of artificial
intelligence systems are crucial as we use these technologies
(17, 18). A systematic evaluation of GPT’s performance on both
general and specific pathology images is needed to assess its
effectiveness and explore the collaborative potential between
pathologists and ChatGPT.

In this study, we aimed to systematically assess the capability
of GPT-4 to generate pathological diagnoses from images
across various organs, including colon biopsies. By comparing
the performance of GPT-4 with that of different experienced
pathologists, we sought to highlight both the strengths and
limitations of this AI model in a diagnostic context. Understanding
GPT-4’s proficiency in interpreting and analyzing pathology images
is essential to assess its potential as a valuable tool for supporting
pathologists and enhancing diagnostic workflows.

2 Materials and methods

2.1 Data collection

This study included two distinct datasets. Dataset A consisted
of 44 images sourced from 16 different organ systems, most of
which were obtained from publicly available web photographs.1 A
detailed list of the diseases and corresponding organ systems is
presented in Table 1. Dataset B, the colon polyp biopsy dataset,
included 100 cases composed of five categories: hyperplastic
polyp (HP), sessile serrated adenoma (SSA), tubular adenoma
with low-grade dysplasia (TA), tubular adenoma with high-grade
dysplasia (HGD), and adenocarcinoma (Ca). Each disease type
was represented by a snapshot from the same area obtained
using a microscopy imaging system alongside a patch from a
whole slide image (WSI). Dataset B was collected from Sir Run
Run Shaw Hospital, Zhejiang University School of Medicine.
All photomicrographs were validated by two pathologists. The
snapshots under microscopy were captured using a scientific
imaging system (BGIMAGING C20). Additionally, WSIs were
scanned at a magnification of 40× (0.20 µm pixel-1) using a
digital pathology scanner (SQS120P, Shengqiang Technology). In
order to maintain consistency in image size and detail resolution
across different imaging modalities, patches were initially cropped
from WSIs at a 2.5× magnification with dimensions of 300 × 300
pixels. For micrographs, images were originally cropped at a size
of 524 × 524 pixels at the same magnification and subsequently
resized to 300 × 300 pixels to ensure uniformity in resolution and
compatibility across all datasets. These preprocessing steps were
designed to standardize the input images for consistent analysis and
fair comparison. Given that pathologists primarily use microscopes
for daily diagnosis, the study predominantly tested images from
micrographs, with WSI patches used for comparative purposes.
The study was approved by the internal ethics committee of the
Sir Run Run Shaw Hospital (Approval NO. 20230043). Sensitive

1 https://www.pathologyoutlines.com/

Frontiers in Medicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2024.1507203
https://www.pathologyoutlines.com/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-11-1507203 January 20, 2025 Time: 17:16 # 3

Ding et al. 10.3389/fmed.2024.1507203

TABLE 1 Distribution of pathology images by organ in dataset A.

Number of
images

Normal/
Tumor

Tumor type

Adrenal gland 3 3/0 None

Appendix 2 1/1 Mucinous
adenocarcinoma

Bladder 3 2/1 Mucinous
adenocarcinoma

Bone 3 3/0 None

Bone marrow 3 2/1 Aplastic anemia

Breast 3 3/0 None

Cervix 4 2/2 High-grade
squamous
intraepithelial
lesion

Brain 2 1/1 Meningioma

Colon 4 1/3 Adenocarcinoma

Lung 4 1/3 Adenocarcinoma

Liver 2 1/1 Hepatocellular
carcinoma

Pancreas 3 2/1 Adenocarcinoma

Prostate 2 1/1 Adenocarcinoma

Skin 1 1/0 None

Thyroid 3 1/2 Papillary thyroid
carcinoma

Stomach 2 1/1 Hyperplastic
polyps

Total 44 26/18

information such as the patient’s name, medical record number, and
ID number were removed.

2.2 Histological diagnosis and
consistency assessment

A classic GPT-4 was utilized to analyze a representative
photomicrograph from each organ on two separate occasions,
first in January 2024 and again in July 2024, using consistent
prompts. For normal histology images, the prompt was: “This is
a H&E-stained section. What organ is this tissue section from?”
For tumor pathology images, the prompt was modified to “This
is a pathological image of [specified organ]. Is this a tumor? If
so, what kind of tumor is it?” The microscopic descriptions and
diagnoses for each image were provided by two residents, Z.Z. and
K.S., with 12 months of training in pathology, and two fellows of the
pathology department, L.F. and M.S., each with over 48 months of
experience. Pathologists were informed with the same prompts but
were not made aware of the evaluation criteria. Responses of GPT-
4 and the pathologists were evaluated based on a scoring system:
score 0 indicated that the correct diagnosis was not mentioned;
score 1 indicated that the response included information related
to the correct diagnosis; score 2 indicated an exact match with the
correct diagnosis.

2.3 GPT-4 for polyp biopsy classification

To classify HP, SSA, and TA using GPT-4, we employed
the prompt: “What polyp is this? Sessile serrated adenoma
(SSA), tubular adenoma, or hyperplastic polyps? Just give me
the conclusion, no description is needed.” This prompt was
designed to elicit concise classification responses from GPT-4
without additional descriptive content. Furthermore, we provided
specific instructions to GPT-4 to enhance its responses with a
focus on delivering precise diagnoses for pathological images
of low-grade dysplasia (LGD), high-grade dysplasia (HGD), and
adenocarcinoma. The instructions were as follows: “This GPT
model can classify pathology images into low-grade dysplasia
(LGD) and high-grade intraepithelial neoplasia (HGD). It does not
provide any description, and only returns the binary classification
result”; “This GPT model can classify pathology images into high-
grade intraepithelial neoplasia (HGD) and adenocarcinoma. It
does not provide any description, and only returns the binary
classification result.”

2.4 Statistical analysis

The accuracy of tissue detection and polyp classification
was determined using pathologist-driven consensus diagnoses
as the gold standard. All microscopic diagnoses and additional
descriptions generated by GPT-4 were further assessed by
pathologists. The mean diagnostic scores for GPT-4 and each
pathologist were calculated as provided. Parametric tests were
employed to compare GPT-4’s performance at different time
points. To assess the reliability of GPT-4’s performance, Cohen’s
Kappa coefficient and Intraclass Correlation (ICC) were utilized.
Statistical significance was established at a p-value of less than 0.05,
ensuring a comprehensive and rigorous evaluation of the study’s
findings. Statistical analyses were performed using Prism (version
10.3.0) and ChatGPT-4 (OpenAI, San Francisco, California, USA).
The performance metrics including specificity, sensitivity, Positive
Predictive Value (PPV), Negative Predictive Value (NPV), F1-
score, and accuracy were calculated by Python (3.12.2) and are
presented within the context of a confusion matrix, comprising
True Positives (TP), True Negatives (TN), False Positives (FP), and
False Negatives (FN).

Specificity: Measures the proportion of actual negatives that are
correctly identified.

Specificity =
TN

TN+FP
(1)

Sensitivity (also called Recall or True Positive Rate): Measures
the proportion of actual positives that are correctly identified.

Sensitivity =
TP

TP+FN
(2)

Positive Predictive Value (PPV): Measures the proportion
of positive identifications that are actually correct, also
called Precision.

PPV =
TP

TP+FP
(3)
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Negative Predictive Value (NPV): Measures the proportion of
negative identifications that are actually correct.

NPV =
TN

TN+FN
(4)

F1-score: The harmonic mean of precision (PPV)
and sensitivity.

F1−score = 2 ×
PPV × Sensitivity
PPV+ Sensitivity

(5)

Accuracy: Measures the proportion of all correct predictions.

Accuracy =
TP + TN

TP+ TN+ FP+ FN
(6)

3 Results

3.1 Capability of GPT-4 versus pathology
residents in distinguishing tissue sources

We evaluated the performance of GPT-4 in identifying
tissue origins using the same prompt on two separate occasions
and similarly assessed the diagnostic capabilities of resident
and experienced pathologists. Basic information of the image
like age, race, sex, and ethnicity were excluded during the
evaluation. The mean score of each organ is depicted in a
heatmap (Figure 1A), which suggests that GPT-4 may possess
notable capabilities in histology recognition. However, when
compared to resident pathologists, GPT-4 demonstrated relatively
lower accuracy in determine the tissue source (Figure 1B).
Notably, the second evaluation of GPT-4 showed significant
improvement over the initial results, indicating that the model’s
performance has enhanced over time, particularly in tumor
diagnosis. We also observed that specifying gender in the
prompts when identifying normal tissues of the breast and
prostate significantly increases the accuracy of GPT-4; without
this specification, GPT-4 tended to misidentify breast tissue
as prostate and vice versa. This highlights the importance of
precise and accurate prompting in achieving reliable diagnostic
results. Factors like age, race, and ethnicity were excluded in the
prompt.

3.2 Classification of colorectal polyps
using GPT-4

For the classification of hyperplastic polyps (HP), sessile
serrated adenomas (SSA), and tubular adenomas (TA), each image
was uploaded with the prompt: “What polyp is this? Sessile
serrated adenoma (SSA) or tubular adenoma or Hyperplastic
polyps? Just give me the conclusion, no description is needed.”
The confusion matrices for the two evaluations are presented
separately in Figures 2A, B. The second evaluation of GPT-
4 (GPT-4 2nd) generally outperformed the first time (GPT-
4 1st) across the metrics, particularly in the identification

of TA (Table 2). The accuracy for TA reached 0.75 with
a sensitivity of 0.70. The overall performance of GPT-4 in
polyp classification has improved due to its update between the
two tests. However, both models demonstrated limitations in
accurately distinguishing between SSA and HP, which exhibit
high morphological similarity, particularly in their early stages.
For example, SSA typically presents with a serrated glandular
arrangement, while HP shows a more regular glandular pattern.
These differences can be subtle, especially in cases where the
image is small or the image quality is poor, GPT4 may fail to
distinguish these small differences effectively. Figure 2C illustrates
histopathological instances where the model incorrectly classified
TA as SSA twice, highlighting the morphological features such
as the elongated crypt that may have contributed to error.
Figure 2D displays histopathological images where the model
incorrectly predicted TA in cases that were actually HP and
SSA. These examples underscore the ongoing challenges in
distinguishing these polyp subtypes accurately. The performance
of the model heavily depends on the quality and diversity of
the training dataset. If the dataset lacks diversity or does not
include sufficient samples of the colon polyps, the model may
struggle to accurately distinguish between these similar lesions.
Further development and fine-tuning of the model are required
before it can be reliably applied in clinical settings for polyp
classification.

3.3 Differential diagnosis of LGD, HGD
and adenocarcinoma

We evaluated GPT-4’s capacity to distinguish between
low-grade dysplasia (LGD), high-grade dysplasia (HGD), and
adenocarcinoma by employing a binary classification approach
in two stages: LGD vs. HGD, and HGD vs. adenocarcinoma. This
approach was chosen due to the morphological similarities
among these conditions, which pose inherent challenges
for accurate diagnosis in biopsy samples. The confusion
matrices for the second evaluation of GPT-4, showing LGD
vs. HGD and HGD vs. adenocarcinoma, are displayed in
Figures 3A, B, respectively. The performance of GPT-4 in
LGD vs. HGD is satisfied with an accuracy of 0.88 and a
sensitivity of 0.9. Our analysis also revealed high accuracy
and sensitivity in diagnosing adenocarcinoma. However,
the specificity was moderate at 0.50, indicating that the
model erroneously diagnosed half of the actual HGD cases
as adenocarcinoma. Overall, GPT-4 achieved an accuracy
of 0.75–0.88 and an F1-Score of 0.8–0.88, in the differential
diagnosis of LGD, HGD, and adenocarcinoma (Table 3).
Images incorrectly classified as adenocarcinoma are displayed
in Figure 3C, highlighting the visual features that may have
contributed to the misclassifications. Additionally, we tested the
consistency of GPT-4’s analyses on images obtained from both
micrograph and WSI patches of the same areas, as illustrated
in Figure 3D. Our findings indicate that only 2 out of 40
images demonstrated inconsistencies between conclusions
derived from WSI and microscope photography. This suggests
that GPT-4 maintains good consistency across different image
formats.
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FIGURE 1

The performance of GPT-4 and pathologists in general image recognition. (A) Heatmap depicting average scores across various organs.
(B) Accuracy metrics with statistically significant differences indicated by a paired t-test (**p < 0.01).

3.4 Consistency of GPT-4

Both the Intraclass Correlation (ICC) and Cohen’s Kappa
coefficient were used to quantitatively assess the consistency of
GPT-4 answers across different time points. Table 4 displays the
consistency of GPT-4 in detecting the origin of tissues, classifying
various types of polyps, and identifying HGD and Ca. The Cohen’s
Kappa value for the detection of tissue origin between the first
and second assessments by GPT-4 is approximately 0.315, which
indicates a moderate level of agreement. For polyp classification,
the overall Cohen’s Kappa value is 0.204, denoting slight agreement
and highlighting GPT-4’s low reliability in this task. The ICC for
polyp classification is 0.152, further confirming the low level of
consistency. In the categories of HGD and Ca, Cohen’s Kappa value
is 0.375, indicating a fair level of agreement. The ICC stands at
0.543, demonstrating a reasonably good level of consistency, with
ICC values suggesting a somewhat higher degree of agreement than
those indicated by Cohen’s Kappa. The variations in consistency
metrics may result from updates to GPT-4 and its varying
understanding of specific tasks. While the model performs better
in identifying HGD and carcinoma, its lower consistency in polyp
classification highlights the complexity of the task and potential
limitations in its training data.

4 Discussion

This study highlights the capabilities of GPT-4 in general
pathological diagnosis and specifically in the classification of colon
biopsies. While GPT-4 achieved a diagnostic accuracy of 0.64
for general pathology images, which is below that of resident
pathologists. As for the classification of the TA, SSA, and HP,
GPT-4 identified TA with a relatively high accuracy of 0.75.
The SSA and HP are unreliable and have comparatively low
accuracy as diagnostic references. Notably, GPT-4 demonstrated
high sensitivity in the classification of adenocarcinomas, indicating
its potential utility in specific cancer diagnostic contexts. As a large

language model, GPT-4 shows an inherent capacity to recognize
pathology images, with an overall performance that has improved
from previous versions. It may lead to lower the consistency of
its responses over different time points. However, the diagnose
agreement is low in categories like SSA, HP, and HGD.

In the field of pathological artificial intelligence, the main
research direction is to train specific models based on WSIs for
specific purposes, including image classification (19), mutation
prediction (20, 21), therapy response prediction (22), and survival
prediction (23). As LLMs have developed, they can now process
images and videos in addition to text. The process of GPT analyzing
an image involves extracting key features like colors, shapes,
and textures, and then comparing them against a database of
known patterns. The model uses probabilistic inference to identify
the most likely objects or concepts represented in the image.
Finally, it generates a coherent description based on the highest
probability match (24–26). Compared to GPT, a custom deep
learning-based classification model is specifically trained on task-
relevant data, leading to potentially higher accuracy and better
adaptation to specific image classification tasks. For colon lesions
classification including adenocarcinoma, TA, traditional serrated
adenoma (TSA), SSA, and HP, the mean diagnostic accuracy
was 97.3% by DenseNet-161 and 95.9% by EfficientNet-B7 (27).
And the AUCs of SSA and HP were over 0.99. In our study,
the accuracy of HP and SSA classification is only 0.57 and 0.62.
The specialized classification models achieve significantly higher
diagnostic accuracy and AUCs, compared to the performance of
large general models. However, the strength of large models lies in
their versatility and ability to handle diverse tasks beyond narrowly
defined classification, making them more adaptable to broader
applications in clinical practice. We hope that a broad diagnosis
made by histopathology will be even more accurate, probably
coming in close to the pathology residents.

Recent advancements in generative artificial intelligence
have significantly revolutionized the field of computational
pathology, enhancing its efficacy across various diagnostic tasks.
The Pathology Language–Image Pretraining (PLIP) model was
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FIGURE 2

Comparison of GPT-4 performance and misclassification in histopathological image analysis of colorectal polyps. (A) Confusion matrix heatmap of
GPT-4 model in the first evaluation and (B) the second evaluation. (C) The miss classified image of TA into SSA in both evaluations. (D) Display
histopathological images where the model predicted TA for cases that were actually HP and SSA.

TABLE 2 Comparison of GPT-4 performance across different testing rounds.

TA_1st TA_2nd SSA/P_1st SSA/P_2nd HP_1st HP_2nd

Sensitivity 0.45 0.7 0.35 0.35 0.4 0.35

Specificity 0.775 0.775 0.675 0.675 0.65 0.75

PPV 0.5 0.61 0.35 0.35 0.36 0.41

NPV 0.74 0.84 0.675 0.675 0.68 0.7

Accuracy 0.67 0.75 0.57 0.57 0.57 0.62

F1-score 0.47 0.65 0.35 0.35 0.38 0.38

HP, hyperplastic polyp; SSA, sessile serrated adenoma; TA, tubular adenoma; sensitivity; PPV, Positive Predictive Value; NPV, Negative Predictive Value.

developed using publicly available medical data to improve
diagnostic accuracy, facilitate knowledge sharing, and support
educational initiatives (28). Furthermore, the Virchow model, a
comprehensive foundation model, facilitates pan-cancer detection
with an impressive specimen-level area under the curve of 0.95

across sixteen cancers (29). Chen and colleagues introduced UNI,
a general-purpose self-supervised model capable of resolution-
agnostic tissue classification and identifying up to 108 cancer
types (30). Additionally, PLUTO was trained on millions of
image patches, and incorporating diverse data sources such as
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FIGURE 3

Classification performance on low-grade dysplasia (LGD), high-grade dysplasia (HGD), and adenocarcinoma (Ca) by GPT-4. (A) Confusion matrix of
GPT-4 in LGD and HGD. (B) Confusion matrix of GPT-4 in LGD and adenocarcinoma. (C) The miss classified images of HGD as Ca. (D) Comparative
images from micrograph and WSI patches.

genomic information, significantly enhances performance in tasks
like cancer detection and molecular prediction (31). These models
not only enhance diagnostic precision but also reduce the time
and resources required for model development, paving the way for
expanded clinical applications. However, the availability of these
large pathology models is currently limited mostly to academic
publications, and many are not yet open-sourced. Lu and colleagues
presented PathChat, a vision-language generalist AI assistant for
human pathology. In comparison tests, PathChat outperformed
GPT-4 with 26.4% improvement on the open-ended questions and
more specialization in pathology (32).

The consistency in the performance of GPT-4, as assessed
through statistical measures such as Cohen’s Kappa and Intraclass
Correlation, indicates moderate reliability and agreement. Our
results differ from previous studies demonstrating relatively
low consistency of the answers generated by GPT in colorectal
adenoma classification (33). Model upgrades, various prompts,
and the quantity of concurrent classifications are all potential
causes. By analyzing both WSI patches and photomicrographs,
GPT-4 demonstrates flexibility and adaptability to various image

TABLE 3 Comparative performance of GPT-4 on LGD, HGD
and adenocarcinoma.

LGD vs. HGD HGD vs.
adenocarcinoma

GPT-4 2nd GPT-4 2nd

Sensitivity 0.9 1

Specificity 0.85 0.5

PPV 0.86 0.67

NPV 0.89 1

Accuracy 0.88 0.75

F1-Score 0.88 0.8

LGD, low-grade dysplasia; HGD, high-grade dysplasia; PPV, Positive Predictive Value; NPV,
Negative Predictive Value.

formats commonly used in clinical settings. This capability could
be integrated into pathology workflows to provide immediate
preliminary diagnoses, flagging suspicious areas on slides for
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TABLE 4 GPT-4 consistency at two evaluation points.

Kappa ICC

Tissues origin 0.315 0.428

Polyp classification 0.204 0.152

HGD and Ca
classification

0.375 0.543

Kappa, Cohen’s Kappa; ICC, Intraclass Correlation.

further examination by pathologists. These variabilities in
performance across different tasks and over time suggests that
while GPT-4 can serve as a valuable tool in histopathological
assessments, the application in clinical settings should be managed
with expert oversight and continuous model refinement to ensure
reliability and accuracy. Such an approach could reduce diagnostic
turnaround times, especially in settings with high caseloads or
limited access to expert pathologists.

While our study demonstrates the potential of AI in polyp
classification, several challenges remain for clinical adoption.
Ethical approval is critical, particularly ensuring transparency in
AI decision-making and addressing potential biases. For instance,
biases in training data can lead to disparities in model performance,
which may affect clinical reliability. During image test process,
we noticed differences between the outcomes of testing on
a web page and the outcomes of calling the API; the web-
based interface demonstrated superior accuracy. Furthermore,
the system’s response time grew longer and occasionally failed
to respond as the number of photographs increased which was
more common in previous versions. Moreover, when GPT-4
processed up to 10 images simultaneously, there was a noticeable
decline in classification accuracy compared to processing images
individually. Additionally, continuous image processing might
introduce more noise or variability into the data, heightening the
risk of system overload. This can lead to decreased responsiveness
or even system crashes.

There are some limitations to this study. First, it tested only
a limited number of organ histology images and common tumor
pathology images, resulting in narrow coverage. Second, only small
patches of images of polyps were uploaded as inputs, which may
not adequately represent typical pathology features. Additionally,
the prompts used for the images were quite simplistic and lacked
detailed background information, such as tumor size, that is
typically available in pathology diagnostics. Future research should
explore how to integrate the recognition capabilities of LLMs into
the daily workflow of pathologists. Pathchat, for instance, allows for
the analysis of images captured under the microscope using mobile
phones and provides immediate results (32). Special attention
must be given to patient privacy when employing LLMs in the
medical field. In this study, all patient data were anonymized and
handled in accordance with institutional and regulatory guidelines
to protect patient privacy. However, integrating LLMs models
into real-world clinical workflows requires rigorous protocols to
ensure secure data sharing, especially when dealing with sensitive
medical information.

This study demonstrated the capabilities of GPT-4 in detecting
and classifying pathological images, showing an enhanced ability
to recognize tissue origins compared to previous versions. The
potential of GPT-4 as a supportive tool in pathology was

highlighted, suggesting the possibility of its integration into
diagnostic workflows. GPT’s reliability remains a significant
barrier to adoption. Ensuring consistent results across diverse
clinical settings will require further validation on larger, multi-
center datasets.
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