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2-deoxy-2-[18F]-fluoro-D-glucose (2-[18F]FDG) positron emission tomography/
computed tomography (PET/CT) plays a crucial role in the management of 
lymphoma in different settings, such as staging disease, assessing response to 
therapy, predicting prognosis, and planning RT. Beside visual analysis, several 
semiquantitative parameters were introduced to study lymphoma with promising 
results. These parameters can represent different disease characteristics, like 
body composition (such as sarcopenic index), dissemination of disease (Dmax), 
tumor burden (including metabolic tumor volume) and texture features. All these 
parameters showed promising results, especially in terms of prognosis (progression 
free survival and overall survival), but lack of standardization and shared methodology 
remains a big issue. Advances in PET-based biomarkers are on the horizon, yet their 
integration into clinical decision-making is currently hindered by methodological 
limitations that require resolution through confirmatory prospective validation in 
specific patient groups. This review highlights studies demonstrating the prognostic 
and predictive value of these semiquantitative parameters in lymphoma, while 
also discussing their potential applicability in clinical practice.
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1 Introduction

Lymphoma is a heterogeneous group of tumors of the hematopoietic and lymphoid tissue, 
divided in two main categories: Hodgkin Lymphoma (HL) and non-Hodgkin Lymphoma 
(NHL). NHL consist of 90% of all lymphoma. Lymphoma represents approximately 5% of all 
malignancies. Lymphoma can be aggressive or indolent according to the main histological 
features and treatments are directly related to their aggressiveness. 2-deoxy-2-[18F]-fluoro-D-
glucose (2-[18F]FDG) positron emission tomography/computed tomography (PET/CT) is a 
hybrid imaging tool that has recently experienced a wide increase in its use and applications. 
2-[18F]FDG exploits the capacity to detect lesions with high activity based on their increased 
glycolytic metabolism. The role of 2-[18F]FDG PET/CT in lymphoma is well established with 
strong evidence in staging disease and evaluation of treatment response in FDG-avid 
lymphoma, which for definition are considered HL, Follicular Lymphoma (FL) and Diffuse 
Large B cell Lymphoma (DLBCL) (1, 2). Recent data described the potential usefulness of 
2-[18F]FDG PET/CT also in other less studied lymphoma variants, like Mantle cell lymphoma 
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(MCL) (3), Burkitt Lymphoma (BL) (4) and Marginal Lymphoma (5). 
Moreover, a prognostic impact of PET/CT features was demonstrated 
both for progression-free survival (PFS) and overall survival (OS) (6). 
In 2014, a multidisciplinary panel of lymphoma experts established 
the Lugano criteria, which include the previously developed 5-point 
scale (5-PS), known as the Deauville score. This scale relies on the 
visual evaluation of FDG uptake in the reference lesion, compared to 
reference organs such as the liver and mediastinum, to assess 
treatment response (7, 8). This visual score quickly acquired universal 
acceptance and was commonly incorporated for response assessment 
in clinical practice and as a surrogate endpoint in clinical trials. 
However, more recently some semiquantitative parameters derived 
from PET or CT images were studied with promising findings, 
especially in the prognostic field. These biomarkers are derived from 
PET/CT scans, which are processed using molecular imaging 
algorithms and then transformed into quantitative variables (9). These 
variables encompass various disease characteristics, including volume, 
represented as metabolic tumor volume (MTV), which is typically 
defined as the hypermetabolic tumor burden; features of 
dissemination, such as Dmax, which measures the distance between 
areas of increased uptake; and skeletal muscle status, often described 
in terms of sarcopenic features or image texture. Despite extensive 
development efforts, these semiquantitative PET-based biomarkers 
remain largely excluded from risk-adapted treatment approaches and 
are limited only in the research field. The aim of this narrative review 
is to resume the most relevant applications and findings of these 
PET-metrics in lymphoma, underlying their strengths and limitations, 
as well as recent efforts to implement PET/CT-based metrics as 
promising tools for precision medicine.

2 Sarcopenia

2.1 Definition and background

The term sarcopenia was first coined by Irwin Rosenberg in 1988 
with this definition: a syndrome characterized by progressive and 
generalized loss of skeletal muscle mass (SMM) and strength, associated 
with adverse outcomes like physical disability, poor quality of life and 
death (10). Although primarily associated with aging, sarcopenia is 
also prevalent in pathological conditions like inflammatory diseases, 
endocrine disorders, chronic illnesses and nutritional deficiencies 
(11). In 2019, the European Working Group on Sarcopenia in Older 
People (EWGSOP2) established 3 diagnostic criteria: decreased 
muscle quality or quantity, decreased muscle strength and decreased 
physical performance (12). Skeletal muscle (SM), which accounts 
approximately for half of total body mass plays several crucial 
functions, like locomotion and homeostase. SM cells product many 
specific cytokines, named myokines, which have paramount paracrine 
and endocrine activities (13, 14). Besides, some of these cytokines 
may have antineoplastic effects. Consequently, sarcopenia is 
considered a poor prognostic marker in many oncological diseases. It 
is associated with poor prognosis, expressed as PFS or OS, and with 
increased drug-related toxicities (15). There is substantial evidence 
supporting the role of sarcopenia in predicting prognosis in 
hematologic malignancies, particularly in lymphoma (16–19). 
Therefore, it is essential to assess sarcopenia using precise and 
reproducible methods.

2.2 Technical characteristics

Over time, various imaging techniques have been explored for 
diagnosing sarcopenia, each with distinct characteristics regarding 
availability, cost, and ease of implementation. These include the grip 
test, which uses a calibrated hand-held dynamometer to assess muscle 
strength; the short physical performance battery to evaluate physical 
function; and computed tomography (CT)/magnetic resonance 
imaging (MRI), which provide quantitative estimates of muscle and 
fat tissue areas (12). CT and MRI are considered the best tools for 
these measurements due to their ability to differentiate fat from other 
soft tissues of the body, like muscle.

First, Shen et al. (20) reported that a single cross-sectional image 
at the level of the third lumbar vertebral accurately represents total 
body muscle mass. Then, Mourtzakis et al. (21) validated this method 
among oncological patients using CT images as a reference. Since 
then, many authors studied the clinical impact of decreased skeletal 
muscle mass as the representation of sarcopenia state.

2.3 Main results in lymphoma

A total of 38 studies accounting for 6,006 patients analyzed the 
role of sarcopenia measured by CT in lymphoma (22–59) (Table 1). 
The most common lymphoma histotype studied was DLBCL, followed 
by HL and MCL. The rate of sarcopenia reported was very 
heterogeneous ranging from 16 to 73% and dependent to the 
heterogeneous nature of the population analyzed. Now, CT is 
considered the ideal tool for the measurements of sarcopenia and 
muscle measurement at the level of the third lumbar vertebra (L3) the 
most frequent site for this kind of analysis. The procedure consists of 
the use of cross-sectional area to measure psoas muscle and/or 
paravertebral lumbar muscles with specific software (Figure 1). For 
estimating sarcopenia, in most cases “high-dose” CT was chosen as 
imaging technique (22–33, 35, 37, 38, 40–44, 50–55, 58, 59), while in 
more recent studies a combination of high-dose CT and low- dose CT 
of PET was utilized (34, 36, 39, 46, 56), and in other only low- dose 
CT of PET (45, 47–49, 57). The CT component of hybrid PET/CT is 
utilized to correct attenuation in PET emission data and to ensure 
precise anatomical localization of radiotracer uptake seen in the PET 
images. In the context of lymphoma, the potential to apply PET/CT 
for sarcopenic assessment may streamline the process, as FDG PET/
CT offers enhanced diagnostic accuracy in staging both nodal and 
extranodal disease when compared to CT alone. In comparative 
research high-dose CT and the CT component of PET/CT 
demonstrated to be accurate and reproducible in calculating the extent 
of skeletal muscle mass and adipose tissue (60). In addition to L3, 
some authors measured skeletal muscle mass in different anatomical 
sites, like the fourth thoracic vertebra (T4) (37), pectoralis muscle (31, 
35) or the proximal thigh (45). The most commonly assessed 
parameter representing sarcopenia was the skeletal muscle index 
(SMI) expressed as cm2/m2, which usually represents the sum of areas 
of skeletal muscles in an axial slice region normalized for height. The 
muscles present at the L3 are psoas, abdominal transverse rectum, 
paraspinal, external, and internal oblique muscles. Some authors 
measured (24, 42, 44) only psoas areas and the subsequent parameter 
extracted was defined as the psoas muscle index (PMI). One of the 
open issues present in the literature is the presence of different 
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TABLE 1 The main technical and clinical features.

First author (ref) Year Country Study 
design

N° patients 
included

Female (%) Mean/
median 
(range)

Lymphoma 
histotype

Treatment N° patients with 
sarcopenia (%)

Camus V (22) 2014 France R 80 45 (56%) 78.66 (68–93) DLBCL R-CHOP (n = 44)

R-miniCHOP (n = 36)

44 (55%)

Lanic H (23) 2014 France R 82 46 (56%) 78 (68–93) DLBCL R-CHOP 8 (n = 45)

R-miniCHOP (n = 37)

45 (55%)

Caram MV (24) 2015 United States of America P 121 48 (40%) 53 (21–74) DLBCL (n = 53)

MCL (n = 33)

HL (n = 17)

FL (n = 5)

other (n = 13)

HSCT na

Nakamura N (25) 2015 Japan R 207 86 (42%) 67 (19–86) DLBCL R-CHOP (n = 116)

R-THP-COP (n = 91)

115 (56%)

Xiao DY (26) 2016 United States of America R 522 12 (2%) 64 DLBCL CHOP +/− R 245 (47%)

Xiao DY (27) 2016 United States of America R 342 11 (3%) 63.4 DLBCL CHOP +/− R na

Go S (28) 2016 Korea R 187 75 (40%) (17–89) DLBCL R-CHOP 46 (24%)

Karmali R (29) 2017 United States of America R 86 46 (53%) 64 DLBCL (n = 76)

MCL (n = 10)

R-CHOP (n = 67)

DA-EPOCH (n = 7)

mixed (n = 12)

43 (50%)

Chu MP (30) 2017 Canada R 224 99 (49%) 62(21–88) DLBCL R-CHOP 116 (52%)

Go S (31) 2017 Korea R 193 81 (42%) (21–86) DLBCL R-CHOP 77 (40%)

Jabbour J (32) 2018 Lebanon R 93 41 (44%) 38 (17–70) HL (n = 45)

NHL (mixed T and B 

cell) (n = 48)

HSCT na

DeFilipp Z (33) 2018 United States of America R 315 127 (41%) 55 (19–77) NHL B cell (n = 224)

NHL T cell(n = 64)

HL (n = 27)

HSCT 155 (49%)

Burkart M (34) 2019 United States of America R 109 56 (51%) nr DLBCL (n = 89)

MCL (n = 18)

BL (n = 2)

chemotherapy 65 (60%)

Go S (35) 2020 Korea R 228 98 (43%) (21–88) DLBCL R-CHOP 100 (45%)

Lin RJ (36) 2020 United States of America R 146 44 (30%) 61 (50–79) NHL (n = 138)

HL (n = 8)

HSCT 80 (55%)

(Continued)
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TABLE 1 (Continued)

First author (ref) Year Country Study 
design

N° patients 
included

Female (%) Mean/
median 
(range)

Lymphoma 
histotype

Treatment N° patients with 
sarcopenia (%)

Mishra S (37) 2020 United States of America R 296 135 (46%) 52.4 NHL (n = 165)

HL (n = 14)

other (n = 117)

HSCT 182 (61%)

Rier HN (38) 2020 Netherlands R 164 84 (52%) 64.5 DLBCL R-CHOP 80 (49%)

Armenian SH (39) 2020 United States of America R 320 122 (38%) 53.3 (18.5–

78.1)

DLBCL (n = 133)

HL (n = 84)

MCL (n = 50)

FL (n = 24)

T-cell L (n = 21)

other (n = 8)

HSCT 84 (26%)

Bas V (40) 2021 Turkey R 59 25(42%) 39.5 (20–73) HL ABVD na

Lucjanic M (41) 2021 Croatia R 49 24(49%) 36 HL ABVD (n = 38)

eBEACOP (n = 11)

na

Hirota K (42) 2021 Japan R 40 16 (40%) 58 (80–74) malignant lymphoma HSCT na

Guo J (43) 2021 China R 201 87 (43%) 56.9 DLBCL R-CHOP na

Iltar U (44) 2021 Turkey R 120 54 (45%) 56.1 (52–68) DLBCL R-CHOP 65 (54%)

Besutti G (45) 2021 Italy R 116 56 (48%) 63.7 DLBCL R-CHOP (n = 70)

R-mini CHOP (n = 18)

R-MACOP-B (n = 9)

R-CVP (n = 5)

R-CODOX-M/R-IVAC (n = 3)

EPOCH-R (n = 3)

29 (25%)

Zilioli V (46) 2021 Italy R 154 76 (49%) 71 HL ABVD (n = 117)

mixed (n = 31)

RT alone (n = 5)

113 (73%)

Albano D (47) 2022 Italy R 88 47 (53%) 72.8 (65–91) HL ABVD (n = 63)

mixed (n = 25)

58 (66%)

Albano D (48) 2022 Italy R 53 14 (27%) 72.7 (66–88) MCL R-BAC (n = 22)

R-CHOP (n = 10)

other (n = 21)

32 (60%)

(Continued)
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TABLE 1 (Continued)

First author (ref) Year Country Study 
design

N° patients 
included

Female (%) Mean/
median 
(range)

Lymphoma 
histotype

Treatment N° patients with 
sarcopenia (%)

Tan X (49) 2022 China R 14 35 (29%) 26 (3–64, 161, 

162)

T-LBL chemotherapy + intratecal 

therapy (n = 31)

chemotherapy + HSCT (n = 12)

chemotherapy + RT (n = 2)

18 (37%)

Penichoux J (50) 2023 France P 95 48 (51%) 78.4 (70–92) DLBCL R-CHOP (n = 54)

R-miniCHOP (n = 40)

53 (56%)

Go S-I (51) 2023 Korea R 305 180 (59%) 66.5 (50–75) DLBCL R-CHOP 91 (42%)

Liao PH (52) 2023 Taiwan R 67 30 (45%) 77.4 (70–91) DLBCL R-CHOP

Aleixo GFP (53) 2023 United States of America R 264 91 (34%) 59 (21–78) NHL HSCT 124 (47%)

Chen Y (54) 2023 China R 181 82 (45%) 60 (22–83) DLBCL R-CHOP 75 (41%)

Rejeski K (55) 2023 Germany R 106 40 (36%) 64 (19–83) DLBCL Car-T cell therapy na

Sumransub N (56) 2023 United States of America R 78 27 (35%) 58.9 (16.8–72) DLBCL (n = 30)

MCL (n = 26)

HL (n = 13)

Other(n = 9)

HSCT 27 (35%)

Tan X (57) 2024 China R 103 53 (52%) 54 (21–76) DLBCL R-CHOP 30 (29%)

Surov A (58) 2024 Germany R 61 29 (48%) 63.8 (23–81) PCNSL chemotherapy + RT na

Niiyama-Uchibori Y (59) 2024 Japan R 102 44 (43%) 80 (75–92) DLBCL R-CHOP, R-CHP, R-CVP 16 (16%)

BL, Burkitt lymphoma; DLBCL, diffuse large B cell lymphoma; FL, follicular lymphoma; HL, Hodgkin lymphoma; HSCT, hematopoietic stem cell transplantation; M, male; MCL, mantle cell lymphoma; na, not available; P, prospective; PCNSL, primary central nervous 
system lymphoma; R, retrospective; RT, radiotherapy; T-LBL, T-cell lymphoblastic lymphoma.
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thresholds of SMI for the definition of sarcopenia and these cut-offs 
are dependent on gender and body mass index (36, 39, 45, 52). As 
shown in Table 2, the most commonly used threshold for L3 SMI was 
55.8 cm2/m2 for males and 38.9 cm2/m2 for females. However, the 
suggested threshold values varied widely, depending on the population 
studied, ranging from 43 cm2/m2 to 56.8 cm2/m2 for men and from 
31 cm2/m2 to 47.4 cm2/m2 for women. For pectoralis muscle SMI, the 
typical cut-off values are 4.4 cm2/m2 for men and 3.1 cm2/m2 for 
women, while for PMI, they are 4.4 cm2/m2 for men and 3.1 cm2/m2 
for women, or 6.36 cm2/m2 for men and 3.92 cm2/m2 for women. In 
general, sarcopenia metrics showed correlations with OS (22, 28, 
30–32, 34–36, 43, 44, 46, 47, 51, 52, 54, 55, 57, 59) and PFS (23, 28, 
30–32, 34–36, 41, 44, 46–48, 51, 52, 54, 57, 59) but in some studies (25, 
29, 38, 39, 45, 49, 50, 53) this correlation was not revealed. Concerning 
treatment response evaluation, only articles investigating DLBCL 
receiving R-CHOP chemotherapy are present (28, 31, 35, 44, 58) and 
show a significant relationship with treatment response. Regarding the 
side effects and toxicities after therapies, seven publications (24, 26, 
28, 31, 33, 39, 43) showed a significant association between sarcopenia 
and these complications.

In addition to CT, interesting data is emerging about the role of 
MRI in measuring skeletal muscle mass in extranodal natural killer/T 
cell lymphoma and PCNSL (61–63). In these studies, sarcopenia 
parameters were measured at the temporal muscle or masticatory 
muscle deriving different thresholds (5.5 cm2/m2), but the findings are 

only preliminary and need more solid evidence. CT is typically 
favored over MRI due to its broad availability, lower cost, and faster 
processing time.

In conclusion, although the studies are heterogeneous, primarily 
retrospective, and show considerable variability in sample size, it can 
be argued that sarcopenia measurement using CT (both high and low 
dose) is a reliable and safe method, often correlated with prognosis. 
While the overall findings on sarcopenia-related imaging features in 
lymphoma are promising, the technical challenges and lack of 
international consensus on defining sarcopenia thresholds impact the 
widespread adoption of this parameter in clinical practice.

2.4 Definition and background

Multiple quantitative metrics obtained from baseline PET/CT, 
such as metabolic tumor volume (MTV) and total lesion glycolysis 
(TLG), appear to be  viable indicators across different lymphoma 
subtypes. Specific studies indicate that a heightened MTV value serves 
as an effective predictor of worse outcomes in lymphoma patients 
(64–66). Enhanced prognostic models may be  developed by 
integrating baseline MTV or TLG with early responses observed in 
interim PET/CT scans. Although the notion of MTV is fundamentally 
straightforward, as it denotes the viable tumor burden, the 
methodology for its measurement remains a subject of debate (67).

FIGURE 1

Two representative cases of patients with no sarcopenia detected by CT images (A,B) and sarcopenia (C,D). In red the measurement of skeletal muscle 
area by the software.
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TABLE 2 The principal technical characteristics of articles published about sarcopenia in lymphoma.

First Author Imaging method Parameters evaluated SMI threshold Outcome survival

Camus V (22) Muscle assessment at the L3 

level using CT images

SMI 55.8 cm2/m2 for men

38.9 cm2/m2 for women

Statistically significant 

correlation with OS

Lanic H (23) Muscle assessment at the L3 

level using CT images

SMI 55.8 cm2/m2 for men

38.9 cm2/m2 for women

Statistically significant 

correlation with OS and PFS

Caram MV (24) Muscle assessment at the L3 

level using CT images

Total psoas area; total psoas index; 

lean psoas area; lean psoas index

100 unit decrease (mm2/m2) Statistically significant 

correlation with readmission 

days and number of 

complications

Nakamura N (25) Muscle assessment at the L3 

level using CT images

SMI 47.1 cm2/m2 for men

34.4 cm2/m2 for women

Not statistically significant 

correlation with OS and PFS in 

whole population. Statistically 

significant correlation with PFS 

in men

Xiao DY (26) Muscle assessment at the L3 

level using CT images

SMI 53 cm2/m2 for men

41 cm2/m2 for women

Statistically significant 

correlation with probability of 

toxicities. Not Statistically 

significant correlation with OS

Xiao DY (27) Muscle assessment at the L3 

level using CT images

SMI 53 cm2/m2 for men

41 cm2/m2 for women

na

Go S (28) Muscle assessment at the L3 

level using CT images

SMI 53 cm2/m2 for men

41 cm2/m2 for women

Statistically significant 

correlation with response to 

treatment, OS, PFS and risk of 

toxicities

Karmali R (29) Muscle assessment at the L3 

level using CT images

SMI; CXI 55.8 cm2/m2 for men

38.9 cm2/m2 for women

No statistically significant 

correlation with OS and PFS

Chu MP (30) Muscle assessment at the L3 

level using CT images

SMI; SMD nr Statistically significant 

correlation with OS and PFS

Go S (31) Muscle assessment at the 

pectoralis muscles and L3 

level using CT images

L3-SMI; PM-SMI 52.4 cm2/m2 for men (L3)

38.5 cm2/m2 for women (L3)

4.4 cm2/m2 for men (PM)

3.1 cm2/m2 for women (PM)

Statistically significant 

correlation with response to 

treatment, OS, PFS and risk of 

toxicities

Jabbour J (32) Muscle assessment at the L3 

level using CT images

SMI 52.4 cm2/m2 for men

38.5 cm2/m2 for women

Statistically significant 

correlated with OS and PFS

DeFilipp Z (33) Muscle assessment at the L3 

level using CT images

SMI 55 cm2/m2 for men

39 cm2/m2 for women

Statistically significant 

correlation with probability of 

toxicities. No statistically 

significant correlation with OS

Burkart M (34) Muscle assessment at the L3 

level using CT or CT of PET 

images

SMI 56.8 cm2/m2 for men

47.4 cm2/m2 for women

Statistically significant 

correlation with OS and PFS in 

male

Go S (35) Muscle assessment at the 

pectoralis muscles and L3 

level using CT images

L3-SMI; PM-SMI 52.4 cm2/m2 for men (L3)

38.5 cm2/m2 for women(L3)

4.4 cm2/m2 for men (PM)

3.1 cm2/m2 for women (PM)

Statistically significant 

correlation with response to 

treatment, OS, PFS and risk of 

toxicities

Lin RJ (36) Muscle assessment at the L3 

level using CT or CT of PET 

images

SMI 43 cm2/m2 for men with 

BMI < 25

41 cm2/m2 for women

53 cm2/m2 for men with 

BMI > 25

Statistically significant 

correlation with OS and PFS

(Continued)

https://doi.org/10.3389/fmed.2024.1515040
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Albano et al. 10.3389/fmed.2024.1515040

Frontiers in Medicine 08 frontiersin.org

TABLE 2 (Continued)

First Author Imaging method Parameters evaluated SMI threshold Outcome survival

Mishra S (37) Muscle assessment at the T4 

and L3 level using CT images

SMI 52.4 cm2/m2 for men

38.5 cm2/m2 for women

na

Rier HN (38) Muscle assessment at the L3 

level using CT images

SMI no cutoff suggested No statistically significant 

correlation with OS and PFS

Armenian SH (39) Muscle assessment at the L3 

level using CT or CT of PET 

images

SMI 43 cm2/m2 for men with 

BMI < 25

41 cm2/m2 for women

53 cm2/m2 for men with 

BMI > 25

No statistically significant 

correlation with OS

Bas V (40) Muscle assessment at the L3 

level using CT images

HU; MTV No cutoff suggested na

Lucjanic M (41) Muscle assessment at the L3 

level using CT images

SMI 5.82 cm2/m2 Statistically significant 

correlation with PFS

Hirota K (42) Psoas muscle assessment at 

the L3 level using CT images

PMI; VFA; SFA 6.36 cm2/m2 for men

3.92 cm2/m2 for women

na

Guo J (43) Muscle assessment at the L3 

level using CT images

SMA; SMD; SMI; SMG SMI 27.55 cm2/m2

SMD 36.86 cm2/m2

SMG 1462

Statistically significant 

correlation with OS and 

probability of toxicities

Iltar U (44) Psoas muscle assessment at 

the L3 level using CT images

PMI 4.4 cm2/m2 for men

3.1 cm2/m2 for women

Statistically significant 

correlation with response to 

treatment, OS and PFS

Besutti G (45) Muscle assessment at the L3 

and proximal thigh level using 

CT of PET images

SMI; SMD 43 cm2/m2 for men with 

BMI < 25

41 cm2/m2 for women

53 cm2/m2 for men with 

BMI > 25

+

52.4 cm2/m2 for men

38.5 cm2/m2 for women

SMI not significantly correlated 

with OS and PFS

SMD significantly correlated 

with OS and PFS

Zilioli V (46) Muscle assessment at the L3 

level using CT or CT of PET 

images

SMI 55 cm2/m2 for men

39 cm2/m2 for women

+

47.1 cm2/m2 for men

34.4 cm2/m2 for women

+

45 cm2/m2 for men

Statistically significant 

correlation with OS and PFS in 

male

Albano D (47) Muscle assessment at the L3 

level using CT of PET images

SMI, ΔSMI 55 cm2/m2 for men

39 cm2/m2 for women

Statistically significant 

correlation with OS and PFS

Albano D (48) Muscle assessment at the L3 

level using CT of PET images

SMI 53 cm2/m2 for men

45.6 cm2/m2 for women

Statistically significant 

correlation with PFS, not with 

OS

Tan X (49) Muscle assessment at the L3 

level using CT of PET images

SMI 44.7 cm2/m2 for men

32.5 cm2/m2 for women

No statistically significant 

correlation with PFS and OS

Penichoux J (50) Muscle assessment at the L3 

level using CT images

SMI 55.8 cm2/m2 for men

38.9 cm2/m2 for women

No statistically significant 

correlation with PFS and OS

Go S-I (51) Muscle assessment at the L3 

level using CT images

SMI 52.4 cm2/m2 for men

38.5 cm2/m2 for women

Statistically significant 

correlation with OS and PFS

(Continued)
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2.5 Technical characteristics

Many methodologies have been introduced to quantify MTV and 
implemented in specific individuals diagnosed with diverse lymphoma 
subtypes. This has led to multiple cut-offs for MTV that distinguish 
between favorable and unfavorable prognostic groupings. To date, the 
most common technique for assessing disease MTV involves the semi-
automatic delineation of lesions, namely regions exhibiting abnormal 
uptake above a predefined threshold (usually 4.0) or percentage of the 
SUVmax of the most active lesion (typically 41% as suggested by EANM 
guidelines). Furthermore, several software applications for the 
automated segmentation of PET scans are being developed to reduce 
interobserver variability and enhance measurement reproducibility. 
Another issue hampering the employment of MTV in clinical practice 
relies on how it is evaluated, since most studies available in the literature 
use it as a categorical variable, although biomarkers predict outcomes 
better as continuous variables (68). Currently, it is not yet clear if used 
MTV as categorical or continuous variable. The standardization of the 
methodology for MTV measurement and its settling in prediction 
models are essential to evaluating the potential significance of this 
variable in the risk classification of lymphoma patients and utilizing it as 
a prognostic factor in clinical practice. Recently, Boellaard et al. (69) 
proposed an international benchmark for total metabolic tumor volume 
measurement in baseline 2-[18F]FDG PET/CT using an automatic 
segmentation method and a predefined threshold for SUV equal to 
4.0 in order to solve any discrepancy between different readers. However, 
the studied that compared the prognostic role of different threshold for 
the measurement of MTV demonstrated similar performances (67). 
TLG is defined as the product of the mean SUV and MTV and has the 

role to assess the entity of uptake normalized for the tumor burden. 
Since TLG is a parameter derived from the calculation of MTV, its value 
is subject to the same issues mentioned for disease volume assessment.

2.6 Main results in lymphoma

Concerning the employment of MTV and TLG in the prognosis 
prediction in adult lymphoma patients, a meta-analysis from Guo 
et al. (70) reported that a high MTV and TLG significantly predicted 
shorter overall survival and progression-free survival in different 
subgroup analyses, including DLBCL, FL, ENKL and HL patients 
(Table 3). In this analysis, despite MTV and TLG being predictors of 
prognosis, MTV showed more gleaming results, suggesting that tumor 
burden is a more reliable instrument for risk stratification irrespective 
of the entity of glucose consumption. This meta-analysis makes one 
concept clear, MTV is a good outcome predictor in DLBCL and other 
lymphoma subtypes, regardless of the measurement method. However, 
the above-mentioned meta-analysis accounts for not negligible 
limitations since nearly all the included studies were retrospective and 
included patients with different lymphoma subtypes submitted to 
different therapeutic protocols (70). The MTV prognostic value was 
confirmed in a large DLBCL patient cohort treated with obinutuzumab 
or R-CHOP in the Phase three REMARC trial, which calculated a 
MTV cut-off of 220 cm3 to identify patients with higher-risk patients 
(71). Moreover, in a recent retrospective study by Mikhaeel et al. (72) 
MTV was identified as an optimal parameter to predict OS and PFS 
in DLBCL patients; as the other studies mentioned, MTV was a 
preferable variable rather than TLG to predict patients’ prognosis. 

TABLE 2 (Continued)

First Author Imaging method Parameters evaluated SMI threshold Outcome survival

Liao PH (52) Muscle assessment at the L3 

level using CT images

SMI 43 cm2/m2 for men with 

BMI < 25

41 cm2/m2 for women

53 cm2/m2 for men with 

BMI > 25

Statistically significant 

correlation with OS and PFS

Aleixo GFP (53) Muscle assessment at the L3 

level using CT images

SMI; SMD, HU 52 cm2/m2 No statistically significant 

correlation with PFS and OS

Chen Y (54) Muscle assessment at the L3 

level using CT images

SMI 44.7 cm2/m2 for men

32.5 cm2/m2 for women

Statistically significant 

correlation with OS and PFS

Rejeski K (55) Muscle assessment at the L3 

level using CT images

SMI, PMI 34.5 cm2/m2 SMI

4.7 cm2/m2 PMI

Statistically significant 

correlation with OS and PFS

Sumransub N (56) Muscle assessment at the L3 

level using CT or CT of PET 

images

SMI 52.4 cm2/m2 for men

38.5 cm2/m2 for women

Statistically significant 

correlation with PFS, not with 

OS

Tan X (57) Muscle assessment at the L3 

level using CT of PET images

SMI, ΔSMI 44.7 cm2/m2 for men

32.5 cm2/m2 for women

Statistically significant 

correlation with OS and PFS

Surov A (58) Muscle assessment at the L3 

level using CT images

SMI 52.4 cm2/m2 for men

38.5 cm2/m2 for women

Statistically significant 

correlation with treatment 

response and risk of toxicities

Niiyama-Uchibori Y (59) Muscle assessment at the L3 

level using CT images

SMI, PMI, ESMI 40.31 cm2/m2 for men

30.88 cm2/m2 for women

Statistically significant 

correlation with OS and PFS

BMI, body mass index; CXI, cachexia index; ESMI, erector spinae muscle index; HU, Hounsfield; L3, third lumbar vertebra; MTV, metabolic tumor volume; OS, overall survival; PET, positron 
emission tomography; PMI, psoas muscle index; PM, pectoral muscle; PFS, progression free survival; SMI, skeletal muscle index; SMD, skeletal muscle density; SMG, skeletal muscle gage; T4, 
fourth thoracic vertebra.

https://doi.org/10.3389/fmed.2024.1515040
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


A
lb

an
o

 et al. 
10

.3
3

8
9

/fm
ed

.2
0

24
.15150

4
0

Fro
n

tie
rs in

 M
e

d
icin

e
10

fro
n

tie
rsin

.o
rg

TABLE 3 Summary of main publications about MTV and TLG role in lymphoma.

Author (ref.) Year Study 
design

No. 
patients

Lymphoma 
subtype

Clinical 
setting

Segmentation 
method

MTV cutoff 
(cm3)

TLG cutoff Main outcomes

Tseng (84) 2012 R 30 HL Staging Visual assessment / / Quantitative interpretation of FDG-PET is a valuable tool to guide the 

functional imaging for Hodgkin’s disease.

Kim (64) 2013 R 20 NK/T-cell Staging SUV > 3.0 14.4 cm3 52.7 High MTV adjusted for the IPI score was the best predictor for OS and PFS

Song (85) 2013 R 127 HL Staging SUV > 2.5 198 / MTV was valuable for predicting the prognosis in patients with early stage 

HL.

Kanoun (65) 2014 R 59 HL Staging 41% SUVmax 225 / MTV was independent predictor of PFS

Ceriani (66) 2015 P 103 PMBCL Staging 25% SUVmax 703 5,814 In univariate analysis, elevated MTV and TLG were significantly associated 

with worse PFS and OS. Only TLG retained statistical significance for both OS 

and PFS in multivariate analysis.

Cottereau (81) 2018 P 159 FL Staging 41% SUVmax 510 / Baseline MTV better stratified the response to treatment assessed by end-of-

induction PET in FL patients.

Zhou (82) 2019 R 84 FL Staging 41% SUVmax 180 1,364 Baseline TLG was an independent predictor of PFS and OS in FL.

Liang (83) 2019 R 48 FL Staging SUV > 2.0

SUV > 2.5

SUV > 3.0

SUV2: 505

SUV2.5: 391

SUV3: 476

SUV2: 3260

SUV2.5: 3080

SUV3: 2677

MTV and TLG were independent predictors of PFS and OS in FL patients.

Vercellino (71) 2020 P 360 DLBCL Staging 41% SUVmax 220 / High MTV at baseline was significantly associated with inferior PFS and OS 

in patients receiving either lenalidomide maintenance or placebo.

Mikhaeel (72) 2022 R 1,241 DLBCL Staging SUV > 4.0 Continuous 

variable

/ IMPI outperformed IPI as prognostic index in DLBCL patients

Winkelmann (73) 2023 P 39 DLBCL Relapse/

refractory 

undergoing 

CART

SUV > 4.0 Continuous 

variable

/ IMPI had superior prognostic value compared to IPI for the estimation of 

PFS. IMPI could not predict OS.

Michaud (75) 2023 R 166 DLBCL Staging 41% SUVmax 510 / MTV could improve risk stratification of patients undergoing risk-adapted 

chemotherapy.

Alderuccio (74)* 2024 R 138 DLBCL Relapse/

refractory

SUV > 4 96 926 Both IMPI and dichotomized MTV could predict PFS, however MTV alone 

had better results than IMPI.

Duffles (76) 2024 R 27 DLBCL Staging n.a. / / MTV and TLG values had correlation with circulating tumor DNA.

Yang (80) 2024 R 270 FL Staging SUV > 2.5 111.6 141.5 MTV and TLG may provide prognostic value and help to improve the 

decision-making of initial treatment plans for newly diagnosed FL patients.

Yadgarov (86) 2024 R 115 Pediatric HL Staging SUV > 2.5

41% SUVmax

SUV2.5: 160

41%SUV: 143

SUV2.5: 1360

41%SUV: 750

Both MTV and TLG from baseline and interim FDG-PET scans are strong 

prognostic indicators for treatment response and PFS in pediatric HL

*Alderuccio et al. (74) used MTV both as a dichotomized and continuous variable. DLBCL, diffuse large B cell lymphoma; FDG, fluorodeoxyglucose; FL, follicular lymphoma; HL, Hodgkin lymphoma; IMPI, International Metabolic Prognostic Index; IPI:International 
Prognostic Index; MTV, metabolic tumor volume; NHL, non-Hodgkin lymphoma; NK, natural killer cell; OS, overall survival; R, retrospective; P, prospective; PFS, progression-free survival; PMBCL, primary mediastinal B cell lymphoma; SUV, standard uptake value; 
TLG, total lesion glycolysis.
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Furthermore, the authors observed that MTV could predict prognosis 
independently from the IPI score. A crucial step toward the inclusion 
of MTV among the parameters for risk assessment in DLBCL patients 
in clinical practice was performed by the colleagues of the PETRA 
consortium, who developed the “International Metabolic Prognostic 
Index” (IMPI), which considered for its calculation age, stage and 
MTV in a staging setting (72). The first innovation brought about by 
this study was that MTV was not evaluated as a dichotomic variable 
but was instead assessed as a continuous variable. The study included 
DLBCL patients from five different clinical trials, and compared this 
novel index with the currently utilized IPI, revealing that IMPI could 
outperform IPI and could enable individualized estimates of patient’s 
outcome. More recently, different colleagues tried to employ the IMPI 
in clinical settings other than staging. Winkelmann et al. (73) tried to 
use the IMPI as a prognosis predictor in patients with relapse or 
refractory DLBCL undergoing chimeric antigen receptor T-cell 
therapy (CART), observing a good prediction of PFS; nevertheless, in 
this casuistry, IMPI had not a significant association with OS (of note, 
neither IPI did). Moreover, IMPI was tested in patients undergoing 
immunotherapy with oncastuximab tesirine in relapsed/refractory 
DLBCL patients, and, despite being significant predictor of PFS and 
OS, it showed an inferior predictive performance compared to MTV 
alone (19, 74). Although the IMPI has brought several innovations 
regarding risk classification in patients diagnosed with DLBCL, it is 
imperfect in predicting prognosis and may need revisions. Indeed, 
Michaud et  al. (75) tested IMPI in a cohort of DLBCL patients 
undergoing risk-adapted immunochemotherapy regimen and 
observed that this novel index slightly overestimated the recurrence 
rate in their cohort, whereas baseline MTV was a significant predictor 
of PFS alongside ΔSUVmax and Deauville score. Finally, one recent 
study found a significant correlation of circulating tumor DNA with 
MTV, TLG and texture features at diagnosis, suggesting a potential 
interaction between these parameters (76).

As for DLBCL, MTV and TLG might be a useful instrument for 
prognosis prediction and risk assessment also in FL. Being FL an 
indolent lymphoma subtype, no conclusive survival advantage has 

been established for the early commencement of rituximab or 
chemotherapy (77); subsequently, the watch-and-wait strategy 
continues to be  an essential management choice in FL patients. 
Consistent with the survival statistics from a prospective randomized 
clinical trial, approximately half of the follicular lymphoma patients in 
the watchful waiting group did not require therapy after 3 years (77). 
In order to select patients needing treatment, the GELF criteria and 
NCCN guidelines utilize indicators such as patient symptoms, potential 
organ damage, severe cytopenia, and tumor burden assessment (bulky 
disease, involvement of at least three lymph nodes each measuring 
≥3 cm in diameter), and splenomegaly, for the selection of patients 
requiring early treatment (78, 79). In this context, MTV and TLG were 
deemed reliable prognostic factors in patients undergoing therapy and 
in those in watch-and-wait (80–83). In this setting, more extensive 
multicentre trials are needed to assess if MTV (expressed as a 
dichotomic or continuous variable) might be  a prognostic factor 
guiding the starting of treatment, irrespectively of the number of 
lesions detected. As for NHL, high values of MTV and TLG were found 
to negatively impact the prognosis also in HLs. In a prior investigation 
of HL patients undergoing routine regimens, the mean tumor load, 
adjusted for body surface area using CT measurements, proved to be a 
predictor of survival compared to the other prognostic models. 
Determining the metabolic volume of a tumor may be  the most 
effective method for predicting response and its durability. Multivariate 
analysis conducted by Song et al. (84), including 127 early-stage HL 
patients treated, showed that high MTV was independently correlated 
with PFS and OS. In a separate single-centre investigation, Kanoun 
et  al. (65) determined that pre-treatment MTV was a prognostic 
indicator of patient outcomes in a group of 59 HL patients. This study 
revealed that patients with low MTV exhibit superior PFS compared 
to those with high MTV. Multivariate analysis identified baseline total 
MTV and the reduction in SUVmax in response-assessment PET as the 
sole independent predictors of PFS, while tumor bulk was not a 
significant predictor. However, it is noteworthy that, in a similar 
analysis, Tseng et al. (85) tried using baseline MTV to predict PFS 
without any significant results. Subsequently, focus has shifted from 

FIGURE 2

Two representative cases of patients with high (A) and low Dmax (B).
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TABLE 4 Summary of studies on Dmax in diffuse large B-cell lymphoma (DLBCL).

Author 
(ref)

Year Sample 
size

Dmax 
cut-off

Type of 
study

Median 
age 

(Range)

M:F Combination 
with other 
parameters

Software/
Method used

Principal findings

Cottereau (90) 2020 95 58 cm Retrospective 46(18–59) 53:42 Dmax + MTV LIFEx Software Significantly associated with PFS and OS; combining with TMTV 

improved risk stratification

Cottereau (91) 2021 290 32 cm Retrospective na (60–80) 170:120 SDmax + MTV LIFEx Software SDmax sgnificantly associated with PFS and OS; combination with 

MTV improved patient stratification

Girum et (92) 2022 382 59 cm Retrospective 62.1* (34–73) 207:175 Dmax + MTV LIFEx Software Significantly associated with PFS and OS.

Xu (93) 2023 113 31 cm Retrospective 61? 57:56 Dmax + MTV NA Dmax was associated with PFS.

Eertink (94) 2022 317 cm Prospective 65(23–80) 161:156 Dmaxbulk + Other 

Metabolic Parameters

RaCaT Best predictor of PFS

Eertink (95) 2023 296 Not 

specified

Prospective 65 (55–72) 152:144 Different dissemination 

features

RaCaT Associated with PFS and OS.

Ceriani (96) 2022 240 na Retrospective na 119:121 SDmax +Baseline 

Radiomic Features

LIFEx Software Part of a predictive radiomics model for OS and PFS.

Dang et (97) 2023 154 53.2 cm Retrospective 56 (16–87) 78:76 Dmax + %ΔSUVmax LIFEx Software Predictive of PFS

Jo (98) 2023 63 27.5 cm Retrospective 57.3* (21–87) 28:35 Dmax + End-of-

Treatment PET

LIFEx Software Predictor of TTP

Marchal (99) 2023 56 15 cm Retrospective 60.2* 36:20 SDmax LIFEx Software Associated with OS; No association with PFS

*mean; PFS, Progression free survival: OS, Overall survive; TTP, time to progression; MTV, metabolic tumor volume; NA, not available.
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TABLE 5 Summary of studies on Dmax in Hodgkin lymphoma (HL) and other lymphoma subtypes.

Study Year Lymphoma 
subtype

Sample 
size

Dmax 
cut-off

Type of 
study

Median 
age (years)

M:F Combination 
with other 
parameters

Software/
method 

used

Principal findings

Weisman (100) 2020 Pediatric HL 100 NA Retrospective 15.8 (5.2–21.4) 60:40 na Deepmedic Moderate reproducibility of Dmax measurements 

between software and physicians

Driessen (101) 2022 cHL (Adults) 105 na Retrospective 30 (13–66) 47:58 na RaCaT High reproducibility of Dmax measurements across 

different segmentation methods

Zhou (102) 2021 HL 65 57.4 cm Retrospective 29 (8–72) 45:20 na LIFEx Association with PFS and OS.

Durmo (103) 2022 HL 155 20 cm Retrospective na 79:76 Dmax + Interim 

PET

LIFEx Software Dmax was predictor of PFS; combination with iPET 

improved accuracy

Drees (104) 2022 HL 30 na Retrospective 36* (18–66) na Dmax + Blood 

Markers (EV-

miRNA, TARC)

LIFEx Software Dmax was related to blood markers like EV-miRNA and 

TARC.

Li (105) 2022 Follicular 

Lymphoma

126 56.73 Retrospective 53(21–76) 63–63 Dmax + TLG R Both Dmax and TLG were associated with PFS

Xie (106) 2023 Peripheral T-Cell 

Lymphoma (PTCL)

95 65.95 Retrospective 64 (16–84) 59:46 Dmax + Bone 

Marrow Biopsy

LIFEx Software Dmax, along with bone marrow biopsy results, was 

significantly linked to PFS and OS.

Albano (107) 2024 Burkitt Lymphoma 78 ? Retrospective 52* (18–80) 51:27 Dmax + eotPET/

CT results, MTV 

and TLG

LIFEx Software Dmax and Sdmax were significantly correlated OS and 

treatment response.

Gong (108) 2022 Angioimmunoblastic 

T-Cell Lymphoma 

(AITL)

81 65.7 Retrospective 63 53:28 Dmax + MTV LIFEx Software Dmax was tied to PFS and OS;combination with TMTV 

improved risk stratifacation

Vergote (109) 2022 Mantle Cell 

Lymphoma (MCL)

75 30 cm 

SDmax

60 cmDmax

Retrospective 66 (58–72) 62–21 Dmax and MTV MIM No correlation for Dmax with PFS and OS

*mean; PFS, Progression free survival; OS, Overall survive: MTV, metabolic tumor volume; TLG, total lesion glycolysis; NA, not available.
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conventional risk classification methods using baseline PET 
characteristics to employing interim PET data for guiding early 
therapeutic adjustments. Several studies measured MTV, TLG, and 
their temporal variations to assess their potential role as prognosis 
predictors. For example, Tseng et al. (85) observed that the ratio of 
MTV values collected in baseline and interim PET was predictive of 
PFS at 50 months. In a recent study, Yadgarov et al. (86) tested MTV 
and TLG as prognosis predictors in pediatric HL patients and observed 
that MTV and TLG were significantly associated with shorter PFS and 
had a strong correlation with post-treatment Deauville scores.

MTV and TLG showed positive impact also in predicting 
prognosis in patients that received CAR-T cell therapy as published in 
this recent meta-analysis (87).

In conclusion, MTV and TLG can be considered two parameters 
that precisely quantify the tumor burden and its metabolism in 
lymphoproliferative diseases. Their potential to predict, within certain 
limits, the treatment outcome in most lymphoma variants is a 
fascinating area of research. While attempts have already been made 
to integrate these values into risk stratification models, further studies 
are needed to make their measurements reproducible and provide the 
clinician with reliable data to select the best treatment option. Table 1 
reports the main findings of the cited articles testing MTV and TLG 
as prognosis predictors in different lymphoma subtypes and clinical 
settings ordered by year of publication.

3 Dissemination features: Dmax

3.1 Definition and background

With advancements in PET/CT image processing and post-
processing software, new opportunities have emerged for the precise 
and quantitative evaluation of lymphoma. One promising biomarker 
is Dmax, which measures the maximum tumor dissemination by 
calculating the distance between the two farthest hypermetabolic 
lesions detected on PET scans (88, 89). Traditional staging systems, 
such as the Ann Arbor classification, categorize lymphoma based on 
the extent of disease spread in a qualitative manner (7). In contrast, 
Dmax could offer a more precise, quantitative measure of disease 
dissemination, capturing details that the Ann Arbor system may not 
fully reflect. The transition from qualitative approaches to more 
personalized, data-driven quantitative approach could enhance risk 
stratification, paving the way for more precise prognostics scores 
(Figure 2).

3.2 Technical characteristics

Most studies on Dmax have focused on diffuse large B-cell 
lymphoma (DLBCL), the most common form of non-Hodgkin 
lymphoma (Table 4). Prognostication is critical in DLBCL due to its 
clinical heterogeneity. The concept of Dmax was first introduced by the 
French group led by Cottereau et al. (90). They demonstrated that Dmax 
was significantly associated with progression-free survival (PFS) and 
overall survival (OS) in DLBCL patients. They further showed that 
combining Dmax with metabolic tumor volume (MTV) provided better 
risk stratification than using Dmax alone. In a larger study involving 290 
patients (91), they confirmed that both Dmax and its normalized form 

(SDmax), adjusted for body surface area, were strongly correlated with 
PFS and OS, again suggesting that combining Dmax with MTV 
enhances prognostic accuracy. Another publication (92) supported 
these findings in a study involving 382 patients, highlighting the 
improved risk stratification achieved by combining Dmax with 
MTV. Similarly, Xu et al. (93) explored the prognostic role of Dmax 
combined with MTV to stratify risk in patients with low and high-risk 
categories according to the NCCN-IPI.

For the first time in 2022 the concept of Dmaxbulk was introduced 
(94, 95) and it was defined as the maximal distance between the largest 
lesion and any other lesion, which emerged as a strong predictor of 
treatment outcomes in DLBCL, particularly when combined with other 
metabolic parameters, improving the positive predictive value (PPV) by 
15%. They further validated the prognostic value of Dmax in 2023, 
showing that baseline radiomic features, including Dmax, were 
significantly associated with PFS and OS in aggressive B-cell lymphoma. 
This evidence was confirmed by a subsequent research (96). Dang et al. 
(97) investigated the combination of baseline Dmax with %ΔSUVmax 
after 3–4 cycles of immunochemotherapy, finding that this combination 
improved the predictive efficacy for PFS. Jo et al. (98) extended these 
findings by showing that Dmax was associated with time to progression 
(TTP) when combined with end-of-treatment PET scans.

In a recent study Marchal et  al. (99), demonstrated that 
pre-CAR-T cell infusion Dmax was an independent prognostic factor 
for OS in 56 DLBCL patients but did not impact PFS. These DLBCL 
studies consistently highlight the value of Dmax as a prognostic tool, 
particularly when combined with other PET-derived features like 
MTV. However, a major limitation across studies is the use of varying 
Dmax cut-offs, which complicates direct comparisons. Future 
research should focus on standardizing Dmax cut-offs in DLBCL and 
developing automated methods for calculating this parameter to 
improve clinical utility.

3.3 Main results in lymphoma

3.3.1 Hodgkin lymphoma (HL)
Hodgkin lymphoma (HL) is a highly curable malignancy with 

modern therapies, but early identification of high-risk patients remains 
crucial. Five studies have evaluated Dmax in the context of HL, with 
generally consistent findings (Table 5). Weisman et al. (100) found that 
Dmax exhibited moderate reproducibility between automated software 
and physician measurements in pediatric Hodgkin lymphoma 
patients. While Dmax was associated with outcomes, the study 
underscored the importance of reproducibility in its measurements for 
clinical adoption. Driessen et  al. (101) also investigated Dmax 
reproducibility in adult patients with classical Hodgkin lymphoma 
(cHL), finding high reproducibility, which supports Dmax as a robust 
biomarker despite heterogeneous measurement methods.

Zhou et  al. (102) demonstrated that Dmax was significantly 
associated with both PFS and OS in HL patients, similar to findings in 
DLBCL studies. A more recent study Durmo et al. (103) expanded on 
these results, showing that Dmax was significantly associated with 
PFS, especially when combined with interim PET results. This finding 
suggests Dmax could be integrated into response-adapted treatment 
strategies increasingly used in HL management.

Moreover, the relationship between Dmax and blood markers, 
including extracellular vesicle microRNA (EV-miRNA) and thymus 
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TABLE 6 Characteristics of the included studies (2014–2020), with different clinical purposes (prognostication, histology and bone marrow involvement).

Author 
(ref)

Year Country Design Lymphoma 
type

n Software Volume 
Segmentation

Extracted features Train/
Test

Model Selected features

Ko KY (112) 2016 Taiwan retrospective Nasal type NK/T-cell 17 MATLAB
Semi-automatic, only 

lesion

SUV, clinical features, 

HISZE, HIZE, LISZE, 

busyness, coarness, BWS, 

RLV

No Linear dissimilarity, LISZE

Bouallègue FB 

(113)
2017 France retrospective Bulky HL NHL 57 na

Semi-automatic,

one lesion

SUVMax, SUVpeak, 

SUVmean variance, 

skewness, kurtosis

MTV, TLG, GLCM, shape

No Linear All the extracted

Parvez A (114) 2018 Canada retrospective NHL 82 LifeX
Semi-automatic,

one to three

GLCM, NGLDM, GLRLM, 

GLZLM, histogram, 

sphericity

No Linear All the extracted

Lue KH (115) 2019 Taiwan retrospective HL 35 MATLAB
Semi-automatic, all 

lesions

SUV, HU, GLRM, GLSZM

grey level
No Linear

different for treatment response, 

PFS and OS

Lue KH (116) 2019 Taiwan retrospective HL 42 MATLAB
Semi-automatic, all 

lesions
All orders PET features No Linear

SUV kurtosis, MTV, INU, RLN,

wavelet HLH

Mayerhoefer 

ME (117)
2019 USA retrospective

Mantle Cell 

Lymphoma
107 na

Semi-automatic, all 

lesions

SUVMax, SUVmean, 

SUVpeak,

TMTV, TTLG, GLCM

Yes
Non 

linear
TMTV, GLCM entropy

Milgrom SA 

(118)
2019 USA retrospective NHL 251 IBEX, MIM

Semi-automatic, all 

lesion

entropy, uniformity, 

skewness, GLCM
No Linear All the extracted

Tatsumi M 

(119)
2019 Japan retrospective FL 45 PESTAT Automatic, one lesion

Homogeneity, entropey, 

SRE, LRE, LGZE, HGZE
No Linear All the extracted

Wang H (120) 2019 China retrospective
Nasal type

NK/T-cell
110

LifeX,

LASSO

Semi-automatic, one 

lesion

SUV, histogram, shape, 

GLCM, NGLDM, GLRLM, 

GLZLM.

Yes
Non 

linear
All the extracted

Wu J (121) 2019 USA retrospective DLBCL 45 BTF Automatic, one lesion

SUV, GLCM GLRLM, 

GLSIZM

Clinical and genomics

No Linear SUV-based, gene expression

Zhou Y (122) 2019 China retrospective Gastric DLBCL 35 LifeX
Semi-automatic, one 

lesion
All orders PET features No Linear

MTV, kurtosis, volume, 

sphericity,

HGRE, LRHGE, GLNU, RLNU, 

LZE, HGZE, LZLGE, LZHGE, 

ZP

(Continued)

https://doi.org/10.3389/fmed.2024.1515040
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


A
lb

an
o

 et al. 
10

.3
3

8
9

/fm
ed

.2
0

24
.15150

4
0

Fro
n

tie
rs in

 M
e

d
icin

e
16

fro
n

tie
rsin

.o
rg

TABLE 6 (Continued)

Author 
(ref)

Year Country Design Lymphoma 
type

n Software Volume 
Segmentation

Extracted features Train/
Test

Model Selected features

Aide N (123) 2020 France retrospective DLBCL 132 LifeX
Semi-automatic, one 

lesion

conventional, GLCM, 

GLSZM, SZE, LZE, LGZE, 

SZLGE, SZHGE, SZHGE, 

LZLGE, LZHGE, GLNU, 

ZLNU, ZP

Yes Linear
histogram, LZE, LZGE, LZHGE, 

GLNU, AS, ZP

Cottereau AS 

(90)
2020 France retrospective DLBCL 95 LifeX

Semi-automatic, all 

lesions

TMTV, TLG, 

dissemination
No Linear All the extracted

Rodriguez T 

MG (124)
2020 Uruguay prospective Pediatric HL 21 na

Semi-automatic, all 

lesions
All orders PET features No Linear GLCM and NGTDM

Sun Y (125) 2020 China retrospective Gastric GLBC 30 Image analyzer Manual, one lesion All orders PET/CT features No Linear
SUVMean, frequency, entropy, 

volume, max diameter, entropy

Wang M (126) 2020 China retrospective Primary Renal/adrenal 19 LifeX Manual, one lesion
Histogram, GLCM, 

GLRM, NGLDM GLZLM
No Linear All the extracted

Lue KH (127) 2021 Taiwan retrospective DLBCL 83 OsiriX, LASSO
Semi-automatic, all 

lesions
All orders PET features Yes Linear GLN, RLN, GLRLM

Lartizien C 

(128)
2014 France retrospective BCL and HL 25 SVM Manual

First order, GLCM, 

GLRLM, GLISZM, GLDM
Yes Linear

KurtosisPET, Haralick 

coefficients, GLISZ, GLRL

Kong Z (129) 2019 China retrospective
Central nervous 

lymphoma
77 Pyradiomics Manual

SUVmax, MTV, TLG, first 

order, GLCM GLRLM, 

GLSZM

No Linear
First Order, GLCM, GLRLM, 

GLDM

Lippi M (130) 2019 Italy retrospective Different lymphomas 60 CGITA Manual All orders PET/CT features No
Non 

linear
All orders PET/CT features

Ou X (131) 2019 China retrospective

Breast lymphoma 44 LifeX Manual Histogram, SHAPE, 

GLCM, GLRLM, NGLDM, 

GLZLM

No Linear All the extracted

Xu H (132) 2020 China retrospective Hepatic lymphoma 100 LifeX Manual SUV, TLG, HISTO, Shape, 

GLCM, GLRM, NGLDM, 

DLZLM

No Linear SUV, TLG, shape, GLCM, 

GLRLM_GLNU, NGLDM_

contrast, GLZLM_GLNU

Ou X (133) 2020 China retrospective Breast lymphoma 44 LifeX Manual Histogram, SHAPE, 

GLCM, GLRLM, NGLDM, 

GLZLM

No Linear Six different models

Sun YW (134) 2020 China retrospective Gastric Lymphoma 79 Image Analyzer 

2.0

Manual Histogram, GLCM No Linear All features extracted

(Continued)
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TABLE 6 (Continued)

Author 
(ref)

Year Country Design Lymphoma 
type

n Software Volume 
Segmentation

Extracted features Train/
Test

Model Selected features

Aide N (135) 2018 France retrospective DLBCL 82 LifeX Semi-automatic All orders PET features No Linear All features extracted

Mayerhoefer 

ME (136)

2020 USA retrospective Mantle Cell 

Lymphoma

97 na Semi-automatic SUV derived, histogram, 

GLCM

Yes Non 

Linear

All features extracted

Kenawy MA 

(137)

2020 Egypt retrospective na 44 Chang-Gung 

Image Texture 

Analysis

Semi-automatic All orders PET features No Linear All Features extracted

HL, Hodgkin lymphoma; NHL, non-Hodgkin Lymphoma; DLBCL, diffuse large B-cell lymphoma; FL, Follicular Lymphoma; SUV, Standardized Uptake Value; MTV, Metabolic Tumor Volume; TLG, Total lesion glycolysis; HU, Hounsfield unit; GLCM, grey-level 
co-occurrence matrix; NGLDM, neighborhood grey-level different matrix; GLRLM, grey-level run length matrix; GLZLM, grey-level zone length matrix; GLSZM, grey-level size-zone matrix; HISZE, high-intensity short-zone emphasis; HIZE, high-intensity zone 
emphasis; HU, Hounsfield unit; LISZE, low-intensity short-zone emphasis; BWS, black-white symmetry; RLV, run-length variability; SRE, Short Run emphasis; LRE, long-run emphasis; LGZE, low grey-level zone emphasis; HGZE, high grey-level zone emphasis; SZE, 
short zone emphasis; LZE, long zone emphasis; SZHGE, short zone high grey level emphasis; LZHGE, short zone emphasis; LZE, long zone emphasis; LZHGE, long zone high grey level emphasis; GLNU, grey level non uniformity for zone; ZLNU, zone length non 
uniformity; ZP, zone percentage; na, not available.

TABLE 7 Update on recent studies (2021–2024), with different clinical purposes (prognostication, histology and bone marrow involvement).

Author (ref) Year Country Design Lymphoma 
type

n Software Volume 
Segmentation

Extracted 
features

Train/
Test

Model Selected 
features

Eertink (94) 2022 Netherlands retrospective DLBCL 317 Accurate Automatic (all lesions) All orders PET features No Linear Combined models

Ceriani (96) 2022 Switzerland retrospective DLBCL 263 PyRadiomics Automatic (all lesions) All orders PET features Yes Linear
GLCM, GLDM, 

GLSZM

Jimenez (138) 2022
Unites 

States
retrospective miscellaneous 169 MiM Semi-automatic All orders PET features Yes Linear Combined models

Frood (139) 2022 UK retrospective DLBCL 229 PyRadiomics Semi-automatic All order PET features Yes Non-linear Combined models

Jiang (140) 2022 China retrospective
Gastrointestinal 

DLBCL
140 PyRadiomics Semi-automatic All order PET features Yes Non-linear Combined models

Ortega (141) 2023 Canada retrospective HL 88 LifeX Semi-automatic All order PET features No Linear GLRLM

Triumbari (142) 2023 Italy retrospective HL 227 Moddicom
Semi-automatic (two 

targets)
All order PET features Yes Linear GLCM

Li (143) 2023 China retrospective DLBCL 129 LifeX Semi-automatic All order PET features Yes Linear Second order features

(Continued)
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TABLE 7 (Continued)

Author (ref) Year Country Design Lymphoma 
type

n Software Volume 
Segmentation

Extracted 
features

Train/
Test

Model Selected 
features

Cui (144) 2023 China retrospective DLBCL 271 na na

All order PET features 

(baseline and after 

treatment)

Yes Non-linear na

Samimi (145) 2023 Iran retrospective miscellaneous 126 LifeX Semi-automatic
All order PET features 

(dual time point)
Yes Linear

Second and third 

order features

Zhao (146) 2023 China retrospective DLBCL 240 LifeX Semi-automatic All order PET features Yes (external) Non-Linear Combined models

Jing (147) 2023 China retrospective DLBCL 201 LifeX Semi-automatic All order PET features Yes Linear Combined models

Ligero (148) 2023 Spain prospective
DLBCL

(CAR-T)
93 MiM Semi-automatic All order PET features Yes Linear

Radiomic scores, 

Combined models

Driessen (149) 2023 Netherlands prospective HL 113 Accurate Semi-automatic All order PET features Yes (external) Non-linear Combined models

Carlier (150) 2024 France prospective DLBCL 545 PyRadiomics Semi-automatic All order PET features Yes Non-linear Combined models

Luo (151) 2024 China retrospective
Nasal Type 

NK/T
126 PyRadiomics Semi-automatic All order PET features Yes Linear

Radiomic scores, 

Combined models

Albano (152) 2024 Italy retrospective Primary Gastric 91 LifeX Semi-automatic First order features No Linear Shape sphericity

Yousefirizi (153) 2024 Canada retrospective
Primary 

Mediastinal
31

MiM, 

PyRadiomics
Semi-automatic

First and second order 

features (delta radiomics)
Yes Non-linear Baseline Radiomics

Jing (154) 2024 China retrospective DLBCL 126 LifeX Semi-automatic All order PET features Yes Linear Combined models

Jing (155) 2024 China retrospective DLBCL 239 LifeX Semi-automatic na na na na

Zhu (156) 2021 China retrospective
Renal 

Lymphoma

21 LifeX Manual Histogram, GLCM, 

GLRM, GLZLM

No Linear na

Lovinfosse (157) 2022 Belgium retrospective Multiple, 

Sarcoidosis

420 RadiomiX Manual All orders PET features No Non-linear Combined radiomic 

models

Han (158) 2021 Korea retrospective DLBCL 144 Lifex Manual All orders PET features No Linear GLZLM

HL, Hodgkin lymphoma; NHL, non-Hodgkin Lymphoma; DLBCL, diffuse large B-cell lymphoma; FL, Follicular Lymphoma; SUV, Standardized Uptake Value; MTV, Metabolic Tumor Volume; TLG, Total lesion glycolysis; HU, Hounsfield unit; GLCM, grey-level 
co-occurrence matrix; NGLDM, neighborhood grey-level different matrix; GLRLM, grey-level run length matrix; GLZLM, grey-level zone length matrix; GLSZM, grey-level size-zone matrix; HISZE, high-intensity short-zone emphasis; HIZE, high-intensity zone 
emphasis; HU, Hounsfield unit; LISZE, low-intensity short-zone emphasis; BWS, black-white symmetry; RLV, run-length variability; SRE, Short Run emphasis; LRE, long-run emphasis; LGZE, low grey-level zone emphasis; HGZE, high grey-level zone emphasis; SZE, 
short zone emphasis; LZE, long zone emphasis; SZHGE, short zone high grey level emphasis; LZHGE, short zone emphasis; LZE, long zone emphasis; LZHGE, long zone high grey level emphasis; GLNU, grey level non uniformity for zone; ZLNU, zone length non 
uniformity; ZP, zone percentage; na, not available.
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FIGURE 3

Example of internally validated and retrospective radiomic models applied to PET/CT in Lymphoma, using the most promising image features from 
Lesion A with largest diameter and Lesion B with highest SUVmax, with regard to Deauville Score (<4 or ≥ 4) and 24-month progression free survival, 
respectively.

FIGURE 4

A summary of the potential quantitative PET parameters and their features.
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activation-regulated chemokine (TARC) was explored with interesting 
findings (104). They found a significant association between Dmax 
and these markers, indicating that Dmax may reflect both tumor 
burden and the tumor microenvironment.

3.3.2 Other lymphoma subtypes
The role of Dmax in lymphoma subtypes beyond DLBCL and HL is 

underexplored. Li et al. (105) assessed the prognostic value of Dmax in 
follicular lymphoma (FL), finding that Dmax and total lesion glycolysis 
(TLG) were significantly associated with PFS in a population of 126 
grade 1-3a FL patients. The report that a scoring system integrating 
Dmax and TLG performed better (c-index 0.785) was superior to the 
predictive capability of the conventional scores FLIPI2, and PRIMA-
Prognostic Index (C-index: 0.628–0.701). Peripheral T-cell lymphoma 
(PTCL) is a rare and aggressive lymphoma with a poor prognosis. Xie 
et al. (106) reported that Dmax, along with bone marrow biopsy results, 
was significantly associated with both PFS and OS in 95 PTCL patients. 
Albano et al. (107) showed that Dmax was significantly correlated with 
OS in adult Burkitt lymphoma patients. Gong et al. (108) found a similar 
association in Angioimmunoblastic T-cell lymphoma (AITL) patients, 
with combining Dmax and MTV enhancing risk stratification, echoing 
results from DLBCL and HL studies.

Conversely, in mantle cell lymphoma (MCL) Dmax did not 
significantly correlate with prognosis, with MTV instead identified as 
the primary predictor of outcomes (109). This suggests that Dmax’s 
applicability may vary across lymphoma subtypes, warranting further 
research to clarify its role in MCL.

Despite the reproducibility of Dmax measurements highlighted 
in some studies, further automation is needed to ensure 
consistency and reduce operator dependency. Another challenge 
is the size and diversity of patient samples: many studies, especially 
those on rare subtypes like PTCL and AITL, have small cohorts. 
Large-scale, multicentre studies are needed to validate findings 
and assess Dmax’s role in broader, more diverse populations. 
Finally, it is crucial to explore the use of Dmax in patients treated 
with emerging therapies, such as CAR-T cells or bispecific 
antibodies. These treatments could alter lymphoma prognostics, 
making it urgent to evaluate Dmax’s utility in these new 
therapeutic contexts.

4 Radiomics

4.1 Definition and background

New radiomic PET parameters emerged for histologic assessment 
and prognosis prediction depending on the intra-lesion 18F-FDG spatial 
distribution (7, 110, 111). The potential impact of quantitative parameters 
in the study of hematopoietic malignancies has recently emerged with 
promising results and revealing some applications such as survival 
prediction, assessment of bone marrow involvement and differentiation 
diagnosis between lymphoma and other malignancies. Additionally, 
artificial intelligence techniques have been utilized in radiomics to 
forecast factors associated with treatment strategies, such as tumor 
subtypes, survival rates, and disease recurrence. Predictive models can 
be  developed using multi-parametric radiomic image features to 
personalize patient decision-making, either independently or in 
conjunction with established clinical, biological, and laboratory 
data (111).

4.2 Technical characteristics

In 2021, Rizzo et  al. (111) completed a systematic review of 
original papers in the field of PET radiomics in patients with 
lymphoma, here updated with new papers up to 31 August 2024 
(Table  6). About acquisition protocols, most of papers followed 
he EANM guidelines for PET/CT acquisition protocols (90, 112–137). 
About volume selection and contouring, semi-automatic method was 
used in most of studies (90, 112–118, 122–126, 135–137). The 
investigation included only the largest tumor site in several studies 
(112, 113, 119–123, 125, 131–134), while other papers considered all 
lesions (90, 115–118, 124, 126–129). About data collection, all studies 
considered conventional semi-quantitative PET/CT parameters at 
least in the first data analysis, most of papers considered histogram 
features (112–122, 124–128, 130–137) or higher order textural features 
(112, 114–137). Some papers included in the final analysis all the 
extracted features (90, 113, 114, 117–120, 126, 128, 131, 133, 136, 137), 
while the others performed a selection of the significant features with 
respect to an outcome before building models. Concerning data 
analysis, most of studies used a linear regression model (90, 112–116, 
118, 119, 121–129, 131–135, 137). Only in few cases, the authors split 
the patients into a training and a separate test group to independently 
validate the models in few studies (117, 120, 123, 127, 128, 136). 
Generally, all these studies had different clinical goals.

4.3 Main results in lymphoma

Thus, we decided to divide them in three sub-groups according to 
clinical purposes: (1) prognosis/outcome; (2) histology and (3) bone 
marrow involvement researches (Table 6). More common lymphoma 
subtypes investigated were Hodgkin lymphoma (115, 116, 118, 125), 
diffuse large B cell lymphoma (90, 121–123, 126, 135), or more than 
one subtype of lymphoma in the same analysis (113, 114, 125, 127–
133, 137). Most of articles aimed to predict outcome, prognosis or 
survival. Regarding prognostic studies, all papers included in this 
subgroup revealed a significant association among the radiomic model 
and patients’ outcome (90, 112–127). However, the radiomic model 
and lymphoma subtype studied resulted in different patterns of 
predictive features (imaging, clinical, and/or histopathological) across 
the various studies (Table  6). All studies examining the ability of 
radiomic features to distinguish between lymphoma lesions and other 
malignancies (129–134) or para-physiological sites of FDG uptake 
(e.g., brown adipose tissue) (128) found a strong correlation between 
the proposed model and histopathological findings. Similarly, some 
studies evaluating bone marrow involvement using radiomics 
demonstrated a significant correlation between the model and the 
presence of bone marrow involvement (135–137). In Table 7 recent 
papers published in the time frame 2021–2024 were reported (94, 96, 
138–158) (Figure 3). About technical aspects, most of recent papers 
used semi-automatic volume selection and contouring for radiomic 
purpose, with an extensive use of all order PET radiomic features 
(first, second and third order features) (94, 96, 138–151). Moreover, 
in the last years the use of trained-tested validation systems of the 
models and non-linear machine-learning methods became more 
common in scientific literature worldwide (139, 140, 144, 146, 149, 
150), with particular regard to academic papers from China. Only few 
papers started to evaluate multiphase/delta radiomics between 
baseline and further PET scans (144, 145, 153), or to use external 
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validation cohorts to ensure robust reproducibility of the models (146, 
149). About clinical findings, most of recent papers mainly focused on 
the prognostic use of radiomics (94, 96, 138–155), with particular 
regard to diffuse large B cell lymphoma (94, 96, 143–147). At the same 
time, the interest in the use of radiomic feature for histology 
classification and bone marrow prediction seems to be residual in the 
last years in scientific literature (156–158). Combined predictive 
models using both radiomic features of different orders and 
conventional clinical parameters commonly emerged as the best 
choice in most of papers (138–140, 146–151). In particular, several 
radiomic features have been sometimes combined in synthetic 
radiomics scores, sometimes as a result of machine-learning analysis 
methods, even though real-world data of those models in routinely 
context are still missing.

5 Discussion and conclusions

In this review, we focused on the potential role of semiquantitative 
parameters derived by 2-[18F]FDG PET/CT in lymphoma. Despite 
different functions described, all these variables seem to be promising 
and effective prognostic factors. However, we have also some limitations 
such as the retrospective nature of most articles, the relatively small 
number of patients recruited and the wide heterogeneity of patients 
included concerning epidemiological and clinical aspects. For these 
reasons, other investigations on larger populations would be shareable. 
Besides, many authors analyzed only one kind of features excluding the 
others and this strongly limits the possibility to exhaustively understand 
the meaning of these variables. Research including all these features 
(MTV, TLG; Dmax, SMI and radiomics) could better comprehend the 
relationship between them and derive combined model to predict 
prognosis (Figure  4). The integration of these semiquantitative 
PET-based biomarkers into clinical trials and everyday clinical practice 
appears imminent; however, several challenges must be  addressed 
before these biomarkers are fully ready for widespread use. For these 
reasons, visual score or quantitative extension derived in pediatric 
population, like qPET (159) that utilizes SUVpeak of the residual lesion 
and average uptake of the liver, are yet utilized.

Furthermore, these interesting parameters still need to be tested in 
light of the new treatments and new technologies that have been 
developed. The role of PET-based biomarkers in patients treated with 
novel agents is still largely uncharted; however, quantitative imaging 
holds promise for developing risk-adapted treatment strategies for 
lymphoma patients. The ultimate aim is to create decision-making 
models that can more accurately identify those who will benefit most 
from specific therapies. The technological progress in nuclear medicine 
with the introduction of “new total body” PET scanners could be a 
significant advantage in this field. Conventional PET/CT systems 
usually have a 20 cm wide detector ring and the scan takes normally 
25–30 min according to the patient height and time for bed position. 
With the total body scanners detector ring up to 200 cm and a true 
whole-body PET/CT can be performed in a few minutes with superior 
image quality compared to current PET/CT systems. Moreover, with 
these new scanners the uptake detection increases significantly affecting 
a dramatic change in PET quantification. Moreover, another potential 
issue is the different acquisition protocols available in every department. 
It is well known that the application of TOF can impact the image 
quality and interpretation in the clinical PET data (160), such as also 

semiquantitative parameters as SUV, MTV and TLG. However, specific 
studies on lymphoma are lacking.

This review presents some limitations such as the non-systematic 
nature of this review, selecting arbitrary the articles to include, the 
long time period of included studies and the heterogeneity of patients 
included (in terms of disease, technical features, …).
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